
Lossless Semantic Round-Tripping in PENGASP

Rolf Schwitter
Macquarie University, Sydney, Australia

Rolf.Schwitter@mq.edu.au

Abstract
The PENGASP system supports the writing of tex-
tual specifications with the help of a smart text
editor that possesses knowledge about the struc-
ture of the specification language. Specifications
written in PENGASP are incrementally translated
into executable answer set programs and vice versa.
That means the system allows for lossless semantic
round-tripping between a human-readable specifi-
cation and an answer set program. This functional-
ity is achieved by a single bi-directional logic gram-
mar that serves at the same time as a text proces-
sor and a text generator. We demonstrate that the
PENGASP system can be used to bridge the gap be-
tween a (seemingly) informal specification and an
executable answer set program.

1 Introduction
Thou shalt choose an appropriate notation.
[Bowen and Hinchey, 2006]

Formal specifications are ideal for software developers, but
not for domain specialists who are often not familiar with
formal notations [Fuchs et al., 2008]. Virtually any initial
document for a system specification is written in natural lan-
guage [Berry and Kamsties, 2004], since these documents
need to be understood by domain specialists as well as soft-
ware developers. Natural language looks like a good candi-
date for writing specifications [Dalpiaz et al., 2018]; however,
natural language is ambiguous and vague [Parnas, 2010], if
not used in a restricted and precise form [Kuhn, 2014].

The PENGASP system tries to balance the tension between
an informal and a formal notation by providing a controlled
natural language (CNL) as a specification language and by
supporting the writing process of a specification with a smart
text editor [Guy and Schwitter, 2017]. The PENGASP system
focuses on writing specifications in CNL that can be trans-
lated into executable answer set programs (ASP) and vice
versa [Schwitter, 2018]. The latest version of the PENGASP

system supports the writing of temporal specifications and
uses an ASP-based adaptation of the event calculus [Kowal-
ski and Sergot, 1986; Lee and Palla, 2012; Mueller, 2015;
Schwitter, 2019] for automated reasoning with the ASP sys-
tem clingo [Gebser et al., 2019].

Figure 1: Architecture

2 PENGASP System Architecture
The smart text editor of the PENGASP system runs in any
modern web browser and communicates with a Prolog HTTP
server via JSON objects. These JSON objects are translated
into Prolog terms and are then processed by the language pro-
cessor of the PENGASP system (see architecture Figure 1).

The language processor consists of four main components:
a unification-based grammar, a chart parser, an anaphora res-
olution module, and a lexicon for function words and one for
content words. In the case of text processing, the language
processor communicates via a writer module with the reason-
ing service (clingo) supported by a linguistically-motivated
ASP implementation of the event calculus [Schwitter, 2019].
The writer translates the internal ASP format that the lan-
guage processor constructs into an executable ASP program.
In the case of text generation, the reasoning service commu-
nicates via a reader module and a planner module with the
language processor. The reader reconstructs the internal ASP
format and the planner aggregates the internal ASP format for
optimised linguistic rendering. It is important to note that the
unification-based logic grammar is bi-directional and can be
used for text processing as well as for text generation.

3 PENGASP Interface
The user of the PENGASP system is guided by a smart text ed-
itor that is tightly integrated with the language processor that
provides lookahead information about how a CNL sentence
can be constructed and completed. The user can define new
content words via a pull-down menu during the writing of a
specification and requires only minimal linguistic knowledge,
since the language processor contains the relevant informa-
tion that is necessary to automatically classify new content
words. The user can also use all accessible anaphoric ex-
pressions of an emerging specification via another pull-down
menu; these anaphoric expressions are continuously updated

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5291



Figure 2: PENGASP Interface

during the writing process. The interface (Figure 2) dis-
plays the processed text as well as the generated ASP pro-
gram as output together with the answer set(s) and answers
to questions. The user can also ask for a verbalisation of the
ASP program which is semantically equivalent to the original
specification.

4 Working with PENGASP

Let us assume the following scenario: a person picks up
an object from a first location and drives to second location
where she delivers the object; afterwards, she drives back to
the first location. Commonsense knowledge tells us that the
object moves from the first location to the second location
but not back to the first location after delivery. The indirect
effect of a person driving from a location to another loca-
tion is that the object also changes its location. This kind
of problem is known as the ramification problem [McCain
and Turner, 1995]; it has been shown that the event calculus
can be used to reason about indirect effects [Mueller, 2015;
Shanahan, 1999].

We can directly express the factual information as well as
the required ontological knowledge, the effect axioms, con-
straints and the relevant questions in CNL.

Here is the factual information for our scenario:

1. The parcel is in Epping on 2020-02-16 at 08:00.

2. Rona is in Epping at 08:50 and picks up the parcel at
09:00.

3. Rona drives from Epping to Eastwood at 09:05 and de-
livers the parcel at 09:20.

4. Rona drives from Eastwood to Epping at 09:30.

Below is the relevant ontological knowledge for the sce-
nario that can be expressed on the level of the CNL. This
means that the language PENGASP can also be used as an on-
tology specification language:

5. Rona is a person.

6. Epping and Eastwood are suburbs.

7. Every suburb is a location.
8. Every parcel is an object.
This ontological knowledge is used – for example – to con-

nect the factual information with the positive and negative ef-
fect axioms that have the form of conditional sentences:

9. If a person drives from a location A to a location B at a
time point then the person will be in B afterwards.

10. If a person drives from a location A to a location B at a
time point then the person will no longer be in A after-
wards.

11. If a person is in a location at a time point and an object
is in the same location at the same time point and the
person picks up the object at that time point then the
person will be holding the object afterwards.

12. If a person is holding an object at a time point and the
person delivers that object at the same time point then
the person will no longer be holding the object after-
wards.

We use the consequences of the effect axioms (9) and (10)
as constraints to represent the indirect effects of driving from
one location to another location:
13. If a person is holding an object at a time point and the

same person will be in a suburb after that time point then
the object will be in that suburb afterwards.

14. If a person is holding an object at a time point and the
same person will no longer be in a suburb after that time
point then the object will no longer be in that suburb
afterwards.

Additionally, we specify that an object is located in only
one location at a time point using a constraint:
15. It is not the case that an object is in a location A at a

time point and the same object is in a location B at the
same time point and the location A is not the same as the
location B.

We can now formulate a question with a time point that has
not been mentioned explicitly in the specification:
16. Where is the parcel at 09:25?

Our specification is automatically translated into an ASP
program. Figure 3 shows the simplified ASP clauses for the
declarative sentence (2), the two conditional sentences (9)
and (10), the constraint (15), and the question (16). The
declarative sentence (2) leads to a fluent that holds after a
specific time point and an event that happens at a later time
point. The conditional sentence (9) results in an ASP rule
that specifies the conditions under which a given event initi-
ates a particular fluent that holds afterwards. Similarly, the
conditional sentence (10) results in an ASP rule that specifies
the conditions under which an event terminates a given flu-
ent so that it does no longer hold afterwards. The constraint
(15) specifies that two particular fluents cannot hold in a given
context. The question (16) leads to a rule with an answer lit-
eral in the head of the rule. The answer set system clingo will
return Eastwood as the correct answer for the question. This
is achieved with the help of an ASP-based implementation of
the event calculus that has been designed for the CNL.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5292



class(1, parcel).
named(2, epping).
named(4, rona).
holds_at(fluent(4, 2, located), 43000).
happens(event(4, 1, pick_up), 43600).

initiated_at(fluent(C, D, located), E) :-
class(C, person),
happens(event(C, drive, F), E),
modifier(G, from, F), class(G, location),
modifier(D, to, F), class(D, location),
class(H, time_point),
data_prop(H, E, date_time).

terminated_at(fluent(I, J, located), K) :-
class(I, person),
happens(event(I, drive, L), K),
modifier(J, from, L), class(J, location),
modifier(M, to, L), class(M, location),
class(N, time_point),
data_prop(N, K, date_time).

:- class(H1, object),
holds_at(fluent(H1, I1, located), J1),
class(I1, location),
class(K1, time_point),
data_prop(K1, J1, date_time),
holds_at(fluent(H1, L1, located), J1),
class(L1, location),
I1 != L1.

answer(named(M1, N1)) :-
holds_at(fluent(1, M1, located), 45100),
named(M1, N1).

Figure 3: Excerpt of the resulting ASP Program1

In the case of verbalising an ASP program, the language
processor of the PENGASP systems generates semantically
equivalent sentences; for example, (17) for (14):

17. If a person is holding an object at a time point and that
person will no longer be in a suburb afterwards then that
object will no longer be in that suburb afterwards.

We can formally prove that the original specification S is
semantically equivalent to the verbalisation S’ by showing via
round-tripping that S and S’ produce the same ASP program
and the same solutions.

5 Conclusion
The PENGASP system supports the writing of textual specifi-
cations in CNL with the help of a smart text editor and incre-
mentally translates these specifications into executable ASP
programs. The system also allows the user to verbalise ASP
programs, since the grammar is bi-directional, and makes se-
mantic round-tripping possible between a CNL specification
and an ASP program without the loss of information.

1Note that timestamps have been abbreviated in the clauses to
save space, for example 43000 instead of 1581843000.

References
[Berry and Kamsties, 2004] Daniel M. Berry and Erik Kam-

sties. Ambiguity in requirements specification. In Per-
spectives on Software Requirements, volume 753 of SECS,
pages 7–44. Springer, 2004.

[Bowen and Hinchey, 2006] Jonathan Bowen and Michael
Hinchey. Ten commandments of formal methods ... ten
years later. Computer, 39:40–48, 2006.

[Dalpiaz et al., 2018] Fabiano Dalpiaz, Alessio Ferrari,
Xavier Franch, and Cristina Palomares. Natural language
processing for requirements engineering: The best is yet
to come. IEEE Software, 35(5):115–119, 2018.

[Fuchs et al., 2008] Norbert E. Fuchs, Kaarel Kaljurand, and
Tobias Kuhn. Attempto Controlled English for knowledge
representation. In Reasoning Web, volume 5224 of LNCS,
pages 104–124. Springer, 2008.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Marius Lindauer, Max Ostrowski, Javier
Romero, Torsten Schaub, Sven Thiele, and Philipp Wanko.
Potassco User Guide, Version 2.2.0, 2019.

[Guy and Schwitter, 2017] Stephen Guy and Rolf Schwitter.
The PENGASP system: Architecture, language and author-
ing tool. Journal of Language Resources and Evaluation,
Controlled Natural Language, 51:67–92, 2017.

[Kowalski and Sergot, 1986] Robert Kowalski and Marek
Sergot. A logic-based calculus of events. New Genera-
tion Computing, 4:67–94, 1986.

[Kuhn, 2014] Tobias Kuhn. A survey and classification of
controlled natural languages. Computational Linguistics,
40(1):121–170, 2014.

[Lee and Palla, 2012] Joohyung Lee and Ravi Palla. Refor-
mulating temporal action logics in answer set program-
ming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 786–792, 2012.

[McCain and Turner, 1995] Norman McCain and Hudson
Turner. A causal theory of ramifications and qualifications.
pages 1978–1984, 1995.

[Mueller, 2015] Erik T. Mueller. Commonsense Reasoning:
An Event Calculus Based Approach. Morgan Kaufmann;
Second Edition, 2015.

[Parnas, 2010] David L. Parnas. Really rethinking ‘formal
methods’. Computer, 43:28–34, 2010.

[Schwitter, 2018] Rolf Schwitter. Specifying and verbalis-
ing answer set programs in controlled natural language.
Journal of Theory and Practice of Logic Programming,
18:691–705, 2018.

[Schwitter, 2019] Rolf Schwitter. Augmenting an answer set
based controlled natural language with temporal expres-
sions. In PRICAI 2019: Trends in Artificial Intelligence,
volume 11670 of LNAI, pages 500–513. Springer, 2019.

[Shanahan, 1999] Murray Shanahan. The ramification prob-
lem in the event calculus. In IJCAI’99: Proceedings of
the 16th International Joint Conference on Artifical Intel-
ligence, volume 1, pages 140–146, July 1999.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5293


	Introduction
	PENGASP System Architecture
	PENGASP Interface
	Working with PENGASP
	Conclusion

