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Abstract

A key problem in computational sustainability is to
understand the distribution of species across land-
scapes over time. This question gives rise to chal-
lenging large-scale prediction problems since (i)
hundreds of species have to be simultaneously mod-
eled and (ii) the survey data are usually inflated with
zeros due to the absence of species for a large num-
ber of sites. The problem of tackling both issues si-
multaneously, which we refer to as the zero-inflated
multi-target regression problem, has not been ad-
dressed by previous methods in statistics and ma-
chine learning. In this paper, we propose a novel
deep model for the zero-inflated multi-target regres-
sion problem. To this end, we first model the joint
distribution of multiple response variables as a mul-
tivariate probit model and then couple the positive
outcomes with a multivariate log-normal distribu-
tion. By penalizing the difference between the two
distributions’ covariance matrices, a link between
both distributions is established. The whole model
is cast as an end-to-end learning framework and
we provide an efficient learning algorithm for our
model that can be fully implemented on GPUs. We
show that our model outperforms the existing state-
of-the-art baselines on two challenging real-world
species distribution datasets concerning bird and
fish populations.

1 Introduction
Since the Industrial Revolution there has been an increase
in biodiversity loss, due to a combination of factors such as
agriculture, urbanization, and deforestation, as well as cli-
mate change and human introduction of non-native species
to ecosystems. Biodiversity loss is a great challenge for hu-
manity, given the importance of biodiversity for sustaining
ecosystem services. For example, bird species play a key
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role in regulating ecosystems by controlling pests, pollinat-
ing flowers, spreading seeds and regenerating forests. In a
current study it was shown that the bird population in the
United States and Canada has fallen by an estimated 29%
since 1970 [Rosenberg et al., 2019]. The biomass of top
marine predators has declined substantially in many cases,
[McCauley et al., 2015], and many marine species are shifting
rapidly to new regions in response to changing ocean condi-
tions [Pinsky et al., 2020]. More generally, a recent report
from the United Nations warned that about a million animal
and plant species face extinction [Brondizio et al., 2019].

To protect and conserve species, a key question in computa-
tional sustainability concerns understanding the distribution
of species across landscapes over time, which gives rise to
challenging large-scale spatial and temporal modeling and
prediction problems [Gomes et al., 2019]. In particular, ecol-
ogists are interested in understanding how species interact
with the environment as well as how species interact with
each other. Joint species distribution modeling is therefore
a computational challenge, as we are interested in simulta-
neously modeling the correlated distributions of potentially
hundreds of species, rather than a single species at a time as
traditionally done. Another challenge in joint species distri-
bution modeling is that often outcomes of interest, such as
local species abundance in terms of counts or biomass, are
sparsely observed, leading to zero-inflated data [Morley et al.,
2018]. Zero-inflated data are frequent in many other settings
beyond ecology, for example in research studies concerning
public health when counting the number of vaccine adverse
events [Rose et al., 2006] and prediction of sparse user-item
consumption rates [Lichman and Smyth, 2018].

Herein we propose general models for jointly estimating
counts or abundance for multiple entities, which are referred
to as zero-inflated multi-target regression. While our models
are general, we focus on computational sustainability applica-
tions, in particular the joint estimation of counts of multiple
bird species and biomass of multiple fish species. As dis-
cussed above, many of these species have suffered dramatic
reductions or changes in geographic distributions in recent
years.

Our contributions are:
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1. We propose a deep generalization of the conventional
model for multi-target regression that simultaneously
models zero-inflated data and the correlations among
the multiple response variables.

2. We provide an efficient end-to-end learning framework
for our model that can be implemented on GPUs.

3. We evaluate our model as well as state-of-the art joint
distribution models on two datasets from computational
sustainability that concern the distributions of fish and
bird species.

2 Related Work
A popular model for zero-inflated data is the so-called hur-
dle model [Mullahy, 1986] in which a Bernoulli distribution
governs the binary outcome of whether a response variable
has a zero or positive realization; if the realization is positive,
the “hurdle” is crossed, and the conditional distribution of the
positives is governed by a zero-truncated parametric distribu-
tion. Although the hurdle model is popular for zero-inflated
data, it has several limitations: 1) the two components of the
model are assumed to be independent; 2) it does not explicitly
capture the relationships between multiple response variables;
and 3) its traditional implementation does not scale. In our
work, we address these three key limitations.

A closely related alternative to handle zero-inflated count
data is the family of zero-inflated models [Lichman and Smyth,
2018], in which the response variable is also modeled as a
mixture of a Bernoulli distribution and a parametric distribu-
tion on non-negative integers such as the Poisson or negative
binomial distributions. Different from hurdle model, the con-
ditional distribution of a zero-inflated model is not required
to be zero-truncated. In other words, while the hurdle model
assumes zeros only come from the Bernoulli distribution, a
zero-inflated model assumes zeros could come from both the
Bernoulli distribution and the conditional distribution. To ac-
count for the inherent correlation of response variables, a class
of multi-level zero-inflated regression models was presented
[Almasi et al., 2016]. With such a model, response variables
are organized in a hierarchical structure. Response variables
are taken to be independent between clusters. Cluster level and
within-cluster correlations of response variables are modeled
explicitly through random effects attached to linear predictors.
However, characterising a suitable hierarchical structure is
nontrivial, and these models also do not explicitly capture
covariance relations between response variables.

The general problem of multiple-target regression has been
extensively studied [Borchani et al., 2015; Xi et al., 2018;
Xu et al., 2019]. Existing methods for multi-output regres-
sion can be categorized as: (1) problem transformation meth-
ods that transform the multi-output problem into independent
single-output problems each solved using a single-output re-
gression algorithm, such as multi-target regressor stacking
(MTRS) [Spyromitros-Xioufis et al., 2016] and regressor
chains (RC) [Melki et al., 2017]; and (2) algorithm adaptation
methods that adapt a specific single-output method to directly
handle multi-output dataset, such as multi-objective random
forest (MORF) [Kocev et al., 2007], random linear target com-
bination (RLTC) [Tsoumakas et al., 2014], and multi-output

support vector regression (MOSVR) [Zhu and Gao, 2018]. An
empirical comparison of three representative state-of-the-art
multi-output regression learning algorithms, MTRS, RLTC
and MORF, is presented in [Xi et al., 2018]. Although these
advanced multiple-output regression algorithms exploit some
correlation between response variables to improve predictive
performance, they do not fully model the covariance structure
of the response variables and do not consider zero-inflated data.
Our work explicitly models zero-inflated data in multi-target
regression and it also explicitly models the covariance un-
derlying the phenomena to better characterize the correlation
among entities.

3 Preliminaries
In this section we give a brief introduction to the hurdle model
and multivariate probit model. In the following we use R,
R0, R+, N, N0 and N+ to denote the reals, nonnegative reals,
positive reals, integers, nonnegative integers and positive in-
tegers, respectively. If an L-dimensional vector y is integral,
we write y ∈ NL. We write y ∈ RL if y is real. Two vectors
x, y ∈ RL satisfy x 4 y (or x < y) iff xj ≤ yj (or xj ≥ yj)
for 1 ≤ j ≤ L. Since we consider the problem of species
abundance estimation, in the following all label data are as-
sumed to be nonnegative. We denote the probability density
function (PDF) and the cumulative density function (CDF) of
a multivariate normal distribution N (µ,Σ) as φ(x | µ,Σ) and
Φ(x | µ,Σ), respectively.

3.1 Hurdle Model
The hurdle model aims to fit data with two independent distri-
butions: (1) a Bernoulli distribution which governs the binary
outcome of a response variable being zero or positive; and (2)
a zero-truncated distribution of the positive response variable.
Specifically, given a dataset D = {(x, y)(i) | i = 1, . . . , N},
where x ∈ RM is the feature data and y ∈ RL0 (or y ∈ NL0 ) is
the label data, and let pj be the probability of yj (1 ≤ j ≤ L)
being positive, then we have y′j ∼ Bernoulli(pj), where
y′j = 1 if yj > 0 and 0 otherwise. Let f(yj | yj > 0) be
the PDF of the zero-truncated distribution of yj . The likeli-
hood of yj is given as L(yj) = Pr(y′j= 1)f(yj | yj > 0).

3.2 Multivariate Probit Model
Given a dataset D = {(x, y′)(i) | i = 1, . . . , N}, where x ∈
RM is the feature data and y′ ∈ {0, 1}L is the present/absent
label data, the multivariate probit model (MVP) [Chen et al.,
2018] maps the Bernoulli distribution of each binary response
variable y′j to a latent variable rj ∈ R through threshold 0,
where r = (r1, . . . , rL) is subject to a multivariate normal
distribution:

Pr(y′j = 1 | x) = Pr(rj > 0 | x) (1)

Pr(y′j = 0 | x) = Pr(rj ≤ 0 | x) (2)

where r ∼ N (µ,Σ). The joint likelihood of y′ is given as

L(y′ | x) =

∫
A1

· · ·
∫
AL

φ(r | µ,Σ) dr1, · · · , drL (3)

where Aj = (−∞, 0] if y′j = 0, Aj = [0,∞) if y′j = 1.
Although there is no closed-form expression for the CDF
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Figure 1: The deep hurdle network architecture. An encoder is
used to learn latent features x′, an MVP is used to model the joint
distribution of multiple response variables y being zero or positive,
and an MLND is used to model the joint distribution of positive
response variables y+. The MVP and MLND are linked by sharing
the same latent features x′, and penalizing the difference between
their covariance matrices Σ and Σ′.

of a general multivariate normal distribution, [Chen et al.,
2018] proposed an efficient parallel sampling algorithm to
approximate it. We can first translate equation (3) into the
CDF of a multivariate normal distribution using the affine
transformation:

L(y′ | x) = Φ(0 | −µ′,Σ′) (4)

where µ′ = Uµ, Σ′ = UΣU , and U = diag(2y′ − 1) ∈
{−1, 0, 1}L×L is the diagonal matrix with vector 2y′ − 1 as
its diagonal. By decomposing Σ′ into I + Σ′′, where I is
the identity matrix, a random variable r ∼ N (0,Σ′) can be
written as r = z−w, where z ∼ N (0, I) and w ∼ N (0,Σ′′).
Then, Φ(0 | −µ′,Σ′) can be approximated as

Φ(0 | −µ′,Σ′) = Pr(r − µ′ 4 0) = Pr(z − w 4 µ′)

= E
w∼N (0,Σ′′)

[Pr(z 4 (w + µ′) | w)]

= E
w∼N (µ′,Σ′′)

[
L∏
j=1

Φ(wj)] (5)

≈ 1

K

K∑
k=1

L∏
j=1

Φ(w
(k)
j )

where samples {w(k)} are subject to N (µ′,Σ′′) and Φ is the
CDF of the standard normal distribution. Note that according
to (4), we have Σ′′ = Σ′ − I = UΣU − I = U(Σ− I)U .

4 Deep Hurdle Network
In this paper we provide a deep generalization of the hurdle
model, within an autoencoder framework, which we call the
deep hurdle network (DHN). The DHN integrates the MVP
to model the joint distribution of multiple response variables
being zero or positive, and the multivariate log-normal dis-
tribution (MLND) to model the positive response variables.
The MVP and MLND share the same latent features, and
differences between their covariance matrices are penalized.
Specifically, given a dataset D = {(x, y)(i) | i = 1, . . . , N},
where x ∈ RM is the feature data and y ∈ RL0 (or y ∈ NL0 ) is
the label data, the hurdle network contains three parts (see Fig-
ure 1 for an illustration):

1. Encoder: An encoder maps the raw features x ∈ RM to
latent features x′ ∈ RM ′

.

2. MVP: Label data y ∈ RL0 /NL0 are translated into binary
label data y′ ∈ {0, 1}L, where y′ = (y′1, . . . , y

′
L) and y′j

equals to 1 if yj > 0 and 0 otherwise. We then use MVP
to map y′ to latent variable r ∈ RL via equations (1)–(2),
where r is assumed to follow N (µ,Σ). A multilayer
perceptron (MLP) is then used to model µ given x′ as
input. Σ is a global parameter which is learned from
random initialization and shared by all data points.

3. MLND: Let y+ ∈ RP+ (P ≤ L) be the positive part of
y ∈ RL , where P is the number of positive elements of
y. log(y+) = (log(y+

1 ), . . . , log(y+
P )) is directly mod-

eled as a multivariate normal distribution, and y+ are
assumed to follow a multivariate log-normal distribution.
Therefore, we have

L(log(y+) | x′) = φ(log(y+) | µ′+,Σ′+) (6)

where µ′+ and Σ′
+ are the sub-parts of µ′ ∈ RL and Σ′

that correspond to y+ respectively. Note that here Σ′ is
encouraged to be similar to the convariance matrix Σ of
the MVP and µ′ ∈ RL is modeled with an MLP.

On the other hand, let y+ ∈ NP+(P ≤ L) be the pos-
itive part of y ∈ NL. Each y+

j is assumed to fol-
low an univariate Poisson distribution Pr(y+

j | λ
+
j ) for

1 ≤ j ≤ P , where λ+
j is the mean, and log(λ+) =

(log(λ+
1 ), . . . , log(λ+

P )) is assumed to follow a multivari-
ate normal distribution. Therefore, we have

L(log(λ+) | x′) = φ(log(λ+) | µ′+,Σ′+) (7)

There are several advantages of the deep hurdle network
over the conventional hurdle model:

1. The encoder is forced to learn the salient features and
ignore the noise and irrelevant parts of the raw features.
This relieves us from selecting which salient features to
use in the conventional hurdle model.

2. DHN adopts MVP and MLND to handle correlations
between multiple response variables explicitly via covari-
ance matrices, which is not considered in the conven-
tional hurdle model.

3. The two components of the conventional hurdle model
are independent, while in DHN the MVP and MLND are
linked by sharing the same latent features, and penalizing
the different between their covariance matrices.

4.1 End-to-End Learning for DHN
Parameters of a deep model are usually estimated by mini-
mizing the negative log-likelihood (NLL). We develop two
different learning objectives for nonnegative continuous and
count data, respectively. After selecting our objective function,
we can estimate the parameters of the deep hurdle network
by minimizing the objective function via stochastic gradient
descent (SGD).
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Learning Objective for Nonnegative Continuous Data

If response variables y are nonnegative reals, then we combine
equations (4), (5) and (6) to obtain the negative log-likelihood
(NLL) function:

− log(L(y′ | x′)L(log(y+) | x′))

= − log

 E
w∼N (Uµ,U(Σ−I)U)

 L∏
j=1

Φ(wj)

 (8)

− log(φ(log(y+) | µ′+,Σ′+))

The first part of the right-hand side of equation (8) can be
approximated by a set of samples {w(k)} fromN (Uµ,U(Σ−
I)U): − log( 1

K

∑K
k=1 exp(

∑L
j=1 log(Φ(w

(k)
j )))). Such a set

of samples can be obtained by first using the Cholesky de-
composition, which decomposes Σ − I into CCT , and then
generating independent samples v(k) ∼ N (0, I) to yield
w(k) = U(µ + Cv(k)). According to the affine transfor-
mation of the normal distribution, the samples {w(k)} are
subject to N (Uµ,U(Σ − I)U). However, doing the ma-
trix multiplications Uµ and UCv(k) are unnecessary since
U = diag(2y′ − 1) ∈ {−1, 0, 1}L×L is the diagonal matrix
with vector 2y′ − 1 as its diagonal. Let w′(k) = µ + Cv(k)

such that {w′(k)} are subject toN (µ,Σ− I), then it is easy to
show that log(Φ(w

(k)
j )) = y′j log(Φ(w

′(k)
j ))+(1−y′j) log(1−

Φ(w
′(k)
j )). Thus, we can approximate equation (8) as follows:

− log
( 1

K

K∑
k=1

exp
( L∑
j=1

(y′j log(Φ(w
(k)
j )) (9)

+ (1− y′j) log(1− Φ(w
(k)
j )))

))
− log(φ(log(y+) | µ′+,Σ′+))

where samples {w(k)} are subject to N (µ,Σ− I).

Learning Objective for Count Data

If response variables y are nonnegative integers, let y+ ∈ NP+
be the positive part of y ∈ NL0 (P ≤ L), where P is the
number of positive elements of y, then each y+

j is assumed
to follow a univariate Poisson distribution Pr(y+

j ;λ+
j ), and

log(λ+) = (log(λ+
1 ), . . . , log(λ+

P )) is assumed to follow a
multivariate normal distributionN (µ′

+
,Σ′

+
). The likelihood

of response variables y+ is given as

L(y+;λ+|N (log(λ+);µ′,Σ′
+

), x′)

= E
log(λ+)∼N (µ′+,Σ′+)

[
P∏
j=1

λ+
j

y+j e−λ
+
j

y+
j !

]
(10)

We then combine equations (4), (5) and (10) to obtain the
NLL function as follows:

− log(L(y′|x′)L(y+;λ+|N (log(λ+);µ′,Σ′
+

), x′)

= − log( E
w∼N (Lµ,L(Σ−I)L)

[
L∏
j=1

Φ(wj)])

− log( E
log(λ+)∼N (µ′+,Σ′+)

[
P∏
j=1

λ+
j

y+j e−λ
+
j

y+
j !

])

≈ − log(
1

K

K∑
k=1

(exp(
L∑
j=1

(y′j log(Φ(w
(k)
j )))

+(1− y′j) log(1− Φ(w
(k)
j )))))

− log(
1

K

K∑
k=1

exp(
P∑
j=1

(y+
j log(λ+)

(k)
j − λ

(k)
j − log(y+

j !))))

(11)

where samples {w(k)} and {log(λ+)(k)} are subject to
N (µ,Σ− I) and N (µ′

+
,Σ′

+
), respectively.

Lastly, we add an L1 loss term to equations (9) and (11),
respectively, to penalize the difference between Σ and Σ′.

5 Experiments
In this section, we compare our model with the existing state-
of-the-art baselines on two challenging real-world species
distribution datasets concerning bird and fish populations.

5.1 Datasets
Sea bottom trawl surveys (SBTSs) are scientific surveys
that collect data on the distribution and abundance of ma-
rine fishes. In each haul (sample), all catches of each species
were weighted and recorded, as well as the time, location,
sea surface temperature and depth. For each haul, we have
additional environmental features from the Simple Ocean Data
Assimilation (SODA) Dataset [Carton et al., 2018] and Global
Bathymetry and Elevation Dataset , such as sea bottom temper-
ature, rugosity, etc. Thus, we have a 17-dimensional feature
vector for each haul. We study fish species abundance in the
continental shelf around North America and consider SBTSs
that were conducted from 1963 to 2015 [Morley et al., 2018].
We consider the top 100 most frequently observed species as
the target species and there are 135, 458 hauls that caught at
least one of these species. Among the 135, 458 ∗ 100 data
entries, only 8.5% of them are nonzero. The distribution of
the positive data is visualized in Figure 2.

eBird is a crowd-sourced bird observation dataset [Munson
et al., 2012]. A record in this dataset corresponds to a checklist
that an experienced bird observer uses to mark the number
of birds of each species detected, as well as the time and
location. Additionally, we obtain a 16-dimensional feature
vector for each observation location from the National Land
Cover Dataset (NLCD) [Homer et al., 2015] which describes
the landscape composition with respect to 16 different land
types such as water, forest, etc. We use all the bird observation
checklists in North America in the last two weeks of May
from 2002 to 2014. We consider the top 100 most frequently
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Figure 2: Visualization of data distribution. The left figure shows
that the sea bottom trawl survey data approximately follow a log-
normal distribution, and the right figure shows that the eBird data
approximately follow a Poission distribution.

observed species as the target species and there are 39, 668
observations that contain at least one of these 100 species.
Only 19.8% of these 39, 668 ∗ 100 data entries are nonzero.
The distribution of the positive data is visualized in Figure 2.

5.2 Evaluation Metrics
For the task of multi-target regression, we employ and adapt
two well known measures: the average correlation coefficient
(ACC)1and root mean squared error (RMSE) [Borchani et al.,
2015; Xu et al., 2019]. The ACC is defined as:

1

L

L∑
j=1

∑Ntest
i=1 (y

(i)
j − ȳj)(ŷ

(i)
j − ¯̂yj)√∑Ntest

i=1 (y
(i)
j − ȳj)2

∑Ntest
i=1 (ŷ

(i)
j − ˆ̄yj)2

,

where L is the number of response variables, Ntest is the num-
ber of testing samples, y(i) and ŷ(i) are the vectors of the actual
and predicted outputs for x(i), respectively, and ȳ and ¯̂y are the
vectors of averages of the actual and predicted outputs, respec-
tively. Since the data considered here are zero-inflated, using
standard RMSE might not be appropriate. Models can produce
degenerate results by simply predicting a near-zero vector for
each test data point. Therefore, we adapt the RMSE to the
zero-inflated setting by considering zero and positive parts of
the output separately. Let y(i) be the actual L-dimensional
output vector of the i-th testing point, I0 (respectively, I+) be
the set of indices of zero (respectively, positive) elements in
y(i), and ŷ be the predicted L-dimensional output vector, then
we define the zero-inflated RMSE (zRMSE) as:

∑Ntest
i=0

√
α
∑

j∈I0
(ŷ

(i)
j )2

|I0| +
(1−α)

∑
j∈I+

(y
(i)
j −ŷ

(i)
j )2

|I+|

Ntest
,

where 0 ≤ α ≤ 1 is the relative importance of the zero part.
From the above new definition, we can see that the zero and

positive parts of an output are both considered, therefore, a
model cannot cheat by predicting near-zero vectors by ignor-
ing the positive parts of the outputs. Finally, we also compare
the time to learn different models.

1The values range between -1 and 1, where -1 shows a perfect
negative correlation, while a 1 shows a perfect positive correlation.

Figure 3: zRMSE of the methods with different α ratios on the SBTS
(left) and eBird (right) datasets.

Metrics MLZILN MTRS MORF RLTC MOSVR MMR DHN
ACC 0.52 0.31 0.45 0.40 0.32 0.47 0.65

zRMSE 1.96 3.50 2.17 2.96 3.16 2.84 1.71
Time (min) 218 76 87 96 120 55 57

Metrics MLZIP MTRS MORF RLTC MOSVR MMR DHN
ACC 0.50 0.32 0.41 0.19 0.39 0.27 0.59

zRMSE 1.39 2.51 1.75 2.87 2.40 1.75 0.96
Time (min) 186 56 64 85 99 53 45

Table 1: Performance comparison between selected models on the
SBTS (top) and eBird (bottom) datasets. The best scores are in bold.
Except for the MLZILN/MLZIP model, each score is the average
after 3 runs. α of zRMSE is set to be 0.5.

5.3 Baselines
We consider both the state-of-the-art hurdle/zero-inflated mod-
els in statistics and multi-target regression models in machine
learning:

1) Hurdle/zero-inflated models. For the bird counting data,
we select the state-of-the-art multi-level zero-inflated Poisson
model (MLZIP) [Almasi et al., 2016] as a baseline. For the fish
biomass data, we modify the MLZIP by replacing the Poisson
with log-normal, which we denote as multi-level zero-inflated
log-normal (MLZILN) model, as a baseline. For both the
baselines, response variables are divided into random clusters.

2) Multi-target regression models. As we have discussed in
Section 2, there are two kinds of methods for multi-target re-
gression models: for problem transformation methods, we se-
lect the state-of-the-art multi-target regressor stacking (MTRS)
[Spyromitros-Xioufis et al., 2016] as a baseline; and, for algo-
rithm adaptation methods, we select the state-of-the-art multi-
objective random forest (MORF) [Kocev et al., 2007], random
linear target combination (RLTC) [Tsoumakas et al., 2014],
multi-output support vector regression (MOSVR) [Zhu and
Gao, 2018], and multi-layer multi-target regression (MMR)
[Zhen et al., 2017] as baselines.

5.4 Implementations and Results
Our experiments were carried out on a computer with a 4.2
GHz quad-core Intel i7 CPU, 16 GB RAM and an NVIDIA
Quadro P4000 GPU card. We use grid search to find the best
hyperparameters for all models, e.g. learning rates, learning
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SBTS eBird
Metrics Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

ACC 0.65 0.50 0.45 0.59 0.47 0.43
zRMSE 1.91 2.60 1.93 1.52 1.95 1.65

Time (min) 55 56 57 44 45 45

Table 2: Ablation studies. The three cases refer to the ways of
modifying our models, which is defined in section 5.5. Each score is
the average after 3 runs. α of zRMSE is set to be 0.5.

rate decay ratio, and tree depth. The encoders of DHN are
parametrized by 3-layer fully connected neural networks with
latent dimensionalities 512 and 256, and the MLPs of MVP
and MLND are 2-layer fully connected neural networks with
latent dimensionalities 256. The activation functions in neural
networks are set to be ReLU. Neural network models are
trained with 100 epochs and batches size 128 for the eBird
dataset and 256 for the SBTS dataset. We randomly split the
two datasets into three parts for training (70%), validating
(15%) and testing (15%), respectively.

The results are shown in Table 1. As expected,
MLZILN/MLZIP and DHN outperform other multi-target re-
gression models in terms of zRMSE because the former mod-
els capture zero-inflation of the datasets. DHN has 12.8% and
30.9% lower errors than MLZILN and MLZIP, respectively.
On the other hand, DHN has the best ACC on both datasets,
which shows the benefit of employing and sharing the same co-
variance matrix to capture multi-entities correlations. In terms
of model training time, MLZILN and MLZIP are far worse
than other machine learning models, while DHN and MMR
are the best. We also compare zRMSE of the methods under
different α ratios in Figure 3. We can see that zero-inflated
models tends to perform better for positive parts, while other
nonzero-inflated models tend to underestimate the positive
parts.

5.5 Ablation Studies
To learn the contributions of different components in DHN,
we perform simple ablation studies. We modify the DHN
architecture and rerun the experiments in the following cases:

1. We remove the encoder so that both the MVP and MLND
directly use the raw features as input.

2. We remove both the encoder and the MVP so that only
the MLND is used.

3. We do not penalize the difference between the covariance
matrices of MVP and MLND.

The results are presented in Table 2. From the results of
ablation case studies, we can observe that: (1) employing an
encoder to learn latent features helps; (2) the model’s perfor-
mance drops significantly if we do not capture zero inflation of
data; and (3) penalizing the difference between the covariance
matrices of MVP and MLND helps to capture the ACC among
multiple entities and boost the model’s performance.

6 Conclusion
To understand the distribution of species across landscapes
over time is a key problem in computational sustainability,

which gives rise to challenging large-scale prediction problems
since hundreds of species have to be simultaneously modeled
and the survey data are usually inflated with zeros due to the
absence of species for a large number of sites. We refer to this
problem of jointly estimating counts or abundance for multiple
entities as zero-inflated multi-target regression.

In this paper, we have proposed a novel deep model for
zero-inflated multi-target regression, which is called the deep
hurdle networks (DHNs). The DHN simultaneously mod-
els zero-inflated data and the correlation among the multiple
response variables: we first model the joint distribution of mul-
tiple response variables as a multivariate probit model and then
couple the positive outcomes with a multivariate log-normal
distribution. A link between both distributions is established
by penalizing the difference between their covariance matrices.
We then cast the whole model as an end-to-end learning frame-
work and provide an efficient learning algorithm for our model
that can be fully implemented on GPUs. We show that our
model outperforms the existing state-of-the-art baselines on
two challenging real-world species distribution datasets con-
cerning bird and fish populations. We also performed ablation
studies of our models to learn the contributions of different
components in the model.

Another related challenging problem in computational sus-
tainability is to forecast how species distribution might be
impacted due to the long-term effects of global climate change.
In order to tackle the forecast challenge, our future works will
consider using recurrent neural networks to improve our model
such that it would be able to handle time series data better.
On the other hand, we could also borrow ideas of advanced
techniques for the multi-label prediction problem to further
improve the performance of MVP that is used in our model,
e.g. using latent embedding learning to match features and
labels in the latent space.
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