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Abstract

We study the classic problem of fairly allocating a
set of indivisible goods among a group of agents,
and focus on the notion of approximate proportion-
ality known as PROPm. Prior work showed that
there exists an allocation that satisfies this notion
of fairness for instances involving up to five agents,
but fell short of proving that this is true in general.
We extend this result to show that a PROPm alloca-
tion is guaranteed to exist for all instances, indepen-
dent of the number of agents or goods. Our proof is
constructive, providing an algorithm that computes
such an allocation and, unlike prior work, the run-
ning time of this algorithm is polynomial in both
the number of agents and the number of goods.

1 Introduction

The fair allocation of scarce resources to a group of compet-
ing agents is a fundamental problem in both computer science
and economics. A particularly natural and well-studied set-
ting is the fair allocation of indivisible goods to agents with
additive valuations. Under additive valuations, an agent ¢ has
a value v;; for each good j and her value for a bundle of goods
S is equal to the sum of the values over each good j € S, i.e.,
v;(S) = >_ s vij- An indivisible good cannot be split and
shared by more than one agent so achieving “fairness” with
indivisible goods is often a difficult task. Even determining
the appropriate definition of fairness can be non-trivial.

One standard notion of fairness is proportionality. An allo-
cation of a set of goods M to n agents is proportional if each
agent ¢ receives a set of goods S; for which she has value
v;(9;) > Lv;(M). In words, proportionality requires that
every agent obtains at least a 1/n fraction of her total value.
Unfortunately, when items are indivisible achieving propor-
tionality may not be possible. For instance, when allocating
a single indivisible good there is no way to provide any posi-
tive value to anyone other than the one agent that receives the
good. In fact, this example shows that one cannot even guar-
antee any multiplicative approximation of proportionality. On
the other hand, this instance does not rule out the existence of
allocations satisfying additive relaxations of proportionality.

Three notable additive relaxations of proportionality are
PROP1, PROPx, and PROPm. Each of these notions requires
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that agent 4 must receive value no less than %UZ(M ) — d; for
some appropriately defined d; > 0. The least demanding of
these notions is PROP1, wherein d; is the largest value that
agent ¢ has for any item allocated to another agent [Conitzer et
al., 2017]. On the other extreme, for PROPx d; is the small-
est value that agent ¢ has for any item allocated to another
agent [Moulin, 2019]. PROPI is known to be easy to sat-
isfy and provides weak guarantees, while PROPx is overly
demanding and known to not always exist. In the case of
PROPm, d; corresponds to the maximin value that agent ¢ has
among items allocated to other agents [Baklanov er al., 2020].
PROPm sits somewhere between PROP1 and PROPx, and it
is the focus of this work.

Baklanov et al. [2020] demonstrated that there always ex-
ists a PROPm allocation for problem instances with up to five
agents. They also demonstrate that many other alternative re-
laxations of proportionality (e.g., letting d; be the value of
the minimax value item, the median value item, and the aver-
age value item) fail to exist even for instances of three agents.
PROPm then seems to be a rather unique notion of approxi-
mate proportionality in that it strikes a balance between pro-
viding non-trivial guarantees and seemingly being plausible
to exist in general cases. However, the techniques used to
prove this existence result required extensive case analysis,
suggesting that they would not be useful toward an analogous
proof for instances with many agents. Two natural questions
then arise from [Baklanov et al., 2020]: Are PROPm alloca-
tions always guaranteed to exist for any number of agents? If
s0, can they be efficiently computed? In this work, we answer
both these questions in the affirmative.

2 Related Work

As discussed above, it is impossible to guarantee any multi-
plicative approximation of proportionality in the indivisible
items setting. The first additive approximation, “proportion-
ality up to the most valued item” (PROP1), was originally
proposed by Conitzer er al. [2017] where the authors demon-
strated that there always exists a Pareto optimal allocation that
is also PROP1. On the other hand, Moulin [2019] showed that
if we instead consider “proportionality up to the least valued
item” (PROPx) we can no longer guarantee existence. More-
over, Aziz et al. [2020] demonstrated that PROPx allocations
may not exist even for instances with only three agents.
Another standard notion of fairness is ‘“envy-freeness”
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wherein an agent is said to be envy-free if she has weakly
higher value for the set of goods she receives than the set
of goods any other agent receives. The instance with the
single indivisible items, discussed above, verifies that envy-
freeness may not be achievable either, so prior work has
focused on notions of approximate envy-freeness, namely
“envy-freeness up to the most valued item” (EF1) [Budish,
2011] and “envy-freeness up to the least valued item” (EFx)
[Caragiannis et al., 2019]. Similar to PROPI, EFI alloca-
tions are known to exist for any number of agents [Lipton et
al., 2004]. On the other hand, the existence or non-existence
of EFx allocations has not been proven in general, and it is
one of the main open problems in fair division.

Plaut and Roughgarden [2018] demonstrated that EFx al-
locations always exist for two agents (even with combinato-
rial valuations) and Chaudhury er al. [2020a] established the
existence of EFx allocations for instances with three agents
with additive valuations. Extending the results in [Chaud-
hury ef al., 2020a] to more than three agents remains a chal-
lenging problem as the proof relies on complex case analy-
sis, much like the proof of existence of PROPm allocations
for up to five agents in [Baklanov er al., 2020]. Central to
many of the proofs of existence for EF1 and EFx is a varia-
tion of a procedure of Lipton et al. [2004] known as “envy-
cycle elimination” (see, e.g., [Plaut and Roughgarden, 2018;
Chaudhury et al., 2020b; Oh et al., 2019; Amanatidis et al.,
2020]) wherein a graph representing a given allocation is con-
structed and an alternative allocation is produced by propa-
gating changes along the edges of the graph. Our algorithm
for generating PROPm allocations has a very similar flavor,
beginning from a partial allocation and using a graph analy-
sis to imply a set of changes sufficient to arrive at a PROPm
allocation.

Even if some fairness notion is shown to be achievable, it is
still crucial to study the computational tractability of finding a
solution that satisfies it. Aziz er al. [2020] provided a strongly
polynomial-time algorithm producing a PROP1 and Pareto
efficient allocation even in the presence of chores (i.e., some
goods can have negative value). For EF1 allocations, Cara-
giannis et al. [2019] showed that maximizing the Nash social
welfare (the geometric mean of the values of the agents) pro-
duces an allocation that is EF1 and Pareto efficient. On the
other hand, Lee [2017] demonstrated that computing this is
intractable. However, the work of Barman er al. [2018] pro-
vided an alternative pseudo-polynomial time algorithm that
computes an EF1 and Pareto optimal allocation. For EFx, the
picture is much less clear. The algorithmic result in [Plaut
and Roughgarden, 2018] relies on computing the allocation
optimizing the leximin objective which may take exponen-
tial time and the result for three agents in [Chaudhury et al.,
2020a] leads only to a pseudo-polynomial time algorithm.
For PROPm, the existing results in [Baklanov et al., 2020] are
constructive but may require exponential time in the number
of items, even for just five agents. On the other hand, in this
work we demonstrate that PROPm allocations for any num-
ber of agents can, indeed, be computed in time polynomial in
the number of agents and items — a major improvement over
[Baklanov et al., 2020].
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3 Our Results

Prior to this work, we knew that an allocation satisfying
PROPm always exists for instances involving up to five
agents. In this paper, we significantly extend this result by
providing an algorithm that computes a PROPm allocation for
any number of goods and agents. Moreover, our algorithm
operates in time polynomial in both the number of agents
and items, unlike the algorithm proposed in [Baklanov et al.,
2020], which was not polynomial even for a fixed number of
agents. In light of these results, PROPm stands out as a rare
example of a quite non-trivial fairness notion for which we
get universal existence and polynomial-time computability.

Our algorithm employs a useful observation from [Bak-
lanov et al., 2020] (see Observation 3 in Subsection 6.2 in
this paper) which characterizes the conditions under which
an instance can be split into agent- and item-disjoint sub-
problems which can, effectively, be solved completely sep-
arately, yielding a full solution for the initial instance. To
produce such sub-problems, we consider a novel graph rep-
resentation of our instance and search for paths through the
graph. These paths imply a series of gradual modifications
leading to the final decomposition of each problem instance
into sub-problems. We consider this algorithm to be of both
practical and theoretical interest.

4 Preliminaries

We study the problem of allocating a set M of m indivisible
items (or goods) to a set of n agents N = {1,2,...,n}. Each
agent 7 has a value v;; > 0 for each good j and her value
for receiving some subset of goods S C M is additive, i.e.,
v;(S) = > es vij- For ease of presentation, we normalize
the valuations so that v;(M) = 1 for all i € N. We also
assume that v;; < 1/nforalli € N,j € M, because any
item j with v;; > 1/n could be assigned to ¢ and reduce the
problem to finding a PROPm allocation of M\ {j} to N\ {i}.!
We let m;(S) = minjcg{v;;} denote the value of the least
valuable good for agent 7 in bundle of goods S.

An allocation X = (X1, Xs,...,X,,) is a partition of the
goods into bundles such that X; is the bundle allocated to
agent .. We use d;(X) = max;;{m;(X;)} to denote the
value of the maximin good of agent i in X, and we say that an
agent i is PROPm-satisfied by X if v;(X;) + d;(X) > 1/n.
An allocation X is PROPm if it PROPm-satisfies every agent.

The goal of our algorithm is to use these bundles to decom-
pose the problem into smaller sub-problems, and compute a
PROPm allocation using a divide & conquer approach. A
sub-problem (A, N') is a pair consisting of a set of bundles
A = {A1,As,..., A} and a subset of agents N’ C N.
In other words, a sub-problem “matches” a group of agents
with a group of bundles, and our goal is going to be to do
so in a way that computing a PROPm allocation for each
sub-problem yields a PROPm allocation for the original prob-
lem. The value of an agent 7 for a set of bundles A is
vi(A) = > 4,eavi(4;). We call a sub-problem (A, N')
proportional if v;(A)/|N'| > 1/n foralli € N’.

'This fact is proven as Lemma 2 in [Baklanov et al., 2020].
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Given a set of bundles A and a set of agents N’', a
decomposition is a division of these agents and bundles into
(bundle and agent) disjoint sub-problems. For example con-
sider a set of five agents N’ = {1,2,3,4,5} and a set of five
bundles A = {A;, Ay, A3, Ay, As}. One possible decom-
position of (A, N’) would be into the disjoint sub-problems
({A1, A3, A3},{1,2,3}) and ({A4, A5},{4,5}). We say
that a decomposition for (A, N') is proportional if all of its
included sub-problems are proportional. As we show later
on, as long as a decomposition is proportional, we can fo-
cus on solving each of its sub-problems recursively without
worrying about the allocation beyond that sub-problem.

Consider, again, the example above of five agents
{1,2,3,4,5} and five bundles {4, ..., As}. For these five
agents assume agents 1, 2, and 3 have the same valuation
function and assume agents 4 and 5 have the same valuation
functions. Let the valuation functions for agents 1, 2, and 3
be U(Al) = % and U(Ag) = U(A3) = U(A4) = ’U(A5) = %
and let the valuation function for agents 4 and 5 be v(A;)
v(Ag) = v(A43) = §, v(Ag) = 35, and v(As5) = . Since
valuation functions are additive, we then have that v;(A; U
AQUAg)/3 > 1/5 fori € {1, 2, 3} and UL(A4UA5)/2 > 1/5
fori € {4,5}. Thus, the decomposition of (A, N') described
above D = (({Ah AQ, Ag}, {1, 2, 3}), ({1447 145}7 {47 5}))
is a proportional decomposition. We will see that this means
that we can solve the two sub-problems of allocating items in
A3 UA3U A3 to agents 1, 2, and 3 such that they are PROPm-
satisfied with respect to A; U Ao U A3 and allocating items
in A4 U A5 to agents 4, 5 such that they are PROPm-satisfied
with respect to A4 U A5 to produce an allocation where every
agent is PROPm-satisfied in the original problem.

S PROPm Algorithm

Our algorithm begins by choosing some arbitrary agenti € N
to serve as the “divider” (we henceforth use 7 to refer to the
divider agent and N=% = N \ {i} to refer to the set of all
other agents). The divider agent partitions the items into n
bundles, and then the algorithm proceeds to evaluate the other
agents’ preferences over these bundles to decide which one
the divider should receive. Once the divider’s bundle has been
determined, the initial problem is decomposed into smaller
sub-problems that are solved recursively.

5.1 Stage 1: The Divider Partitions the Goods

In order to partition the goods, the divider (agent ¢) first
sorts them in non-decreasing order of value, from ¢’s per-
spective, and indexes them accordingly. Then, the first bun-
dle S7 corresponds to the longest prefix of goods in this or-
dering such that v;(S7) < 1/n. Observe that, by construc-
tion, v;(S1) + v;; > 1/n forall j € M \ S;. Moreover,
there is at least (n — 1)/n total value remaining for ¢ out-
side S;. We construct So by taking the longest prefix of
goods in M \ S; such that 4 has value less than or equal to
1/(n—1)-v;(M\ Sy) for receiving all of them. Similarly, we
let S, be the longest prefix of goods in M \ (U?;ll S;) such
that the divider’s value for these items remains less than or
equalto1/(n —k + 1) v, (M \ (U?;llSj)).
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5.2 Stage 2: Decomposing into Sub-problems

Using disjoint bundles S1, S5, . .., S, from the divider’s par-
tition, we now decompose the problem into sub-problems,
eventually solving them recursively. Specifically, we care-
fully choose one of these n bundles, say .S¢, and allocate it to
the divider. We then recursively allocate the items of bundles
S1,...,5¢_1 tosome group Ny, of t —1 agents, and the items
of bundles S;1,...,S;, to some group Ng of n — ¢ agents.

As the pseudocode of Algorithm 1 shows, the decompo-
sition process works in a sequence of (up to) n iterations,
indexed by ¢ € {1,2,...,n}. At the beginning of every it-
eration ¢, the algorithm has already identified a proportional
decomposition D involving ¢ — 1 agents and the bundles
S1,52,...,5¢_1. At the end of step ¢, either the proportional
decomposition D has been updated to also include the bundle
S and a total of ¢ agents (possibly different than the t —1 ones
that were participating in it at the beginning of the round), or
the bundle .S; has been assigned to the divider agent, and the
remaining problem has been decomposed into a list of pro-
portional sub-problems. Throughout the execution of the al-
gorithm, N is used to denote the set of agents that are not
participating in the proportional decomposition D.

The first thing that the algorithm does in each iteration ¢ is
to evaluate c, the number of agents from Ny whose average
value for the first ¢ bundles is more than 1/n. If ¢ is equal
to 0, this means that all the agents in Ny essentially “prefer”
sharing the last n — ¢ bundles instead of the first ¢ bundles.
If this is the case, then the algorithm allocates bundle S; to
the divider agent. It then recursively solves the proportional
decomposition D, whose sub-problems involve ¢ — 1 agents
and the first ¢ — 1 bundles, and also recursively solves the sub-
problem involving the remaining n — ¢ agents (i.e., those in
Np) and the items from the last n — ¢ bundles, S;11 to .S,.

On the other hand, if the value of c is positive, this sug-
gests that there are agents in Ng that “prefer” to share the
first ¢ bundles rather than the last n — ¢ bundles. Intuitively,
this suggests that the first ¢ bundles are “over-demanded”, so
our algorithm calls UPDATEDECOMPOSITION, a crucial sub-
routine, to update decomposition D. As we discuss in subsec-
tion 5.3, a single execution of this subroutine can have one of
two possible outcomes: i) either the value of ¢ decreases by
1, or ii) the number of agents in the decomposition (denoted
| D.agents| for notational simplicity) increases by 1. The al-
gorithm keeps calling this subroutine until either the decom-
position grows to include bundle S; and ¢ agents, or ¢ drops
to 0. In the former case, it continues to the next iteration (i.e.,
t < t + 1), otherwise, it assigns .S; to the divider and recur-
sively solves the remaining sub-problems. Figure 1 shows an
example of the algorithm running on a sample instance.

5.3 The UPDATEDECOMPOSITION Subroutine

The UPDATEDECOMPOSITION subroutine plays a central
role in our PROPm algorithm, and it achieves the desired up-
date of the existing proportional decomposition D at iteration
t by propagating changes on a carefully constructed graph.
Note that whenever we call this subroutine, the value of ¢ is
positive, so there exists at least one agent k € Ng, i.e., not
participating in D, for whom vy (S1 U --- U St)/t > 1/n.
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Algorithm 1: PROPm Algorithm

1 Let 51, 59,...,.5, be the bundles the divider produces
2 Let D be an, initially empty, decomposition

3 Np N—?

4 fort =1tondo

s e |{ke Ng:nE=U8) 5 1y

6 while ¢ > 0 and |D.agents| < t do

7 D < UPDATEDECOMPOSITION

8 Npg + subset of N~% not participating in D
. v (S1U---USY) 1

9 C(-'{kENR%>E}|

if | D.agents| < t then
Allocate S; to the divider agent (agent )
Recursively solve all sub-problems of D
Recursively solve (Sy1q U---U S, Ng)
Return the combined allocation

Given the decomposition of disjoint sub-problems D, we
construct a directed “sub-problem graph” G = (V, E'), where
each vertex in V' corresponds to a sub-problem in D and
and an edge (u,w) between two vertices u,w € V exists
if and only if the corresponding sub-problems, (A, N,,) and
(A, Ny,) satisfy the following condition: there exists some

agent k € N, who satisfies ”"“](\é"l“) > % In other words,
such an edge exists if and only if removing some agent from
N,, and replacing her with agent k£ would maintain the pro-
portionality of the (A, IV,,) sub-problem.

The sub-problems corresponding to the vertices of G in-
volve bundles S, ..., S;_1 and some set of ¢ — 1 agents so
the number of vertices in GG is at most t — 1. We add to G two
more vertices. The first vertex, w,,, corresponds to the agent
k € Ng mentioned above; this vertex has outgoing edges to

all the sub-problems (A, N') of D for which ”"‘]\(,“,‘T) > L The
second vertex, wg, corresponds to the bundle \S; that we wish
to introduce to this decomposition. This vertex has incoming
edges from any vertex whose sub-problem includes an agent
i’ with value v (S¢) > 1/n. In this graph, let R be the set of
vertices that are reachable from w,, via directed paths.

Case 1. If this set R includes the vertex wg, corresponding
to the bundle S;, i.e., if there is a path from w, to wg, then
the subroutine reallocates agents along the sub-problems of
this path. Specifically, for each edge (u, w) on this path, we
remove from the sub-problem of u the agent that is responsi-
ble for the existence of this edge (we choose one arbitrarily if
there are multiple) and we place that agent in the sub-problem
of w. As aresult, D would then include bundle S; as well as
agent k, thus increasing |D.agents| and, as we argue in Sec-
tion 6, this modification maintains the proportionality of the
decomposition.

Case 2. If the set 12 does not include the vertex wg, but it
1;i/(SlL;~~USt) < 1

includes some agent i’ with , then we per-
form an analogous shift of the agents across the sub-problems
along the path from k to 7', but remove agent i’ from the de-
composition and add her to the set Ny. This, again, does not
compromise the proportionality of the decomposition, but it
ensures that the updated value of ¢ will drop by 1 since agent
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k was removed from Ng and replaced with agent i’ who does
not contribute toward an increase of the value of c.

Case 3. Finally, if neither of the cases above holds, the sub-
routine takes all the agents and all the bundles corresponding
to vertices in R and merges them into a single sub-problem,
together with agent & and bundle S;. This, again, increases
| D.agents| and as we show using a separate argument in Sec-
tion 6, it maintains the proportionality of the decomposition.

6 Correctness of the Algorithm

To verify the correctness of the algorithm, we first show
that it always terminates and returns an allocation (in fact,
we demonstrate in Section 7 that the algorithm completes in
polynomial time). As we verify in subsection 6.1, a single
call to the UPDATEDECOMPOSITION subroutine returns an
updated decomposition that has either one additional agent
(and bundle) or has reduced the value of ¢ by 1. Since the
value of c at the beginning of each iteration can never be more
than n — 1, this ensures that the while loop will always ter-
minate within a finite number of iterations. If for some it-
eration t < n — 1 the value of |D.agents| drops below ¢,
then the algorithm recurses on smaller problems and returns
the induced allocation. If, on the other hand, |D.agents|
does not drop below t for any iteration ¢ < n — 1, then
when ¢t = n we have an empty set Ng, necessarily leading
to D including every agent except for the divider (meaning
|D.agents| = n —1 < t). Also, note that the size of the sub-
problems solved recursively always strictly decreases. We
demonstrate in subsection 6.2 that this process yields a pro-
portional allocation for all agents.

6.1 Correctness of UPDATEDECOMPOSITION

We now formally prove that after every execution of the
UPDATEDECOMPOSITION subroutine, either |D.agents| in-
creases by 1, or the value of ¢ drops by 1. In both cases, the
resulting decomposition remains proportional, throughout the
execution of the algorithm.

First, note that the set R of vertices that are reachable from
agent k is bound to be non-empty. This is due to the fact
that vi(S; U --- U St)/t > 1/n, ie., the agent’s average
bundle value is more than 1/n and, by pigeonhole princi-
ple, there must exist some sub-problem (A4, N') such that
vk (A)/|A| > 1/n. Since the set R is not empty, the descrip-
tion of the subroutine in the previous section clearly shows
that it always achieves either an increase of |D.agents| or a
drop of the value of c. Therefore, the rest of this subsection
focuses on proving that all of these updates on the decompo-
sition maintain its proportionality.

Lemma 1. Given a proportional decomposition, the de-
scribed re-allocation of agents across the directed edges of
a path in the decomposition’s sub-problem graph leads to a
new decomposition that remains proportional.

Proof. Note that, by definition of the sub-problem graph, any
agent that caused the existence of an edge (u,w) must have
a value of at least | N,,|/n for the bundles of the sub-problem
corresponding to vertex w. As a result that agent will still
satisfy proportionality if moved from w to w. This is true for
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Figure 1: The state of our algorithm after the completion of iterations ¢ € {1,2,3,4} on a sample instance with six agents and agent 1 as

the divider. The circles correspond to items, which are grouped together into bundles {Si, ...,

Se} by the divider. The numbered boxes

beneath the items correspond to agents 2 through 6, and each of the larger rounded rectangles, containing bundles and agents, correspond to
sub-problems. In each iteration of the algorithm, captured by this figure, the dashed vertical line separates the bundles of the decomposition
D, on the left, from the remaining bundles. After each iteration ¢, either the decomposition is updated to include bundle S; (as we see for
t € {1,2,3}), or bundle S; is allocated to the divider agent (as wee see for ¢ = 4), finalizing the set of sub-problems to be solved recursively.

all the edges on this graph (including the ones connecting the
two added vertices w, and wg), ensuring the proportionality
is maintained.

The more demanding case is to verify that proportionality
is also maintained by the third type of update that this subrou-
tine performs, i.e., the creation of a sub-problem involving the
agents and goods in R as well as agent k£ and bundle S;.

Lemma 2. [f A’ is the collection of all the bundles corre-
sponding to sub-problems not reachable from w,, excluding
S;, then for every agent q from a sub-problem in R we have
vg(A")/|A'| < 1/n. The same is true for the agent k that
corresponds to vertex w, i.e., vi(A")/|A'] < 1/n.

Proof. Assume that this is not the case, i.e., that either some
agent ¢ corresponding to a sub-problem in R, or agent k, has
an average bundle value at least 1/n for the bundles in A’.
By the pigeonhole principle, this implies that there must exist
some sub-problem not reachable from R such that this agent’s
average value for the bundles in that sub-problem is at least
1/n. But, based on the definition of the sub-problem graph,
this would imply the existence of an edge from that agent’s
vertex to this sub-problem’s vertex, contradicting the fact that
the latter is not reachable from the former. O

Whenever the subroutine resorts to the third type of decom-
position update (Case 3), this means that there is no agent ¢’

in a sub-problem in R such that M < % (Case 2).
Thus, agent k and all agents g from sub-problems in R have
value for the items in S1 U- - -U.S; greater than ¢/n. Lemma 2
implies that their total value for the bundles in A’ is less than
| A’| /n. Therefore, these agents’ value for the items contained
in sub-problems in R is at least (t — |.A’|)/n.

Also, note that the overall number of agents in the sub-
problems of GG (excluding k) is t—1, and the number of agents
in the sub-problems not reachable from R are | A’
number of agents in the sub-problems of R is ¢t — |A’| — 1.
Therefore, if we define a new sub-problem using the agents
from R, combined with agent k corresponding to vertex wq,

28

and the bundles from R, combined with S}, then this sub-
problem will be proportional, because every agent’s value for
the bundles in it will be at least (¢ — |.A’|)/n and the number
of agents in it is t — |A’|.

6.2 All Agents Are PROPm-satisfied

To verify that the induced allocation is always PROPm, we
first restate a useful observation from [Baklanov et al., 2020].
This observation provides us with a sufficient condition un-
der which “locally” satisfying PROPm in each sub-problem
yields a “globally” PROPm allocation. Given an allocation
of a subset of items to a subset of agents, we say that this
partial allocation is PROPm if the agents involved would be
PROPm-satisfied if no other agents or items were present.

Observation 3. Let N1, N2 be two disjoint sets of agents,
let My and My = M \ My be a partition of the items into
two sets, and let X be an allocation of the items in M to
agents in N1 and items in My to agents in No. Then, if some
agent © € Nj is PROPm-satisfied with respect to the par-
tial allocation of the items in M to the agents in N1, and

U"lg\J,Vl[‘l) > Nli Ak then i is PROPm-satisfied by X regard-

less of how the items in M5 are allocated to agents in No.

We now prove a result regarding the partition implied by
the divider agent’s preferences, which is analogous to a theo-
rem that is shown by [Baklanov er al., 2020] for a different,
much more complicated, partition of the items.

Theorem 4. [f the divider agent receives any bundle Sy and
no item from S1 U Sy U --- U Sy_1 is allocated to the same
agent as an item from Sy 1 U Spio U --- U S, then agent i
will be PROPm-satisfied.

Proof. For all k € [n], we have v;(Sk) < (n+1 ) v (M \
(S1USoU- - -USk_1)) by definition of S. Applymg this up-
per bound on v;(.Sy;) for k = 1, because v;(M) = 1 we have
thatv;(M\S;) > 1—1 = 2=1 By applying the upper bound
on v;(Sy) for k = 2 and our “lower bound on i M\ S1) we
getv;(M\(S1USy)) > 2t — L . Iteratively

n—1
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repeating this process, we obtain that for all k € [n] we know
that v;(M \ (S1 U So U--- U Sg)) > 2=£ Also by defi-
nition, we have that v;(S¢) +min;capn (s,u8,0--Us,) {Vij } >

(M ($US,U--USe 1)) > oy ) _

%. But finally, as long as the items from S; U So U --U.Sp_1
are not included in any of the bundles containing the items
in M\ (S1USyU---USy) in the complete allocation X,
we have that d;(X) > minjecan (s,u8,0--uS,){vij } 80 @ is
PROPm-satisfied when allocated set S,. O

Lemma 5. The divider agent is always PROPm-satisfied. All
non-divider agents are always PROPm-satisfied as well.

Proof. Note that the divider agent always receives a bun-
dle S; in some iteration t. All the items from bundles
S1,...,5¢—1 are allocated to the agents that were in the de-
composition D at that time, while all the items from bundles
Si+1,-..,5y, are allocated to the agents that were in Ny at
the time (and hence not in D). Then, given Theorem 4, we
conclude that the divider agent is always PROPm-satisfied.

Now observe that no agent other than the divider agent is
directly allocated a bundle by our algorithm. Instead, the al-
location to the other agents is decided recursively in some
recursive call of a smaller sub-problem, when they are as-
signed the role of the divider. The important thing to verify is
that PROPm-satisfying these agents in a recursive call, based
on a subset of the agents and a subset of the goods, does, in
fact, imply that they are PROPm-satisfied with respect to the
original problem instances as well.

In order to ensure this fact, we combine the statement
of Observation 3 with the definition of proportional sub-
problems and decompositions. In particular, our definition of
proportionality for a sub-problem guarantees that the condi-
tions of Observation 3 are met. Since we ensure that propor-
tionality is maintained after every execution of the UPDAT-
EDECOMPOSITION subroutine, we guarantee that the combi-
nation of PROPm allocations for the generated sub-problems
yields a PROPm allocation for the original problem. U

7 Running Time

We now move to demonstrate that Algorithm 1 completes in
time polynomial in the number of agents and items. Lines
1 through 9 correspond to the “divide phase” and lines 10
through 14 correspond to the “conquer phase”.
The running time of Algorithm 1 can be expressed as
k
T(m,n) = f(m,n) + _T(m;,n;),
j=1
where f(m,n) denotes the cost of the main call with m items
and n agents, and the sum captures the cost of the recursive
calls. The number of recursive calls is k (equal to the num-
ber of sub-problems from lines 12 and 13), while m; and n;

are the number of items and agents, respectively, of the j-th
sub-problem. Since all the sub-problems consist of distinct

bundles and agents, we must have Z§:1 m; < m — 1 and
Z?:l n; < n — 1. Thus the width of any level of the recur-
sion tree is at most max{m,n}. Furthermore, since the size
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of each sub-problem strictly decreases through the recursion,
the recursion tree has at most depth min{m, n}. This means
the total number of vertices in the recursion tree is polynomial
in n and m. All that remains is to show f(m, n) is polynomi-
ally bounded in m and n.

Producing the divider’s bundles takes polynomial time
since it requires only sorting the items in non-decreasing or-
der of value and a linear pass over the sorted items. In the
body of the for loop of Algorithm 1, computing the initial
value of c takes time linear in the number of agents and items
by asking each agent their value for each item in S7; U- - -US;.
This initial value of ¢ is at most n — 1. As demonstrated in
subsection 6.1, at each iteration of the while loop (beginning
at line 6) in Algorithm 1, the UPDATEDECOMPOSITION sub-
routine either increases the value of | D.agents| from ¢ — 1 to
t or decreases the value of ¢. Thus, the number of iterations
of the while loop is at most n at any iteration of the for loop.

We now demonstrate that the body of the while loop takes
polynomial time. Note that computing the new value of ¢
after then UPDATEDECOMPOSITION subroutine takes linear
time (in the number of agents and items). To verify that Up-
DATEDECOMPOSITION also takes polynomial time, observe
that the sub-problem graph induced by D in iteration ¢ of the
for loop contains at most ¢ — 1 vertices (which would occur
when all ¢ — 1 agents in D and bundles are assigned to distinct
sub-problems). We then add two additional vertices w,, and
wg so there are at most ¢ + 1 = O(n) vertices overall at any
iteration of the for loop. Note that checking if an edge ex-
ists between two vertices in the graph takes time linear in the
number of agents and goods in the two sub-problems and each
sub-problem has at most n agents and m items. Thus, we can
construct the graph in time O(n-(n+m)). Finally, computing
the set R of reachable vertices from w,, can be accomplished
by a simple breadth-first-search which is known to take time
linear in the number of the vertices and edges in the graph.
Since updating the decomposition just requires propagating
changes along a path of length at most n, the entire UPDAT-
EDECOMPOSITION process takes polynomial time.

8 Conclusion

In this paper, we solve the problem of computing PROPm al-
locations among agents with additive valuations, but we leave
open another interesting problem proposed in [Baklanov et
al., 2020]: the question of the existence and computation of
an average-EFx (a-EFx) allocation. To determine if an agent
is a-EFx satisfied by some allocation, we remove ¢’s least fa-
vorite item from each other agent’s allocated bundle, and then
ask that ¢’s value for her own bundle is at least as high as her
average value for all the other agents’ bundles. This notion
is stronger than PROPm and may provide an interesting step-
ping stone toward the, much harder, EFx problem.
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