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Abstract
Many applications of Bayesian data analysis in-
volve sensitive information such as personal doc-
uments or medical records, motivating methods
which ensure that privacy is protected. We
introduce a general privacy-preserving frame-
work for Variational Bayes (VB), a widely used
optimization-based Bayesian inference method.
Our framework respects differential privacy, the
gold-standard privacy criterion. The iterative na-
ture of variational Bayes presents a challenge since
iterations increase the amount of noise needed to
ensure privacy. We overcome this by combining:
(1) an improved composition method, called the
moments accountant, and (2) the privacy ampli-
fication effect of subsampling mini-batches from
large-scale data in stochastic learning. We empir-
ically demonstrate the effectiveness of our method
on LDA topic models, evaluated on Wikipedia. In
the full paper we extend our method to a broad class
of models, including Bayesian logistic regression
and sigmoid belief networks [Park et al., 2020].

1 Introduction
Bayesian inference, which reasons over the uncertainty in
model parameters and latent variables given data and prior
knowledge, has found widespread use in data science appli-
cation domains in which privacy is essential, including text
analysis [Blei et al., 2003], medical informatics [Husmeier et
al., 2006], and MOOCS [Piech et al., 2013]. In these appli-
cations, the goals of the analysis must be carefully balanced
against the privacy concerns of the individuals whose data are
being studied [Daries et al., 2014]. The Differential Privacy
(DP) formalism provides a means for analyzing and control-
ling this trade-off, by quantifying the privacy “cost” of data-
driven algorithms [Dwork et al., 2006b]. In this work, we ad-
dress the challenge of performing Bayesian inference in pri-
vate settings, by developing an extension of the widely used
∗This paper is an extended abstract of an article in JAIR [Park et

al., 2020].
†The first two authors contributed equally.
‡Contact Author.

Variational Bayes (VB) algorithm that preserves differential
privacy. Variational Bayes provides an optimisation-based al-
ternative to Markov Chain Monte Carlo (MCMC) simulation
methods for Bayesian inference, and as such, frequently has
faster convergence properties than MCMC.

Iterative algorithms, such as variational Bayes, pose a fur-
ther challenge when developing a differentially private algo-
rithm: each iteration corresponds to a query to the database
which must be privatised, and the number of iterations re-
quired to guarantee accurate posterior estimates causes high
cumulative privacy loss. To compensate for the loss, one
needs to add a significantly higher level of noise to the quan-
tity of interest. We overcome these challenges in the context
of variational Bayes by using the following key ideas:
• perturbation of the expected sufficient statistics to

make effective use of the per iteration privacy budget,
• a refined composition analysis using the Moments Ac-

countant to increase the per-iteration privacy budget,
• leveraging the privacy amplification effect from sub-

sampling of large-scale data to scale up the algorithm
while improving privacy guarantees, and
• data augmentation for non-CE family models to gen-

eralize our approach to a broad class of models, which
we describe in the full journal paper.

Taken together, these ideas result in an algorithm for
privacy-preserving variational Bayesian inference that is both
practical and broadly applicable. Our code is available at
https://github.com/mijungi/vips code.

2 Background
Differential Privacy (DP) is a formal definition of the privacy
properties of data analysis algorithms [Dwork et al., 2006b;
Dwork and Roth, 2014]. A randomized algorithmM(D) is
said to be (ε, δ)-differentially private if

P (M(D) ∈ S) ≤ exp(ε)P (M(D′) ∈ S) + δ (1)

for all measurable subsets S of the range of M and for all
datasets D, D′ differing by a single entry. In this paper, we
assume that the entry difference incurs by replacing an entry
with a different value (the “replace-one” version of DP).

Intuitively, the definition states that the probability of any
event does not change very much when a single individual’s
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data is modified, thereby limiting the amount of information
that the algorithm reveals about any one individual. There
are several standard approaches for designing differentially-
private algorithms – see [Dwork and Roth, 2014] and [Sar-
wate and Chaudhuri, 2013] for surveys. The classical ap-
proach is the global sensitivity method by [Dwork et al.,
2006b]. The global sensitivity of a function F of a dataset
D is defined as the maximum amount (over all datasetsD) by
which F changes when the private value of a single individual
in D changes: ∆F = maxD,D′: d(D,D′)≤1 |F (D) − F (D′)|,
where D is allowed to vary over the entire data domain, and
|F (·)| can correspond to either the L1 norm ‖F (·)‖1 or the
L2 norm ‖F (·)‖2. In this paper, we consider a specific form
of the global sensitivity method, called the Gaussian mecha-
nism [Dwork et al., 2006a], where Gaussian noise calibrated
to the global sensitivity in the L2 norm (the L2 sensitivity)
is added. For a function F with global sensitivity ∆F , we
output:
F (D) + Z,Z ∼ N(0, σ2) , σ2 ≥ 2 log(1.25/δ)(∆F )2/ε2 ,
where ∆F is computed using the L2 norm.

2.1 Composition and Subsampling
An important property of differential privacy which makes it
conducive to real applications is composition, which means
that the privacy guarantees decay gracefully as the same pri-
vate dataset is used in multiple releases. This property allows
us to easily design private versions of iterative algorithms by
making each iteration private, and then accounting for the pri-
vacy loss incurred by a fixed number of iterations.

The key privacy tool in this paper is the composition of
multiple iterations of the Subsampled Gaussian Mechanism,
originally analyzed by [Abadi et al., 2016], and refined by
[Wang et al., 2019] (the Analytical Moments Accountant).
The Subsampled Gaussian Mechanism, under the analysis of
[Wang et al., 2019], works as follows. Given a dataset D
with N datapoints and a sampling proportion υ, in each it-
eration, we draw a fresh independent random sample of υN
points from the entire dataset D. These υN points are drawn
without replacement and are hence distinct. We then com-
pute a function F (to be specified later) on these υN points,
and privatize F using the Gaussian mechanism. The Mo-
ments Accountant keeps track of privacy loss under com-
position based on a quantity called the log-moment func-
tion. Theorem 9 of [Wang et al., 2019] provides an analyt-
ical expression for computing the log-moment of the Sub-
sampled Gaussian Mechanism as a function of the sampling
proportion, and the log-moments of the Gaussian Mecha-
nism. Since all log-moments of the Gaussian Mechanism can
be calculated directly by simple algebra [Abadi et al., 2016;
Wang et al., 2019], this gives an analytical way to calculate
the log-moment of a single iteration of the Subsampled Gaus-
sian Mechanism. Successive iterations are then composed by
adding up the log-moments.

2.2 Variational Bayes
Consider a generative model that produces a dataset D =
{Dn}Nn=1 consisting of N (conditionally) independent iden-
tically distributed (i.i.d.) items (Dn denotes the nth in-
put/output pair {xn, yn} for supervised learning and the nth

Algorithm 1 (Stochastic) Variational Bayes for CE family
distributions
Input: Data D. Define ρt = (τ0 + t)−κ and mini-batch size
S.

Output: Expected natural parameters n̄ and expected suffi-
cient statistics s̄.
for t = 1, . . . , J do

Draw a minibatch of S datapoints, without replacement.

(1) E-step: Given the expected natural parameters n̄,
compute q(ln) for n = 1, . . . , S. Output the expected
sufficient statistics s̄ = 1

S

∑S
n=1〈s(Dn, ln)〉q(ln).

(2) M-step: Given s̄, compute q(m) by ν̃(t) = ν +N s̄.
Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃

(t). Output the expected
natural parameters n̄ = 〈n(m)〉q(m).

end for

vector output yn for unsupervised learning), generated us-
ing a set of latent variables l = {ln}Nn=1. The generative
model provides p(Dn|ln,m), where m are the model pa-
rameters. Variational Bayes recasts the task of approximating
the posterior p(l ,m |D) as an optimisation problem: mak-
ing an approximating distribution q(l ,m), which is called
the variational distribution, as similar as possible to the
posterior, by minimising some distance (or divergence) be-
tween them, typically the KL-divergence. The standard mean
field assumption is that q is a fully factorized distribution,
q(l ,m) = q(l)q(m) = q(m)

∏N
n=1 q(ln). Mean-field VB

simplifies to a two-step procedure when the model falls in the
Conjugate-Exponential (CE) class of models [Beal, 2003]:

(1) The complete-data likelihood is in the exponential family:

p(Dn, ln|m) = g(m)f(Dn, ln) exp(n(m)>s(Dn, ln)),

(2) The prior on model parameters m is conjugate to the
complete-data likelihood:

p(m |τ,ν) = h(τ,ν)g(m)τ exp(ν>n(m)),

where the natural parameters (to be inferred) and sufficient
statistics (a function of the data and the latent variables
to be inferred) of the complete-data likelihood are denoted
by n(m) and s(Dn, ln), respectively, and g, f, h are some
known functions. The hyperparameters (that need to be
tuned) are denoted by τ (a scalar) and ν (a vector).

For more efficient learning, we adopt stochastic variational
inference, which uses stochastic optimisation to fit the varia-
tional distribution over the parameters. The stochastic varia-
tional Bayes algorithm is summarised in Algorithm 1.

3 Variational Bayes In Private Settings
(VIPS) for the CE Family

A naive way to privatise the VB algorithm is by perturbing
both q(l) and q(m). Unfortunately, this is impractical, due
to the excessive amounts of additive noise (we typically have
as many latent variables as the number of datapoints). We
instead propose to perturb the expected sufficient statistics
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Figure 1: Schematic of VIPS. Given the initial expected natural parameters n̄(0), we compute the variational posterior over the latent variables
q(l). Since q(l) is a function of not only the expected natural parameters but also the data D, we compute q(l) behind the privacy wall. Using
q(l), we then compute the expected sufficient statistics. Note that we neither perturb nor output q(l) itself. Instead, when we noise up the
expected sufficient statistics before outputting, we add noise to each coordinate of the expected sufficient statistics in order to compensate
the maximum difference in 〈sl(Dn, ln)〉q(ln) caused by both Dn and q(ln). In the M-step, we compute the variational posterior over the
parameters q(m) using the perturbed expected sufficient statistics ˜̄s(1). Using q(m), we compute the expected natural parameters ˜̄n(1),
which is already perturbed since it is a function of ˜̄s(1). We continue performing these two steps until convergence.

Algorithm 2 Private VIPS for CE family distributions

Input: Data D. Define ρt = (τ0 + t)−κ, noise variance σ2,
mini-batch size S, and maximum iterations J .

Output: Perturb expected natural parameters ˜̄n and expected
sufficient statistics ˜̄s.
Compute the L2-sensitivity ∆ of the expected sufficient
statistics.
for t = 1, . . . , J do

Draw a minibatch of S datapoints, without replacement.

(1) E-step: Given the expected natural parameters n̄,
compute q(ln) for n = 1, . . . , S. Perturb each co-
ordinate of s̄ = 1

S

∑S
n=1〈s(Dn, ln)〉q(ln) by adding

N (0, σ2∆2I) noise, and output ˜̄s.
(2) M-step: Given ˜̄s, compute q(m) by ν̃(t) = ν +N ˜̄s.
Set ν̃(t) ←[ (1−ρt)ν̃(t−1)+ρtν̃

(t). Output the expected
natural parameters ˜̄n = 〈n(m)〉q(m).

end for
Compute the privacy loss (εtot, δtot) using the analytical
moments account method [Wang et al., 2019].

only. We provide a schematic of our overall procedure for
Variational Bayes in private settings (VIPS) in Fig. 1.

Algorithm 2 provides pseudocode of our algorithm for dif-
ferentially private stochastic variational Bayes for CE family
models. In the full paper we develop a method to address
the non-CE family case, which we apply to Bayesian logistic
regression and sigmoid belief networks.

4 VIPS for Latent Dirichlet Allocation
In the LDA topic model, we observe a corpus of D docu-
mentsDd, where each observed word is represented by an in-
dicator vector wdn (nth word in the dth document) of length

V , and where V is the number of terms in a fixed vocabu-
lary set. Given the corpus, the model infers K latent topics
βk, which are discrete distributions over the vocabulary, and
discrete distributions over topics θd for each document Dd.
Each word wdn is given a topic assignment latent variable
zdn, represented by an indicator vector of length K. Let 1L
be a vector of ones of length L, for any integer L. The LDA
model posits that the generative process for the corpus is:

• Draw topics βk ∼Dirichlet (η1V ), for k = {1, . . . ,K},
where η is a scalar hyperparameter.

• For each document Dd, d ∈ {1, . . . , D}
– Draw topic proportions θd ∼ Dirichlet (α1K),

where α is a scalar hyperparameter.
– For each word n ∈ {1, . . . , N}
∗ Draw topic assignments zdn ∼ Discrete(θd)

∗ Draw word wdn ∼ Discrete(βzdn
) .

The LDA model falls in the CE family, viewing zd,1:N
and θd as two types of latent variables: ld = {zd,1:N ,θd},
and β as model parameters m = β. We follow the general
framework of VIPS for differentially private LDA, with the
addition of several LDA-specific heuristics which are impor-
tant for good performance. First, while each document orig-
inally has a different document length Nd, in order to bound
the sensitivity, and to ensure that the signal-to-noise ratio re-
mains reasonable for very short documents, we preprocess all
documents to have the same fixed length N . We accomplish
this by sampling N words with replacement from each docu-
ment’s bag of words. In our experiments, we use N = 500.
Note that since privacy is preserved at the level of documents
rather than at the level of words, this step does not directly
impact the degree of privacy achieved, but it can reduce the
relative amount of noise compared to the amount of data.

To perturb the expected sufficient statistics s̄, which is a
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matrix of size K×V , we add Gaussian noise to each compo-
nent of this matrix:

˜̄svk = s̄vk + Y vk , where Y vk ∼ N (0, σ2(∆s̄)2), (2)

s̄vk = 1
S

∑
d

∑
n φ

k
dnw

v
dn, and ∆s̄ is the sensitivity. We then

map the perturbed components to 0 if they become negative.
For LDA, with a mini-batch of S documents we show with
simple algebra that the the worst-case sensitivity is given by

∆s̄ ≤ N

S
. (3)

In our practical implementation, we improve the sensitivity
by exploiting the fact that for most typical documents, the
document’s contribution’s norm |s̄d| will be smaller than the
worst case norm N

S . Specifically, inspired by [Abadi et al.,
2016], we apply a norm clipping strategy, in which the per-
document contributions s̄d are clipped (or projected) such that
|s̄d| ≤ aNS , for a user-specified a ∈ (0, 1]. Note that when
a = 1, no clipping is applied. For each document in the mini-
batch, if this criterion is not satisfied, we project the expected
sufficient statistics s̄d down to the required norm via

s̄d :=
aN

S

s̄d

|s̄d|
. (4)

For example, consider a scenario where N = V = K = 2,

S = 1, a = 0.1, and s̄d =

[
1 0
1 0

]
. The worst-case norm is

N
S = 2, the clipping threshold is calculated as aNS = 0.2, and
the norm of s̄d is |s̄d| =

√
2 ≈ 1.41 > 0.2. The document’s

expected sufficient statistics hence are clipped to

s̄d :=
aN

S

s̄d

|s̄d|
=

0.2√
(2)

[
1 0
1 0

]
. (5)

These clipped sufficient statistics have a norm of |s̄d| = 0.2,
as required. Intuitively, for a fixedN and S, the L1 norm of s̄d
is always N/S, but its L2 norm can become arbitrarily small
as the dimensionality of s̄d increases. After this procedure,
the sensitivity of the clipped expected sufficient statistics ma-
trix becomes a∆s̄ (i.e., aNS ), and we add noise on this scale
to the clipped expected sufficient statistics. We set a = 0.1 in
our experiments, which empirically resulted in clipping being
applied to around 3/4 of the documents, while improving the
sensitivity by an order of magnitude.

4.1 Experiments using Wikipedia Data
We downloaded a random D = 400, 000 documents from
Wikipedia to test our VIPS algorithm. We used 50 topics and
a vocabulary set of approximately 8000 terms. The algorithm
was run for one epoch in each experiment. We compared our
moments accountant approach with a baseline method using
the strong composition (Theorem 3.20 of [Dwork and Roth,
2014]) and a baseline where the clipping step was not per-
formed. Figure 2 shows the trade-off between ε and per-word
perplexity on the Wikipedia dataset for the different methods
under a variety of conditions. Our proposed method outper-
formed the baselines. In Table 1 we show the top 10 words in
terms of assigned probabilities for an example topic.
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Moments accountant (no clipping) S=10K
Moments accountant (no clipping) S=20K
Strong composition S=5K
Strong composition S=10K
Strong composition S=20K
Moments accountant S=5K
Moments accountant S=10K
Moments accountant S=20K
Non-private S=20K
Non-private S=10K
Non-private S=5K
Non-private empirical distribution

Figure 2: Epsilon versus perplexity, varying σ and S, Wikipedia
data, one epoch. Perplexity is approximated using the upper bound
of [Hoffman et al., 2010] which is exact for the non-private empiri-
cal distribution baseline, hence this has a slightly unfair advantage.

Non-private Moments Strong Moments Acc.
Accountant Composition (no clipping)

station station station station
line line line line
railway railway railway french
opened opened opened railway
services services services opened
located closed stations services
closed code closed republic
owned country section closed
stations located platform stations
platform stations republic country

Table 1: Example topic from private LDA (ε = 2.38)

5 Conclusion

We have developed a practical privacy-preserving VB algo-
rithm and illustrated its performance for topic modeling. In
the full paper, we generalize our approach to non-CE mod-
els, including Bayesian logistic regression and sigmoid belief
networks. Our broader vision is that practical private ML al-
gorithms will have a transformative impact on the practice of
data science in many real-world applications.
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