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Abstract
We consider the problem of the conjoint selec-
tion and allocation of projects to a population of
agents, e.g. students are assigned papers and shall
present them to their peers. The selection can be
constrained either by quotas over subcategories of
projects, or by the preferences of the agents them-
selves. We explore fairness and optimality issues
and refine the analysis of the rank-maximality and
popularity optimality concepts. We show that they
are compatible with reasonable fairness require-
ments related to rank-based envy-freeness and can
be adapted to select globally good projects accord-
ing to the preferences of the agents.

1 Introduction
When allocating indivisible resources to a group of agents,
optimality and fairness are key considerations in order to sat-
isfy the agents with their assigned resources [Bouveret et al.,
2016]. However, when not all resources are to be assigned,
the choice of the assigned resources may be particularly im-
portant. Many real-world situations can illustrate this issue.

A first context concerns a University course where students
must be assigned to projects they have to work on, and present
to their peers at the end of the course. Usually, an allocation
that takes into account the preferences of the students is desir-
able in order to motivate them to work. An optimal allocation
of projects to the students should maximize the global satis-
faction of the students. This allocation must also be fair oth-
erwise students could complain about the assignment. How-
ever, the choice of selected projects can also be fundamental
for pedagogical reasons: not all students should present simi-
lar projects since it is expected that even attendants will learn
from the presentations. Therefore, some diversity constraints
according to the topics of the projects must be considered.

Another example concerns the organization of a confer-
ence with invited speakers. Suppose each of the speak-
ers must be assigned a one hour time slot from Monday to
Wednesday (9:00-19:00). In such a context, speakers can ex-
press preferences over time slots (e.g. preferably in the morn-
ing or early in the conference). The decisions to make involve
selecting time slots for presentations, and the allocation of a
time slot for each speaker. Solving such selection/allocation

should account for the preferences of speakers both for the
conference timetable, and for the time of their presentation.

The two preceding examples involve agents and many re-
sources (more than the number of agents), referred to as
projects, to be assigned to agents by a central authority. The
assignment must be optimal and fair for the agents, and at the
same time the set of assigned projects should be selected re-
garding balance constraints with respect to groups of projects
(topics, days) or preferences of the agents. Hence it can be
seen as a combination of multiwinner voting [Elkind et al.,
2017; Faliszewski et al., 2017] (we want a good selection of
projects) and resource allocation problems (we want a fair
and optimal assignment of projects to agents).

In this paper, we focus on house allocation problems [Hyl-
land and Zeckhauser, 1979; Abdulkadiroǧlu and Sönmez,
1998], where each agent must be assigned exactly one
project. Optimality questions have been widely investigated,
especially with respect to Pareto-optimality [Abraham et al.,
2004] and its refinements, such as rank-maximality [Irving,
2003; Irving et al., 2006] and popularity [Abraham et al.,
2007; Cseh, 2017]. Concerning fairness, the most classical
criterion, envy-freeness [Foley, 1967; Varian, 1974], requires
that no agent prefers the project assigned to another agent
to her own assigned project. This criterion is too demand-
ing if the number of projects equals the number of agents.
Hence, some relaxations of envy-freeness have been pro-
posed [Beynier et al., 2019]. However, envy-freeness is more
interesting when there are more projects than agents [Gan et
al., 2019].

We focus in this article on a relaxation of envy-freeness,
called rank-envy-freeness, which requires that no agent
prefers the project assigned to another agent whereas she
ranked this project in a better position in her preference rank-
ing. This notion is present in the favoring higher ranks con-
cept introduced by Ramezanian and Feizi [2020], was im-
plicitly used by Kojima and Ünver [2014], and is equivalent
to no envy by rank in random assignment [Harless, 2018]. We
propose a generalization of rank-envy-freeness and introduce
another concept, frustration-freeness, which relates both allo-
cation and selection issues. Frustration-freeness imposes that
no agent prefers an unassigned project to her assigned project.
Focusing on the personal satisfaction of an agent, it can be
viewed as a fairness concept, but also as an optimality concept
because it asks for no project waste. Whereas optimality and
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fairness are often incompatible [Bouveret and Lang, 2008],
we show that rank-envy-freeness and frustration-freeness are
necessary to characterize rank-maximality and popularity.

For choosing an adequate set of selected projects at the
same time as a good allocation of projects to agents, we inves-
tigate two ways: considering hard diversity constraints repre-
sented by lower and upper quotas over categories, or consid-
ering the preferences of the agents over the selected projects.

Diversity constraints are relevant in multiwinner voting
when a committee with particular attributes is sought [Brams,
1990; Bredereck et al., 2018]. In resource allocation, it has
been investigated, e.g., in public housing allocation [Benab-
bou et al., 2018], and in course allocation [Cechlárová and
Fleiner, 2017] where courses have capacities and open only if
a lower quota of participants is reached.

When preferences of the agents are taken into account for
selecting the projects to assign, a naive strategy is to first se-
lect the projects via a multiwinner voting rule and then al-
locate the projects. Nevertheless, this approach may lead to
select projects that do not fit any agent personally, like in the
conference example. Conversely, by only considering alloca-
tion purposes, one could impose conference days where only
a few attendants can be present. Our model can be seen as a
particular case of house allocation with externalities where
agents care about their assignment and the set of selected
projects (but not about the identity of the owners). In the no-
tion of envy-freeness conditioned to the approval of the ma-
jority of agents [Shams et al., 2020], agents can also give their
opinion about the assignment of other agents, but there is no
concern of the set of selected projects. The goal of our arti-
cle is to find a reasonable way to combine both allocation and
selection goals, by focusing on fairness and optimality issues.

2 Allocation of Projects
We consider a set of agents N = [n] := {1, . . . , n} and a
set of projects P = {p1, . . . , pm} with m ≥ n. Each agent
i has ordinal preferences over projects, represented by a lin-
ear order �i over P . A feasible allocation σ : N → P is
a matching, perfect w.r.t. the agents, where every agent is
assigned to exactly one project and no two agents share the
same project, i.e., σ(i) 6= σ(j) for every agents i 6= j and
σ(i) ∈ P denotes the project assigned to agent i in allocation
σ. Typically, some projects may not be assigned. Let Pσ de-
note the set of assigned projects in allocation σ, i.e., Pσ :=
{p ∈ P : ∃i ∈ N such that σ(i) = p}. An instance of the
selection-allocation (SA) problem is I = (N,P, (�i)i∈N ).1

2.1 Finding an Optimal and Fair Allocation
An allocation σ is Pareto-optimal (PO) if there is no feasible
allocation σ′ such that σ′(i) �i σ(i) for every agent i and
there exists an agent j such that σ′(j) �j σ(j). In an or-
dinal setting, PO can be refined with rank-maximality (RM).
The signature ρσ of allocation σ is the m-vector giving the
number of agents ρσ(k) assigned to their kth most preferred
project in σ, for all k ∈ [m]. Signature ρσ is lexicographically
strictly greater than signature ρσ′ , denoted by ρσ >lex ρσ′ , if

1The problem is similar to house allocation but we use a different
name to emphasize the combined goal of selection and allocation.

there exists an index i ∈ [m] such that ρσ(i′) = ρσ′(i
′) for

all i′ < i and ρσ(i) > ρσ′(i). An RM allocation can be
computed in polynomial time [Irving et al., 2006].
Definition 1 (Rank-maximality (RM)). An allocation σ is
RM if there is no feasible allocation σ′ such that ρσ′ >lex ρσ .

Popularity is another optimality measure that refines PO.
Agent i prefers allocation σ to allocation σ′ if σ(i) �i σ′(i).
An allocation σ is then more popular than another allocation
σ′ if the number of agents who prefer σ to σ′ is strictly greater
than the number of agents who prefer σ′ to σ.
Definition 2 (Popularity (Pop)). An allocation σ is popular
if there is no feasible allocation σ′ more popular than σ.

A Pop allocation may not exist but existence can be ef-
ficiently checked and, in the positive case, a Pop allocation
can be computed in polynomial time, thanks to the following
characterization due to Abraham et al. [2007]: An allocation
σ is Pop iff (1) every first-ranked project is assigned in σ, and
(2) σ assigns to every agent either her first-ranked project or
the most preferred project that is not ranked first by an agent.

Fairness issues can also be considered. We relax envy-
freeness with rank-envy-freeness, where an agent i is envious
towards an agent j only if agent i ranks the envied project in
a better position in her preference ranking than agent j. Let
ri : P → [m] be the function giving the rank of a project in
�i, i.e., ri(x) = |{y ∈ P : y �i x}|, for project x ∈ P .
Definition 3 (Rank-envy-freeness (r-EF)). Allocation σ is r-
EF if σ(i)�i σ(j) or rj(σ(j)) ≤ ri(σ(j)) for every i, j ∈ N .

A rank-maximal or popular allocation is also r-EF.
Proposition 1. RM⇒ r-EF and Pop⇒ r-EF.

Proof. Suppose that an RM allocation σ is not r-EF. There
exist agents i and j such that σ(j) �i σ(i) and ri(σ(j)) <
rj(σ(j)). Hence, both ri(σ(j)) < rj(σ(j)) and ri(σ(j)) <
ri(σ(i)) hold. Thus, by swapping the projects of i and j, we
get an allocation σ′ such that ρσ′ >lex ρσ , a contradiction.

Suppose that a Pop allocation σ is not r-EF. There ex-
ist agents i and j such that σ(j) �i σ(i) and ri(σ(j)) <
rj(σ(j)). By rank-envy, neither agent i nor agent j is
assigned her first-ranked project in σ so, by Abraham et
al. [2007]’s characterization, they are both assigned her most
preferred project that is not ranked first by an agent. Since i
prefers σ(j) to σ(i), project σ(j) must be ranked first by some
agent, contradicting the fact that agent j is assigned her most
preferred project that is not ranked first by any agent.

The reverse of both implications is not true, since r-EF does
not even imply PO. Moreover, although both RM and Pop
imply r-EF, it is not true for their weaker requirement PO.
Example 1. For r-EF 6⇒ PO, simply consider an instance
with two agents and three projects with the following prefer-
ences: p1 �1 p2 �1 p3 and p1 �2 p3 �2 p2. Allocation
assigning p2 to agent 1 and p3 to agent 2 is r-EF but not PO.

For PO 6⇒ r-EF, consider an instance with three agents and
three projects. The preferences are given below.

1 : p1 � p3 � p2
2 : p2 � p1 � p3
3 : p2 � p1 � p3
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The encircled allocation is PO but not r-EF: agent 1 is
envious towards agent 2 who owns her second ranked project
p1 which is the first-ranked project of agent 1.

For rank 0 ≤ k < m, we define a generalization of r-EF.
Definition 4 (Rankk-envy-freeness (rk-EF)). An allocation σ
is rankk-envy-free if for every agents i and j, σ(i) �i σ(j) or
rj(σ(j)) ≤ min{ri(σ(j)), k} holds.

Note that rk-EF ⇒ rk′ -EF for every k′ > k. Moreover,
rm−1-EF ⇔ r-EF and r0-EF ⇔ envy-freeness (EF). By the
fact that RM ⇒ r-EF, an rm−1-EF allocation always exists.
However, starting from k = m − 2, an rk-EF allocation may
not exist, as shown in the basic example with three agents and
three projects where every agent has the same preferences.

2.2 Towards a Good Selection
We introduce a simple requirement imposing that no agent
prefers a project that has not even been assigned.
Definition 5 (Frustration-freeness (FF)). An allocation σ is
FF if σ(i) �i p for every agent i and every project p ∈ P \Pσ .

When m = n, all projects are selected so every allocation
is FF. Frustration is defined according to selected projects, so
it does not say anything about global optimality. In particu-
lar, it is clear that an FF allocation may not be PO. However,
conversely, in every SA instance, a PO allocation (and thus
an RM or a Pop allocation) is FF: otherwise by assigning the
preferred unassigned project to the agent who prefers it over
her current assigned project, we get an allocation that Pareto-
dominates it. Therefore, an FF allocation always exists.

The issues forbidding r-EF or FF to imply Pareto-
optimality can be fixed by combining the two properties.
Proposition 2. r-EF + FF⇒ PO.

Proof. Consider an allocation σ that is r-EF and FF. Take an
allocation σ′ that Pareto-dominates σ. For every agent i, ei-
ther σ′(i) = σ(i), or σ′(i) �i σ(i). So, by FF, we have Pσ =
Pσ′ . Consider an ameliorating cycle (i0, i1, . . . , ic−1) ⊆ N
from σ to σ′, i.e., σ′(ij−1) = σ(ij mod c) for every j ∈ [c].
Since σ′(ij−1) = σ(ij mod c) �ij−1 σ(ij−1), by r-EF we
must have rij mod c

(σ(ij mod c)) ≤ rij−1(σ(ij mod c)) <
rij−1

(σ(ij−1)), for every j ∈ [c], a contradiction.

Combining FF with r1-EF provides an alternative charac-
terization of Pop. An agent i is r1-envious towards an agent j
only if the envied project is not ranked first by agent j.
Theorem 1. For every SA instance, Pop⇔ r1-EF + FF.

3 Hard Constraints over the Selected Projects
In this section, we assume that the set of projects is parti-
tioned into q groups, i.e., P = P1∪· · ·∪Pq , and that a feasible
allocation must satisfy some quotas on the selected projects
within groups. Let `j and uj denote the respective lower and
upper quotas for group Pj for j ∈ [q]; trivially we assume that
`j ≤ uj ≤ |Pj | for every j ∈ [q]. An allocation σ is feasible
if `j ≤ |Pσ ∩ Pj | ≤ uj for every j ∈ [q]. We suppose that∑
j∈[q] `j ≤ n ≤

∑
j∈[q] uj , otherwise there is no feasible al-

location. An instance of this constrained selection-allocation
(CSA) problem is (N,P, (�i)i∈N , (Pj)j∈[q], (`j , uj)j∈[q]).

An SA instance is a CSA instance where `j = 0 and
uj = |Pj | for every j ∈ [q]. An instance is said with no trivial
group upper quota if uj < |Pj | for every j ∈ [q]. Let �Pji
be the preference ranking of agent i within group Pj . Prefer-
ences are group-oriented if every agent i’s preferences can be
decomposed w.r.t. project groups, i.e., there is a permutation
τi : [q]→ [q] such that for every projects p ∈ Pj and p′ ∈ Pj′ ,
p �i p′ iff p �Pji p′ if j = j′ or τi(j) < τi(j

′) otherwise.
Contrary to the SA setting, even an RM and Pop allocation

may not be FF in a CSA instance, because of the constraints
on project groups, even if an FF allocation exists.
Example 2. Let us consider a CSA instance with four agents
and five projects where P1 = {p1, p3, p4}, P2 = {p2, p5},
and u1 = 2. The preferences are given below.

1 : p3 � p1 � p4 � p2 � p5

2 : p3 � p1 � p4 � p2 � p5

3 : p1 � p3 � p2 � p4 � p5

4 : p2 � p5 � p1 � p3 � p4
The framed allocation is RM with signature (3, 0, 0, 0, 1)

and Pop. However, it is not FF since agent 1 is frustrated: she
prefers the unassigned project p4. Nevertheless, the encircled
allocation, with signature (1, 2, 1, 0, 0), is both PO and FF.

It follows that the characterization obtained in Theorem 1
does not hold in a CSA instance. By replacing FF by PO, we
can nevertheless keep the validity of necessary conditions.
Proposition 3. In every CSA instance, Pop⇒ r1-EF + PO.

Proof. A Pop allocation σ is trivially PO. Suppose that σ is
not r1-EF. There exist agents i and j such that σ(j) �i σ(i)
and rj(σ(j)) > 1. Thus, j does not rank σ(j) first. If there
exists a project p ∈ Pσ assigned to an agent k such that
p �j σ(j) then, by assigning project σ(j) to i, project p to
j and project σ(i) to k, we reach an allocation more popular
than σ (i and j are better off and k may be worse off), a con-
tradiction. Otherwise, there exists a project p ∈ P \ Pσ such
that p �j σ(j). If p cannot be assigned, it means that it be-
longs to a group P` whose upper quota u` is reached. By re-
moving from Pσ an arbitrary project belonging to P`\{σ(j)}
that was assigned to an agent k, we can assign p to j, σ(j)
to i and an arbitrary project respecting the constraints to k.
This new allocation is more popular than σ (i and j are bet-
ter off and k may be worse off), a contradiction. If there is
no assigned project belonging to P` different from σ(j), then
u` = 1 and Pσ ∩ P` = {σ(j)}. Hence, σ(i) /∈ P` and reas-
signing project p to j instead of σ(j) is feasible and construct
an allocation more popular than σ, a contradiction.

However, r1-EF + PO 6⇒ Pop, as illustrated below.
Example 3. Let us consider a CSA instance with three agents
and four projects where P1 = {p1, p4}, P2 = {p2, p3} and
u1 = 1. The preferences are given below.

1 : p1 � p3 � p2 � p4

2 : p2 � p3 � p1 � p4

3 : p2 � p4 � p1 � p3
The encircled allocation is PO and r1-EF but not popular.

The framed allocation is both rank-maximal and popular.
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In Example 2, the intersection between the set of RM or
Pop allocations and the set of FF allocations is empty. How-
ever, this does not hold for the weaker requirement PO. If an
FF allocation exists, then an allocation that is both PO and FF
exists: it suffices to start a top-trading cycle algorithm [Shap-
ley and Scarf, 1974] from an FF allocation. In general, an
FF allocation may not exist: consider an instance with two
agents where their first-ranked projects are p1 and p2, respec-
tively, which belong to the same group with upper quota one.
Moreover, deciding the existence of FF allocations is hard.

Theorem 2. It is NP-complete to decide whether there exists
an FF allocation in a CSA instance, even either under group-
oriented preferences or with no trivial group upper quota.

In Theorem 2’s reduction, preferences are group-oriented
or there is no trivial group upper quota, but not both simul-
taneously. Indeed, under both restrictions, one can decide in
polynomial time about the existence of an FF allocation.

Proposition 4. The existence of an FF allocation can be de-
cided in polynomial time in every CSA instance with no trivial
group upper quota under group-oriented preferences. If ex-
istence is guaranteed, one can then construct an FF and RM
(or Pop if exists) allocation in polynomial time.

Sketch of proof. Let Nj denote the set of agents who
prefer the most the projects in Pj . One can show that, under
group-oriented preferences when uj < |Pj | for every j ∈ [q],
there exists an FF allocation iff `j ≤ |Nj | ≤ uj for every
j ∈ [q]. Under such conditions, each FF allocation or each
PO allocation assigns to each agent in Nj a project in Pj .
Thus, each PO allocation is FF and is the concatenation of PO
allocations in all SA sub-instances (Nj , Pj , (�i)i∈Nj )j∈[q].
Recall that in each SA sub-instance, an RM allocation or Pop
allocation (if exists) can be found in polynomial time.

4 Selecting Socially Good Projects
In this section, we aim to assign projects to the agents such
that the whole set of selected projects is “good” according
to the preferences of the agents. We evaluate the quality of
projects w.r.t. pairwise comparisons. Let N(p, p′) denote the
set of agents preferring project p to project p′. A project p is
said to dominate another project p′ if |N(p, p′)| > n/2. The
set of projects that dominate project p is denoted by D(p).
In a voting setting, when focusing on pairwise comparisons,
it is highly desirable to select a Condorcet winner alternative
which dominates all the others, and to not select a Condorcet
loser alternative which is dominated by all the others. We
adapt these requirements to the context of allocation.

Definition 6 (Condorcet {winner / loser} criterion ({CWC /
CLC})). Allocation σ satisfies CWC if, when there exists a
Condorcet winner project p then project p is assigned in σ.
Allocation σ satisfies CLC if, when m > n and there exists a
Condorcet loser project p then project p is not assigned in σ.

There is already a conflict between selection and allocation
desiderata since the two Condorcet axioms for selection can
be incompatible with FF (and thus PO, RM and Pop).

Proposition 5. CWC or CLC is incompatible with FF.

Proof. Let us consider an instance with n > 2 agents where
the preferences are given below.

1 : pCL � pCW � . . .
2 : p2 � pCW � . . . � pCL
. . .
n : pn � pCW � . . . � pCL

FF imposes to select all n first-ranked projects, and thus
Condorcet loser pCL but not Condorcet winner pCW .

Preferences � over single projects can be extended to sets
of projects by using a preference extension �ext. A pref-
erence extension �ext satisfies responsiveness [Roth, 1985;
Barberà et al., 2004] if ∀x ∈ X ⊂ P and ∀y ∈ P \ X ,
(X\{x})∪{y} �ext X holds iff y � x holds. The responsive
set extension �RS is the minimal partial order that satisfies
responsiveness. We also consider extension �RS− , a weaker
version of �RS where transitivity is dropped. Although the
latter notion may appear unnatural for modelling preferences,
in the context of an SA instance, it means that if two sets of
selected projects are too different then only the quality of the
allocation matters. When referring to a given preference ex-
tension �ext, we assume that each agent i uses �exti .

We derive a variant of popularity for taking into account the
preferences of the agents over selected projects. Let n1(σ′, σ)
denote the number of agents who get a better assignment in
σ′ than in σ, and n�

ext

2 (σ′, σ) the number of agents who get
the same assignment but prefer set Pσ′ to Pσ w.r.t. �ext.
Let nPop�ext(σ

′, σ) denote the number of agents who prefer al-
location σ′ to σ in the sense that they prefer to get a better
assigned project and if they keep the same project, they con-
sider the selected projects, i.e., nPop�ext(σ

′, σ) = n1(σ
′, σ) +

n�
ext

2 (σ′, σ). Allocation σ is more popular w.r.t. �ext than
allocation σ′ if nPop�ext(σ

′, σ) > nPop�ext(σ, σ
′). This notion

generalizes standard popularity to an SA instance with exter-
nalities where agents care about the other assigned projects.

Definition 7 (Popularity w.r.t. �ext (Pop�ext )). An allocation
σ is Pop�ext if there is no other feasible allocation σ′ that is
more popular w.r.t. preference extension �ext.

A Pop�ext allocation may not be Pop and vice versa, as
shown in Example 4. However, when n = m the two notions
coincide, showing that a Pop�ext allocation may not exist.

An allocation σ satisfies dominion selection (DS) if⋃
p∈Pσ D(p) ⊆ Pσ . We show that, for any responsive �ext,

Pop�ext satisfies both dominion selection and r1-EF restricted
to the set of selected projects, called rPσ1 -EF, where there is no
pair of agents i and j such that i prefers the project allocated
to j but this project is not ranked first by j within Pσ .

Proposition 6. If�ext is responsive, Pop�ext ⇒ DS+rPσ1 -EF.

Proof. Consider a Pop�ext allocation σ. Suppose that σ does
not satisfy DS. Then, there exists a project p ∈ Pσ dominated
by p′ ∈ P \ Pσ . Consider the allocation σ′ constructed from
σ where agent i who was assigned p in σ is assigned p′. By
definition of dominance, at least dn+1

2 e agents prefer σ′ to
σ, a contradiction. Suppose now that σ is not rPσ1 -EF. There
exist agents i and j and project p ∈ Pσ such that σ(j) �i σ(i)
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and p �j σ(j). Consider the allocation σ′ constructed from σ
where agent i is assigned σ(j), agent j is assigned p and agent
k who was possessing p is assigned σ(i). Since Pσ = Pσ′ , we
only need to consider the satisfaction of agents i, j and k, and
two of them (i and j) are better off in σ′, a contradiction.

From the satisfaction of DS, when m > n, a Pop�ext al-
location cannot select a Condorcet loser p, for a responsive
�ext, since p is dominated by at least n other projects. More-
over, a project that dominates at least m − n other projects
must be selected since at least one of its dominated projects
is selected. Hence, the Condorcet winner is selected.

Corollary 1. If �ext is responsive, Pop�ext ⇒ CWC + CLC.

Contrary to standard popularity, as expected from Proposi-
tion 5, if �ext is responsive, then Pop�ext fails FF. However,
from Proposition 6, it satisfies a mild relaxation of FF, impos-
ing to an allocation σ that if there exists a project p ∈ P \ Pσ
and an agent i such that p �i σ(i), then p cannot dominate
any project in Pσ . Nevertheless, even Pop�RS may fail r-EF.

Example 4. Let us consider an SA instance with five agents
and six projects where the preferences are given below.
1 : p1 � p5 � p3 � p4 � p2 � p6

2 : p5 � p1 � p3 � p4 � p2 � p6

3 : p2 � p3 � p4 � p5 � p6 � p1

4 : p3 � p2 � p4 � p5 � p6 � p1

5 : p4 � p2 � p3 � p5 � p6 � p1

The underlined and encircled allocations are Pop�RS but
the latter is not r-EF. The only Pop allocation is framed.

In case of r-EF failure, r-EF swaps can be performed:
agents i and j can swap their projects if i is rank-envious
towards j. We show that r-EF swaps preserve Pop�ext .

Proposition 7. For every �ext, if a Pop�ext allocation σ ex-
ists, then an allocation that is both Pop�ext and r-EF can be
reached in polynomial time via r-EF swaps starting from σ.

Proof. Consider a Pop�ext allocation σ that is not r-EF. There
exist two agents i and j such that i is rank-envious towards
j. Let σ′ denote the allocation resulting from an r-EF swap
between i and j in σ. We have Pσ = Pσ′ , so n�

ext

2 (σ′, σ) =

n�
ext

2 (σ, σ′) = 0. By rank-envy, σ′(i) �i σ(i). Thus,
σ(j) �j σ(i), otherwise i and j would be rPσ1 -envious in
σ. Hence, σ′ is as popular w.r.t. �ext as σ. By rPσ1 -EF and
DS, if an allocation is more popular w.r.t. �ext than σ′, then
it is also true for σ, a contradiction. Hence, σ′ is also Pop�ext .

A Pop�ext allocation σ is Pop when P = Pσ and the num-
ber of Pop allocations is polynomial [McDermid and Irving,
2011]. Since r-EF swaps transform a Pop�ext allocation σ
to another Pop�ext allocation σ′ where Pσ′ = Pσ but with
a strictly greater signature w.r.t. >lex, the dynamics of r-EF
swaps starting from σ converges in polynomial time.

However, although Pop�RS is attractive and despite the fact
that a popular allocation can be computed in polynomial time,
even the verification of a Pop�RS allocation is hard.

Theorem 3. Checking popularity w.r.t. �RS is co-NP-hard.

The complexity proof mostly relies on set comparisons in-
duced by �RS . However, an allocation is not Pop�RS if there
exists an unselected project p that is preferred to a selected
project p′ by a “blocking” subset of agents and the remaining
subset of agents can be reassigned such that there are more,
or as many, better off agents than worse off agents. Hence,
we conjecture that checking Pop�RS− is also hard.

To circumvent the problem of a blocking subset of agents,
we derive another variant of popularity that takes into account
the preferences of all agents over selected projects. For pref-
erence extension�ext, we denote by n�

ext

3 (σ′, σ) the number
of agents who prefer Pσ′ to Pσ , and define n2Pop�ext (σ

′, σ) :=

n1(σ
′, σ) + n�

ext

3 (σ′, σ). Allocation σ′ is more 2popular
w.r.t. �ext than allocation σ if n2Pop�ext (σ

′, σ) > n2Pop
�ext (σ, σ

′).

Definition 8 (2Pop�ext ). Allocation σ is (strictly) 2popular
w.r.t. �ext if there is no other allocation that is more 2popular
(at least as 2popular) w.r.t. �ext.

2Pop�ext allocations always select a Condorcet winner and
strictly 2Pop�ext allocations never select a Condorcet loser.

Proposition 8. If �ext is responsive, 2Pop�ext ⇒ CWC and
strict 2Pop�ext ⇒ CLC.

Moreover, by the same proof idea as Proposition 7, for ev-
ery �ext, if a 2Pop�ext exists then r-EF swaps can reach in
polynomial time an allocation that is both 2Pop�ext and r-EF.

By slightly adapting the proof of Theorem 3, even the ver-
ification of 2Pop�RS is co-NP-hard. We consequently focus
on the weaker version of �RS where transitivity is dropped.
Note that 2Pop�RS− can be characterized based on rPσ1 -EF, a
refinement of FF and dominance conditions w.r.t. unassigned
projects. These conditions can be verified in polynomial time.

Theorem 4. 2Pop�RS− can be verified in polynomial time.

The question of computation for 2Pop�RS− remains open.

5 Empirical Evaluation of Allocations
In this section, we empirically evaluate the quality of different
procedures for assigning projects to agents, both according to
selection and allocation considerations. We generate 100 SA
instances with n = 5 agents and m = 15 projects. Correlated
preferences are studied via the single-peaked preference do-
main. A preference ranking�i is single-peaked if there exists
a linear order > over P such that for all projects x, y, z with
x > y > z or z > y > x, x �i y implies y �i z. We
consider three types of preference generation: impartial cul-
ture (IC) where each preference ranking is uniformly drawn
from the set of all possible preference rankings, single-peaked
uniform peak (SP-UP) where each single-peaked preference
ranking is generated by first uniformly selecting the peak
project then uniformly choosing the next ranked project ei-
ther on the left of the peak in axis > or on the right and so
on [Conitzer, 2009], and single-peaked uniform (SP-U) where
each preference ranking is uniformly drawn from the set of all
possible single-peaked rankings [Walsh, 2015]. Under SP-U
and SP-UP, preferences are correlated w.r.t. a common axis>
along projects. Under SP-UP, a preference ranking with, as a
first-ranked project, an extreme point of the axis has the same
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Figure 1: Average over 100 runs of the rank satisfaction for differ-
ent types of allocations when evaluating the selection (left) or the
allocation (right) for n = 5 and m = 15

probability to occur as one with a middle point of the axis.
Hence, the generated preferences are more diverse under SP-
UP than under SP-U, where the occurrence of a project at a
certain preference rank depends on a binomial coefficient.

For evaluating the quality of the set of selected projects
(selection goal), we compute the satisfaction of an agent by
considering the average rank in her preference ranking over
all selected projects. The global rank satisfaction is then com-
puted by averaging all individual average rank satisfactions.
For evaluating the quality of the allocation (allocation goal),
we consider the average over all agents of the rank given to
their allocated project. Our results are given in Figure 1.

All possible allocations are generated and the measures are
given in average for different types of allocations:
• Optimal allocations: Pop allocations or RM allocations;
• Selection-based optimal (Sel-opt) allocations: a multiwin-
ner voting rule (MWR) is used for selecting n projects, and
then a Pop or an RM allocation is computed on an SA instance
where projects are restricted to this set. We use the following
excellence-based MWRs: Bloc, k-Borda, k-Maximin, and k-
Copeland (see Faliszewski et al. [2017] for definitions).
• Selection & allocation (SA)-based allocations: 2Pop�RS−
allocations (2PopRS), 2Pop�RS− allocations that are r-EF,
and allocations (r-EF+FF dyn.) which are the result of the
dynamics of r-EF swaps and FF-agreement moves (an agent i
can get a more preferred unassigned project p if the majority
of agents prefers p to i’s project) from a random allocation.

As expected, optimal allocations behave significantly bet-
ter under an allocation goal than Sel-opt allocations and
reversely under a selection goal. Our variant of Pop,
2Pop�RS− , is not satisfactory under IC where the average
rank satisfactions are always superior than those of Pop or
RM. However, it performs a bit better with a selection goal
when preferences are correlated. Indeed, under single-peaked
distributions, the satisfaction of Condorcet criteria should
help to choose a better set of selected projects. Surprisingly,
the stable allocation arising from the dynamics associated
with r-EF swaps and FF-agreement moves appears to be very
good for combining both goals of selection and allocation. It

has an intermediate behavior with an average rank satisfac-
tion closer to those of Sel-opt allocations than optimal alloca-
tions with a selection goal, and closer to optimal allocations
than Sel-opt allocations with an allocation goal. In average,
ten steps are sufficient to reach a stable allocation so we are
far from the exponential theoretical bound for r-EF swaps.

So far, we have evaluated the quality of an allocation (al-
location goal) via the optimality measure of average rank sat-
isfaction. For fairness, we compute the average minimum
k such that an allocation is rk-EF. Our experiments show
that optimal allocations and SA-based allocations are very
fair. However, Sel-opt allocations are very unfair in compari-
son, showing the need of combining allocation and selection
goals. In general, a slight tendency confirms the intuition un-
der which correlated preferences favor consensus in selection
whereas diverse preferences favor consensus in allocation.

6 Conclusion
We investigated a variant of resource allocation where both
selection and allocation are important. We focused on pop-
ularity (Pop) and rank-maximality (RM) optimality concepts
and showed that they are compatible with two notions of fair-
ness that we have introduced or refined, namely frustration-
freeness (FF) and rank-envy-freeness (r-EF). In an ordinal
context, r-EF appears as a very natural and flexible fairness
requirement that could easily be used as an argument for ex-
plaining a decision. The selection goal has been combined
with the allocation goal in two ways: via hard constraints rep-
resented by quotas on project groups or via the preferences of
the agents themselves. Under hard constraints, RM and Pop
lose their link with FF and this latter basic requirement even
becomes difficult to satisfy. However, we identified natural
restrictions under which the compatibility remains. When the
selection goal is conditioned by the preferences of the agents,
we derive variants of Pop that can be connected with r-EF and
that are Condorcet-consistent. However the most natural ex-
tension of Pop in such a context suffers from a computational
burden. In practice, variants of Pop slightly improve Pop to-
wards the selection goal. Nevertheless, the most interesting
notion empirically is the outcome of the dynamics associated
with r-EF swaps and FF-agreement moves which turns out to
satisfy the goal of combining both selection and allocation.

Many interesting directions can be explored. Technically,
some algorithmic questions remain open for our variants of
Pop. Moreover, we have focused on pairwise comparisons-
based refinements of Pop but one could think about other
types of refinements. To further understand how selection and
allocation can be combined, an extensive study deserves to be
initiated on the dynamics associated with r-EF swaps and FF
moves. Concerning optimality, one could also consider mini-
mizing the rank of the least happy agent and examine it under
the lens of r-EF. Intuitively, r-EF seems to be very sensitive
to strategic manipulation. This point deserves to be formally
investigated. Finally, the extension to more than one project
per agent or more than one agent per project is natural.
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[Cechlárová and Fleiner, 2017] Katarı́na Cechlárová and
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