A Relation-Specific Attention Network for Joint Entity and Relation Extraction

Yue Yuan¹,², Xiaofei Zhou¹,²*, Shirui Pan³, Qiannan Zhu¹,², Zeliang Song¹,² and Li Guo¹,²

¹Institute of Information Engineering, Chinese Academy of Sciences
²University of Chinese Academy of Sciences, School of Cyber Security
³Faculty of Information Technology, Monash University
{yuanyue,zhouxiaofei}@iie.ac.cn, shirui.pan@monash.edu

Abstract

Joint extraction of entities and relations is an important task in natural language processing (NLP), which aims to capture all relational triplets from plain texts. This is a big challenge due to some of the triplets extracted from one sentence may have overlapping entities. Most existing methods perform entity recognition followed by relation detection between every possible entity pair, which usually suffers from numerous redundant operations. In this paper, we propose a relation-specific attention network (RSAN) to handle the issue. Our RSAN utilizes relation-aware attention mechanism to construct specific sentence representations for each relation, and then performs sequence labeling to extract its corresponding head and tail entities. Experiments on two public datasets show that our model can effectively extract overlapping triplets and achieve state-of-the-art performance. Our code is available at https://github.com/Anery/RSAN

1 Introduction

Jointly extracting entities and relations is to capture structural knowledge in the form of (head, relation, tail) from unstructured texts. The process can promote many graph-based tasks in data mining and NLP fields, such as knowledge graph construction [Luan et al., 2018] and graphical dialogue system [Liu et al., 2018]. Traditional pipelined extraction systems [Zelenko et al., 2003; Chan and Roth, 2011] treat entity and relation extractions as two separate tasks, which perform relation classification after the recognition of all the entities in the text. Such models suffer from error propagation and ignore the relevance between the two subtasks [Li and Ji, 2014]. Thus, many researchers focus on building joint models to simultaneously extract entities and relations.

Prior joint learning methods [Kate and Mooney, 2010; Miwa and Sasaki, 2014] depend heavily on complex feature engineering and other off-the-shelf NLP tools. The later studies concentrate more on learning neural network-based models, and some of them apply parameter sharing strategy for jointly training [Miwa and Bansal, 2016; Katiyar and Cardie, 2017]. Although these neural methods perform better than the former, they still make predictions separately on extracting entities and relations, and the connections between the two subtasks are not fully utilized. Recently, a NovelTagging model [Zheng et al., 2017] combines the two tasks as a single sequence labeling problem. However, a word cannot be assigned with more than one tag, so that the model fails to extract the triplets with overlapped entities (see the examples in Figure 1).

To address the overlapping issue, many entity-guided joint learning methods, such as PA-LSTM [Dai et al., 2019] and ETL-Span [Yu et al., 2020] are proposed. They perform head entities recognition as the first step, and develop some joint decoding strategies for extracting the corresponding tail entities and relations. On the contrary, CopyRE [Zeng et al., 2018] and HRL [Takanobu et al., 2019] present a relation-guided joint extraction process, which takes relation classification as the first step of their models. It is because relations are usually triggered by the context of sentences rather than target entities. For example, descriptions like ‘was born in’ in the sentence will directly lead to the place_of_birth relation. Thus, the relation information can be first introduced as prior knowledge and reduce the model’s focus on semantically unrelated entities, which avoids the redundant extraction operations on them. However, CopyRE and HRL simply utilize the results of relation classification as the guidance of entity extraction, ignoring the fine-grained semantic

<table>
<thead>
<tr>
<th>Texts</th>
<th>Triplets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>The [United States] president (Donald Trump) will visit [Beijing], [China]. (Donald Trump, President_of, United States) (China, Contains, Beijing)</td>
</tr>
<tr>
<td>SEO</td>
<td>The [United States] president (Donald Trump) was born in [New York City]. (Donald Trump, President_of, United States) (Donald Trump, Born_in, New York City)</td>
</tr>
<tr>
<td>EPO</td>
<td>Martin went to [Tokyo] last week, which is the capital of [Japan]. (Japan, Contains, Tokyo) (Japan, Capital, Tokyo)</td>
</tr>
</tbody>
</table>

Figure 1: Examples of the Normal, SingleEntityOverlap (SEO) and EntityPairOverlap (EPO) cases. The overlapping entities are marked in bold. The first example belongs to Normal class which has no overlapped entities. The second one with triplets sharing one single entity Donald Trump belongs to SEO class. The last one that has triplets with overlapped entity pair (Japan, Tokyo) belongs to EPO class.
connections between relations and the words in the sentence. We argue that the words should have different contributions to the underlying semantic expression of the sentence under different relations. Based on this assumption, we use attention mechanism for assigning higher weights to the relation-related words in the sentence.

In this paper, we propose a relation-specific attention network (RSAN) for joint entity and relation extraction. We use relation-based attention to construct the specific sentence representation under each relation, and then perform sequence labeling to extract its corresponding entities. Our model can not only capture fine-grained semantic features from the words, but also effectively decompose the overlapping problem by separating the extraction task into separate entity tagging processes for different relations. Moreover, we employ a relational gate to reduce the noise brought by the unrelated relations in entity recognition. During training, we further use a relation-level negative sampling strategy to avoid most of the redundant decoding processes. In summary, the main contribution of this paper is as follows:

- We present a joint entity and relation extraction model named RSAN, which incorporates the relation fine-grained semantic information to guide the entity recognition process. Our RSAN is suitable for extracting the overlapping triplets as it performs entity extraction for different relations separately.
- We apply relation-based attention mechanism to construct different sentence representations under different relations, and propose a relational gated mechanism to adaptively control the relation information provided for entity decoding.
- Training with a relational negative sampling strategy, our model achieves state-of-the-art results on two public datasets, which proves its effectiveness.

2 Related Work

Researchers have made great efforts in relational facts extraction, which can be directly used for knowledge graph construction, or supporting downstream text mining tasks. Early methods [Zelenko et al., 2003; Chan and Roth, 2011] regard entity and relation extractions as two separate subtasks, which apply pipelined approach to perform relation classification after extracting all the entities. To construct the bridge between the two subtasks, building joint model that extracts entities together with relations simultaneously has attracted much attention. The prior feature-based models [Kate and Mooney, 2010; Miwa and Sasaki, 2014] rely on other NLP tools to do feature engineering, and suffer from the error propagation. The later works are mainly based on neural architectures, which can be roughly divided into Table-filling, Tagging and Seq2Seq methods.

Table-filling methods [Miwa and Sasaki, 2014; Gupta et al., 2016] construct a table for each sentence and specify an order of the table cells, incrementally filling the table with entity or relation tags. The recent work GraphRel [Fu et al., 2019] can also be seen as table-filling methods, which applies 2-phrase Graph Convolutional Network (GCN) to predict word entities and relations for each word pair. Due to

Figure 2: An example for our relation-specific tagging scheme. For different given relations, we will generate a specific tag sequence for each of them.

3 Problem Formulation

We describe the relational triplets as \(\pi = (h, t, r) \mid h, t \in E, r \in R \) and a sentence as \(S = \{w_1, w_2, ..., w_n\} \), where \(E \) and \(R \) are the entity and relation sets respectively, a triplet \(\pi \) indicates entity pair \((h, t) \) and relation \(r \) between them, and \(w_i \) is the \(i \)-th word in the sentence. In this paper, given a sentence \(S \) and a predefined relation set \(R \), the purpose of the joint entity and relation extraction task is to identify all existing triplets \(\pi \) from \(S \).

Note that the extracted triplets may share the same entities or relations, i.e. the overlapping problem. Thus designing a joint extraction model to overcome such issue is a big challenge in this task.

4 Methodology

In this section, we will first introduce our tagging scheme which transforms overlapping triplets extraction task to several sequence labeling problems. Then we elaborate the details of our relation-specific attention network based on a certain relation.
4.1 Tagging Scheme

We incorporate head and tail roles \{H, T\} in the triplets into the typical BIES signs (Begin, Inside, End, Single) as our entity tags. For a sentence with multiple triplets, we will generate separate tag sequences according to different relations. In the tag sequence of a certain relation, only its corresponding head and tail entities will be annotated, while the rest of words are assigned with label 0. Figure 2 shows an example of our extracting method. There are two triplets in the sentence: (Donald Trump, President_of, United States) and (Donald Trump, Born_in, New York City), we will perform sequence labeling for the relation President_of and Born_in separately. As we can see, the two triplets have the overlapping entity Donald Trump, and they can be extracted without conflict based on the separate labeling operations.

Besides, when multiple triplets share the same relation, i.e., the relation overlapping cases, we follow [Zheng et al., 2017] and apply the heuristic nearest principle to combine the entity pairs. Concretely, the nearest head and tail entities will be combined into a triplet.

4.2 Relation-Specific Attention Network

Figure 3 gives an overview of RSAN under a certain relation \(r_k\). Note that the extracted entities will be directly combined with the current relation \(r_k\), thus there is no extra relation classification operations in our model. We first encode the input sentence with a bi-directional Long Short Term Memory (BiLSTM) network [Hochreiter and Schmidhuber, 1997], and then apply attention mechanism to construct the specific sentence representation of \(r_k\). After filtering by relational gate, the final representation of the sentence will be used for the sequence labeling process to extract the corresponding entities.

BiLSTM Layer
Given a sentence \(S = \{w_1, w_2, ..., w_n\}\) of length \(n\), we denote \(x_i = [w_i^w, w_i^p, w_i^c]\) as the representation of the \(i\)-th word, where \(w_i^w \in \mathbb{R}^{d_w}\) is randomly initialized word embedding, \(w_i^p \in \mathbb{R}^{d_p}\) is the part-of-speech (POS) embedding, and \(w_i^c \in \mathbb{R}^{d_c}\) is character-based word features. The character-level word features are extracted by a convolution neural network (CNN) running on the character sequence of \(w_i\). Then we choose BiLSTM to capture the dependencies of the words. The sequence of word representations \(\{x_1, x_2, ..., x_n\}\) are taken as the input of BiLSTM network. We concatenate the forward and backward LSTM hidden states of \(x_i\) as the contextual word representation:

\[
h_i = [\text{LSTM}(x_i); \text{LSTM}(x_i^r)], i \in [1, n]
\]

where \(h_i \in \mathbb{R}^{2d_h}\) and \(d_h\) indicates the dimension of the BiLSTM hidden state. Then we use \(S_c = \{h_1, h_2, ..., h_n\}\) to represent the context-level sentence features.

Relation-Based Attention Mechanism
Based on our assumption, the words in the sentence play different roles under different relations. To this end, we propose a relation-based attention mechanism for assigning different weights to the context words under each relation. The attention score is obtained as follows:

\[
s_g = \text{avg}\{h_1, h_2, ..., h_n\},
\]

\[
e_{ik} = \mathbf{v}^T \tanh(W_x r_k + W_g s_g + W_h h_i),
\]

\[
\alpha_{ik} = \frac{\exp(e_{ik})}{\sum_{j=1}^{n} \exp(e_{jk})},
\]

where \(r_k \in \mathbb{R}^{d_r}\) is the trainable embedding of the \(k\)-th relation, and \(\mathbf{v} \in \mathbb{R}^{d_v}\), \(W_x \in \mathbb{R}^{d_x \times d_v}\), \(W_g, W_h \in \mathbb{R}^{d_v \times 2d_h}\) are trainable parameters. Here \(s_g\) indicates the
global representation of the sentence. In this way, the attention score can not only measure the importance of each word to the relational expression, but also its contribution to the entire sentence. The specific sentence representation s_k under relation type r_k is then generated by weighted sum of the sentence words,

$$s_k = \sum_{i=1}^{n} \alpha_{ik} h_i,$$

(4)

Relational Gated Mechanism

So far we have obtained sentence representations fused with relation information. As we argued before, the relation-oriented representations make sense to the followed entity extraction only when the relation is positive to the sentence, while that of the unrelated relations will only confuse the subsequent decoding process. In order to adaptively control the relation information provided by the previous attention layer, we propose a gated mechanism as the bridge. Still taking the k-th relation as an example, the gated operations are defined as follows:

$$g_k = \sigma((W_1 s_g + b_1) \oplus (W_2 s_b + b_2)), \quad u_k = g_k \odot \tanh(W_3 s_b + b_1),$$

(5) \hspace{1cm} (6)

where $W_1, W_2, W_3 \in \mathbb{R}^{d_x \times 2d_x}$, $b_1, b_2, b_3 \in \mathbb{R}^{d_x}$ are parameters, \oplus is concatenating operation, and \odot is dot product. σ indicates the element-wise sigmoid activation function, which returns values from 0 to 1, therefore the results can be viewed as percentage of information to keep. The purpose of Eq. 5 is to measure whether the inherent sentence representation s_g or the relation-based representation s_b is more useful for the entity extraction. u_k is the reserved relational features. We concatenate h_i and u_k to obtain the final representation of the i-th word.

$$h_i^k = h_i \oplus u_k,$$ \hspace{1cm} (7)

here $h_i^k \in \mathbb{R}^{2d_x+d_y}$. Sentence S is thus represented as $S^k = \{h_1^k, h_2^k, ..., h_n^k\}$, and will be used for the entity extraction process.

Relation-Specific Entity Decoder

We perform a relation-specific sequence labeling process as the entity decoder. Here we run another BiLSTM network on the word sequence S^k, and map each of the word to the tag space:

$$o_i^k = \text{LSTM}(h_i^k) \odot \text{LSTM}(h_i^k),$$

$$P(y_i^k) = \text{Softmax}(W_o \cdot o_i^k + b_o),$$

(8) \hspace{1cm} (9)

where $i \in [1, n]$, $W_o \in \mathbb{R}^{2d_x \times n_t}$, $b_o \in \mathbb{R}^{d_o}$ are parameters, and d_o is the dimension of hidden state of BiLSTM, n_t is the total number of tags. $P(y_i^k)$ indicates the probability of i-th word’s predicted tag under relation r_k.

Training

Notice that the number of relations present in a sentence is much smaller compared to the size of R. If we perform entity decoding for all given relations during training, there will be a large amount of negative samples, which makes it difficult for convergency. Therefore, we apply a relational negative sampling strategy, i.e., randomly select n_{neg} relations from the negative set of the current sentence. Here n_{neg} is a hyperparameter. All of the words will be labeled with tag 0 since there are no triplets based on those negative relations. Then for a sentence S with n_sp positive relations, our model will totally generate $n_s = n_sp + n_{neg}$ tag sequences while decoding. We use negative log-likelihood (NLL) loss function to train our model. We denote the ground truth labels under relation r_k as $\{y_1^k, y_2^k, ..., y_n^k\}$, then the NLL loss can be defined as:

$$L = \frac{1}{n_s \times n} \sum_{k=1}^{n_s} \sum_{i=1}^{n} -\log P(y_i^k = \hat{y}_i^k).$$

5 Experiments

5.1 DataSets

Following [Zeng et al., 2018], we evaluate our model on two widely used datasets: New York Times (NYT) and WebNLG. NYT is first constructed using distant supervised method, which automatically aligns knowledge base and plain texts to generate large-scale training data. WebNLG is created by [Gardent et al., 2017] for Natural Language Generation (NLG) task, and all of the standard sentences are written by annotators. To be consistent with all other baselines, we only select the first standard sentence in each instance to reconstruct the corpus. Statistics of the two datasets are shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>NYT</th>
<th>WebNLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation types</td>
<td>24</td>
<td>246</td>
</tr>
<tr>
<td>Tain sentences</td>
<td>56195</td>
<td>5019</td>
</tr>
<tr>
<td>Dev sentences</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td>Test sentences</td>
<td>5000</td>
<td>703</td>
</tr>
</tbody>
</table>

Table 1: Statistics of the datasets.

5.2 Implementation Details

We set the dimension of word embedding $d_w = 100$, POS embedding $d_{pos} = 15$, character embedding $d_c = 50$, and relation embedding $d_r = 300$. All of those embeddings are randomly initialized. The window size of CNN for character-based word feature vector is set to 3, the maximum length of words is set to 10, and the number of filters is 50 ($d_f = 50$). Hidden State of the encoder BiLSTM (d_{hid}), attention (d_{attn}), gate (d_g) and the decoder BiLSTM (d_{hid}) are all set to 300 dimensions. The sentence-level relational negative sampled number n_{neg} is set to 4. The model is trained using Adam [Kingma and Ba, 2014] with learning rate of 0.001 and batch size of 16. We apply dropout mechanism to the embedding layer with a rate of 0.5 to avoid overfitting.

5.3 Baselines and Evaluation Metrics

We compare our model with the following baselines:

- *NovelTagging* [Zheng et al., 2017] applies a novel tagging strategy that incorporates both entity types and relation roles, and converts the joint extraction task to a sequence labeling problem. This model cannot extract triplets with overlapping entities.
• **CopyRE** [Zeng et al., 2018] first explores Seq2Seq model for the joint entity and relation extraction task, and generates the triplets in the sentence sequentially using copy mechanism. This model can only copy the last word of an entity.

• **GraphRel** [Fu et al., 2019] constructs a complete word graph for each sentence, and employs GCN to predict relations between all word pairs.

• **CopyMTL** [Zeng et al., 2019a] improves the copy strategy of CopyRE, and applies a multi-task learning framework to solve the problem of generating multi-token entities.

• **OrderRL** [Zeng et al., 2019b] incorporates reinforcement learning into Seq2Seq model to learn the extraction order of triplets.

• **HRL** [Takanobu et al., 2019] applies a hierarchical paradigm which performs relation detection first as a high-level reinforcement learning process, then identifies entities as a low-level one.

• **ETL-Span** [Yu et al., 2020] applies a novel decomposition strategy, which first distinguishes all head entities, and then identifies corresponding tail entities and relations.

• **WDec** [Nayak and Ng, 2020] proposes a novel triplets representation scheme and employs Seq2Seq to generate the word sequences.

We use standard Precision (Prec), Recall (Rec) and F1 score as our evaluation metrics. A triplet is considered to be correctly extracted if and only if its relation type and two entities are exactly matched.

5.4 Results

Table 2 shows all of the comparison results. Overall, our RSAN outperforms all other baselines. We attribute the gains of RSAN to its two advantages: (1) RSAN focuses more on the relation-related entities, which excludes the error caused by predictions on the redundant entity pairs; (2) The relation-attentive entity tagging process has the ability to capture the dependencies between the extraction of entities and relations.

In addition, our RSAN also achieves higher performance among the relation-guided methods, like CopyRE [Zeng et al., 2018], OrderRL [Zeng et al., 2019b] and HRL [Takanobu et al., 2019]. We consider that is because our attention mechanism incorporates fine-grained relation information, which enables more explicit guidance on the entity extraction process.

6 Analysis

6.1 Ablation Study

We conduct ablation experiments to demonstrate the effectiveness of POS embedding, character-level word embedding, relation-based attention mechanism and the relational gate in our model. We remove one component at a time to observe its impact on the experimental results, which is summarized in Table 3. (1) POS embeddings in the input layer effectively provide additional syntactic information to the sentence. (2) The character-level embeddings are helpful to provide prior knowledge for OOV words. (3) In order to verify the usage of the relation-based attention mechanism, we no longer construct the relation-attentive sentence representation \(s_k \) (Eq. 4), and replace the \(s_k \) in Eq. 5 and 6 with relation embedding \(r_k \). That is to say, we try to directly use the relation embedding as the guidance of entity extraction. As shown in the results, the model’s precision drops significantly. We consider that using relation embedding simply learns the shallow co-occurrence of the triplets, resulting in more triplet predictions but lower precision of the model. On the contrary, our attention mechanism can capture fine-grained semantic relation features in the sentence, which lead to a more significant distinction between positive and negative relations. (4) For the relational gate component, we omit the operations of Eq. 5 and 6. As an alternative to \(u_k \) in Eq. 7, we explicitly use the sentence representation \(s_k \), ignoring the possible impact of negative relations. We found a decrease in the result, which indicates that our relational gated mechanism has contributed to reducing the noise brought by unrelated relations.

<table>
<thead>
<tr>
<th>Model</th>
<th>NYT Prec</th>
<th>NYT Rec</th>
<th>NYT F1</th>
<th>WebNLG Prec</th>
<th>WebNLG Rec</th>
<th>WebNLG F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel Tagging [Zheng et al., 2017]</td>
<td>0.624</td>
<td>0.371</td>
<td>0.420</td>
<td>0.525</td>
<td>0.193</td>
<td>0.283</td>
</tr>
<tr>
<td>CopyRE [Zeng et al., 2018]</td>
<td>0.610</td>
<td>0.566</td>
<td>0.587</td>
<td>0.377</td>
<td>0.364</td>
<td>0.371</td>
</tr>
<tr>
<td>GraphRel [Fu et al., 2019]</td>
<td>0.639</td>
<td>0.60</td>
<td>0.619</td>
<td>0.447</td>
<td>0.411</td>
<td>0.429</td>
</tr>
<tr>
<td>CopyMTL [Zeng et al., 2019a]</td>
<td>0.757</td>
<td>0.687</td>
<td>0.720</td>
<td>0.580</td>
<td>0.549</td>
<td>0.564</td>
</tr>
<tr>
<td>OrderRL [Zeng et al., 2019b]</td>
<td>0.779</td>
<td>0.672</td>
<td>0.721</td>
<td>0.663</td>
<td>0.599</td>
<td>0.616</td>
</tr>
<tr>
<td>HRL [Takanobu et al., 2019]</td>
<td>0.781</td>
<td>0.771</td>
<td>0.776</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ETL-Span [Yu et al., 2020]</td>
<td>0.841</td>
<td>0.746</td>
<td>0.791</td>
<td>0.691</td>
<td>0.695</td>
<td>0.693</td>
</tr>
<tr>
<td>WDec [Nayak and Ng, 2020]</td>
<td>0.881</td>
<td>0.761</td>
<td>0.817</td>
<td>0.848</td>
<td>0.649</td>
<td>0.735</td>
</tr>
<tr>
<td>RSAN</td>
<td>0.857</td>
<td>0.836</td>
<td>0.846</td>
<td>0.805</td>
<td>0.838</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Table 2: Main results of the compared models on NYT and WebNLG.

<table>
<thead>
<tr>
<th>Model</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSAN</td>
<td>0.857</td>
<td>0.836</td>
<td>0.846</td>
</tr>
<tr>
<td>–POS embedding</td>
<td>0.846</td>
<td>0.821</td>
<td>0.833</td>
</tr>
<tr>
<td>–Character embedding</td>
<td>0.850</td>
<td>0.827</td>
<td>0.838</td>
</tr>
<tr>
<td>–Relation-based Attention</td>
<td>0.794</td>
<td>0.835</td>
<td>0.813</td>
</tr>
<tr>
<td>–Relational Gate</td>
<td>0.825</td>
<td>0.832</td>
<td>0.828</td>
</tr>
</tbody>
</table>

Table 3: Ablation study of RSAN on NYT dataset.
6.2 Parameter Analysis

In each training iteration, we randomly sample n_{neg} relations for the sentence, which aims to balance the convergence speed and generalization performance. It is observed that constructing more negative samples can improve the robustness of the model, but we don’t have to use a higher value of n_{neg} to achieve this. Actually, with the appropriate setting of random sampling count, almost all negative relations of the sentence will be covered as the increasing iterations. Thus, there should be an upper bound for hyperparameter n_{neg}, leading to no longer improvement on the model’s performance when it is larger than the bound value.

There are 24 relation types in the NYT dataset, with an average of 1.44 positive ones per sentence. Therefore, we try to select n_{neg} among $\{1,2,4,6\}$, which is an appropriate range based on the number of positive relations in average. Figure 4 shows the curves of F1 score on validation set varying with training epochs under different values of n_{neg}. It can be observed that when $n_{neg} = 4$ or 6, there is almost no difference in convergence and prediction performance. Thus for NYT dataset, we consider $n_{neg} = 4$ as the upper bound, which can ensure the effectiveness of the model and speed up training process at the same time.

6.3 Analysis on Overlapping Cases

To verify the capability of our RSAN in extracting multiple triplets, we follow [Zeng et al., 2018], and conduct further experiments on NYT dataset. The test sentences are divided into three categories based on different overlapping cases, i.e., Normal, SingleEntityOverlap (SEO), and EntityPairOverlap (EPO) (See the examples in Figure 1). We then verify several latest models’ performance on each of the category. The results are shown in Figure 5. As we can see, RSAN outperforms all other methods in the overlapping situations, especially for the EPO class. We attribute the improvements to the fact that the entity pair overlapped triplets only have different relations, hence our separate prediction on each of the relation can effectively handle such cases. Another observation is that ETL-Span achieves the best performance in Normal class. It is because its decomposition strategy is designed more suitable for the Normal cases, while our RSAN performs much better in the overlapping classes.

We also compare the models’ ability of extracting multiple triplets in a sentence. We divide the sentences of NYT test set into 5 categories, which respectively indicate its number of triplets is 1,2,3,4 and ≥ 5. The results are shown in Figure 6. It can be observed that our RSAN gains great improvements compared with other models in extracting multiple triplets. Besides, RSAN shows more stable performance with the increasing of triplets numbers in the sentence. These two additional experiments fully demonstrate the advantages of our proposed model in dealing with complex extracting situation.

7 Conclusion

In this paper, we propose a relation-attentive sequence labeling framework named RSAN for joint entity and relation extraction task. It decomposes the overlapping triplets extraction problem into several relation-specific entity tagging processes, and applies attention mechanism to incorporate fine-grained relational information as the guidance of entity extraction. Experiments on the NYT and WebNLG corpus show that our proposed model RSAN has achieved significant improvement. The extended experiments demonstrate the effectiveness of RSAN in handling overlapping and multiple triplets extraction scenarios.

Acknowledgments

This work is supported by National Key R&D Program 2016 (No.2016YFB0801300), and the National Natural Science Foundation of China (No.61202226). We thank all anonymous reviewers for their constructive comments.

References

[Chan and Roth, 2011] Yee Seng Chan and Dan Roth. Exploiting syntactico-semantic structures for relation extrac-

