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Abstract
To address the dynamic nature of real-world net-
works, we generalize competitive diffusion games
and Voronoi games from static to temporal graphs,
where edges may appear or disappear over time.
This establishes a new direction of studies in the
area of graph games, motivated by applications
such as influence spreading. As a first step, we in-
vestigate the existence of Nash equilibria in com-
petitive diffusion and Voronoi games on different
temporal graph classes. Even when restricting our
studies to temporal paths and cycles, this turns out
to be a challenging undertaking, revealing signifi-
cant differences between the two games in the tem-
poral setting. Notably, both games are equivalent
on static paths and cycles. Our two main technical
results are (algorithmic) proofs for the existence of
Nash equilibria in temporal competitive diffusion
and temporal Voronoi games when the edges are
restricted not to disappear over time.

1 Introduction
As graph games help us to reason about a networked world,
playing games on graphs is an intensively researched topic
since decades. In this work, we focus on competitive games
on undirected graphs. Here, some external parties influence
a small subset of agents who then spread some information
through the network. Typical application scenarios for these
occur, for instance, when political parties aim to gain influ-
ence in a social network or in the context of viral marketing.

Looking at two prominent, somewhat similar represen-
tatives, namely competitive diffusion games and Voronoi
games, we put forward to model network dynamics more re-
alistically. Specifically, while to the best of our knowledge
almost all work on graph games focused on static graphs, we
initiate the study of these two games on temporal graphs.
Roughly speaking, in a temporal graph, the edge set may
evolve over discrete time steps, while the vertex set remains
unchanged, yielding time-ordered graph layers with different
edge sets. Moving to the temporal setting has dramatic con-
sequences. For example, while competitive diffusion games
and Voronoi games are equivalent on static paths and cy-
cles [Sun et al., 2020] and we understand well their properties

in these simple but important special cases, they are no longer
equivalent in the temporal case and their properties are much
more challenging to analyze.

Our study takes a first step towards understanding both
games on temporal paths and cycles. It turns out that these
two backbone structures of graphs already confront us with
several technically challenging questions when looking for
the existence (and computation) of Nash equilibria—one of
the most fundamental game-theoretic concepts. We refer to
the next section for formal definitions and examples of the
two (temporal) games. Intuitively speaking, in both games
one can think of each player having a color and trying to color
as many vertices as possible by her own color; the coloring
process starts in a vertex freely chosen by each player and acts
through the neighborhood relation of the graph. Herein, the
distance of a vertex to the start vertices plays a central role. In
both games, a player colors all vertices that are closest to her
start vertex. Moreover, while in competitive diffusion games
a vertex that is at the same distance to two start vertices of
competing players can still get one of the two colors, this is
not the case for Voronoi games.

Related work. Competitive diffusion games were intro-
duced by Alon et al. [2010]. Research on competitive dif-
fusion games so far mainly focused on the existence of Nash
equilibria on a variety of graph classes for different numbers
of players [Alon et al., 2010; Bulteau et al., 2016; Fukuzono
et al., 2020; Roshanbin, 2014; Small and Mason, 2013; Suke-
nari et al., 2016; Takehara et al., 2012]. Also, the (parameter-
ized) computational complexity of deciding the existence of a
Nash equilibrium has been studied [Etesami and Başar, 2016;
Ito et al., 2015].

Voronoi games have been originally studied for a one-
dimensional or two-dimensional continuous space [Ahn et
al., 2004; Banik et al., 2013; de Berg et al., 2019; Cheong
et al., 2004; Fekete and Meijer, 2005]. There, it is typically
assumed that players choose their initial sets of points sequen-
tially and that a player wins the game if a certain fraction of
all points is closest to her. Voronoi games on graphs have also
been studied on different graph classes for various numbers of
players [Bandyapadhyay et al., 2015; Dürr and Thang, 2007;
Feldmann et al., 2009; Mavronicolas et al., 2008; Sun et al.,
2020; Teramoto et al., 2011]. Again a focus lies on determin-
ing for which graphs a Nash equilibrium exists and how to
compute one.
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Superset Monotonically Monotonically
growing shrinking

Diffusion
Temporal Paths 3 (Th. 2) 3 (Th. 2) 7 (Th. 4)
Temporal Cycles 7 (Th. 5) 3 (Th. 6) 7 (Th. 7)

Voronoi
Temporal Paths 7 (Th. 8) 3 (Th. 9) 7 (Co. 1)
Temporal Cycles 7 (Th. 8) ? 7 (Co. 1)

Table 1: Overview of our results. “7” means that a Nash equilibrium
is not guaranteed to exist. “3” means that a Nash equilibrium always
exists. See Section 2 for formal definitions. Voronoi games and
diffusion games on static paths and static cycles are guaranteed to
admit a Nash equilibrium.

From a broader perspective, analyzing games played on
graphs from a game-theoretic perspective is an intensively
researched topic; recent examples include Schelling games
[Chauhan et al., 2018; Elkind et al., 2019], b-matching
games [Kumabe and Maehara, 2020], or network creation
games [Echzell et al., 2020].

As mentioned before, we know of basically no work sys-
tematically studying graph games in a temporal setting. The
only exception we are aware of is in the context of pursuit-
evasion games: Erlebach and Spooner [2020] studied the
pursuit-evasion game of cops and robbers on some spe-
cific temporal graphs, namely so-called edge-periodic graphs.
Also different from our studies, their focus was on computing
winning strategies for the players. Morawietz et al. [2020]
and Morawietz and Wolf [2021] extended this study, also an-
swering an open question of Erlebach and Spooner [2020].

Our contributions. We put forward the study of game-
theoretic models on temporal graphs. We do so by generaliz-
ing two well-studied (static) graph games to temporal graphs,
namely competitive diffusion games and Voronoi games. For
the two resulting temporal graph games we analyze the (con-
structive) existence of Nash equilibria on different temporal
graph classes, focusing on different types of temporal paths
and cycles (see Section 1 for an overview of our results).
We observe that, in contrast to the static case where both
games are equivalent and a Nash equilibrium is guaranteed
to exist [Roshanbin, 2014], on temporal paths and cycles, the
games exhibit far more complex dynamics and a quite differ-
ent behavior. Our main results are two proofs of guaranteed
existence of Nash equilibria, namely in temporal diffusion
games on so-called monotonically growing temporal cycles,
and in temporal Voronoi games on so-called monotonically
growing temporal paths. One conclusion from our work is
that temporal Voronoi games seem to be more elusive to a full
understanding of fundamental properties than temporal com-
petitive diffusion games. Correspondingly, Section 1 identi-
fies one concrete open question for Voronoi games where we
already have an answer for competitive diffusion games.

Due to lack of space, we defer several proofs (marked F)
to a full version available at arxiv.org/abs/2105.05987.

2 Preliminaries
For a ≤ b ∈ N, let [a, b] := {a, a+1, . . . , b}, [a, b[:= {a, a+
1, . . . , b− 1}, and ]a, b] := {a+ 1, . . . , b}. Further, let [n] :=
[1, n] for n ∈ N.

2.1 Temporal Graphs
A temporal graph is a tuple G = (V,E1, . . . , Eτ ) (or G =
(V, (Ei)i∈[τ ]) for short), where V is the set of vertices
and E1, . . . , Eτ a sequence of edge sets with Et ⊆

(
V
2

)
for t ∈ [τ ]. We refer to τ as the lifetime of G. For t ∈ [τ ],
we call Gt = (V,Et) the t-th layer of G. Let the underlying
graph of G be the graph G↓ = (V,E↓) with E↓ :=

⋃
t∈[τ ]Et.

A temporal path of size n (or a temporal cycle of size n)
is a temporal graph G = (V, (Ei)i∈[τ ]) with V = [n]
such that G↓ is a path (or a cycle) of size n. For two ver-
tices u < v ∈ [n], we say that u is left of v and v is right
of u. We refer to a temporal graph G as a temporal linear for-
est if the connected components of G↓ are paths. Moreover,
we call a temporal graph G a superset temporal graph if its
last layer is identical to its underlying graph, i.e., Gτ = G↓.
Further, we call G monotonically growing if no edge disap-
pears over time, i.e., Ei ⊆ Ei+1 for all i ∈ [τ − 1]. Note that
each monotonically growing temporal graph is also a superset
temporal graph. Symmetrically, G is monotonically shrink-
ing if edges do not appear over time, i.e., Ei+1 ⊆ Ei for
all i ∈ [τ − 1]. For the definition of temporal Voronoi games,
we now introduce a notion of temporal distance of two ver-
tices. In a temporal graph G = (V, (Ei)i∈[τ ]), we define a
temporal walk from a vertex v0 to a vertex vd as a sequence of
tuples ({v0, v1}, t1), ({v1, v2}, t2), . . . , ({vd−1, vd}, td) such
that the following properties hold:

• ti ≤ ti+1 for all i ∈ [d− 1],
• {vi−1, vi} ∈ Eti for all i ∈ [d] with ti ≤ τ ,
• {vi−1, vi} ∈ Eτ for all i ∈ [d] with ti > τ .
We refer to td as the arrival time of the temporal walk.

Note that the last condition can be interpreted as repeating
the last layer arbitrarily often. This is to allow for arrival
times td > τ which is somewhat natural and closer to the
static case. A temporal walk is called strict if ti < ti+1

holds for all i ∈ [d − 1]. Moreover, we call a temporal walk
from v0 to vd foremost if there is no temporal walk from v0
to vd with a smaller arrival time. We now define the tem-
poral distance td(u, v) from u to v as the arrival time of a
strict foremost walk1 from u to v. Notably, in contrast to the
static case, temporal distances are not necessarily symmet-
ric, i.e., td(u, v) 6= td(v, u) is possible. By convention, we
set td(v, v) = 0 for any vertex v. For two vertices u and v,
we say that u reaches v until step ` if td(u, v) ≤ ` and that u
reaches v in step (or at time) ` if td(u, v) = `.

2.2 Games on Temporal Graphs
We focus on games with two players. Nevertheless, to high-
light the nature of our definitions, we directly introduce both

1We consider foremost walks since earliest arrival seems more
natural than other concepts such as fastest or shortest [Bentert et al.,
2020] in the context of influence spreading. Moreover, we consider
strict temporal walks since they are closer to the static case and to
the diffusion process.
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games for an arbitrary number of players. Since the games are
somewhat similar, we start by making some general defini-
tions for both temporal games before describing the specifics.
For a temporal graph G = (V, (Ei)i∈[τ ]) and a number k ∈ N
of players, Diff(G, k)

(
Vor(G, k)

)
denotes the k-player tem-

poral diffusion game (temporal Voronoi game) on the tempo-
ral graph G, where each player has her distinct color in [k].
Moreover, we use the color 0 to which we refer as gray. The
strategy space of each player i ∈ [k] is the vertex set V , i.e.,
each player i selects a single vertex pi ∈ V , which is then im-
mediately colored by her color i. If two players pick the same
vertex, then it is colored gray. A strategy profile of the game
is a tuple (p1, . . . , pk) ∈ V k containing the initially chosen
vertex of each player. We also use the term position to refer
to the vertex pi chosen by player i.

Now, for both games the strategy profile (p1, . . . , pk) de-
termines a partial coloring of the vertices in V with col-
ors from 0, . . . , k (some vertices might remain uncolored)
as described below. For a strategy profile (p1, . . . , pk),
let Ui(p1, . . . , pk) be the set of vertices with color i in the
resulting coloring and let ui(p1, . . . , pk) := |Ui(p1, . . . , pk)|
be the number of vertices with color i. For a strategy pro-
file (p1, . . . , pk), the payoff or outcome (of the game) of
player i is ui(p1, . . . , pk). We say that a player i ∈ [k]
plays a best response to the other players in the strategy
profile (p1, . . . , pk) if for all vertices p′ ∈ V it holds
that ui(p1, . . . , pi−1, p′, pi+1, . . . , pk) ≤ ui(p1, . . . , pk). A
strategy profile (p1, . . . , pk) is a Nash equilibrium if every
player i ∈ [k] plays a best response to the other players.

It remains to specify how the strategy profile (p1, . . . pk)
determines the coloring of the vertices V in the two games.

Temporal diffusion games. In a temporal diffusion game,
the temporal graph G is colored by the following propagation
process over time. We call a vertex uncolored if no color has
been assigned to it (so far). In step t ∈ [τ ], we consider the
layer Gt. We color a so far uncolored vertex v with color i ∈
[k] if v has at least one neighbor in Gt that is colored with
color i ∈ [k] and no neighbor in Gt that is colored with any
other color j ∈ [k]\{i}. Every uncolored vertex with at least
two neighbors in Gt colored by two different colors i, j ∈
[k] is colored gray. In step t > τ , the propagation process
continues on Gτ until the coloring of the vertices does not
change between two consecutive steps (we again “repeat” the
last layer to be consistent with the static case).

Temporal Voronoi games. In a temporal Voronoi game, a
vertex v is colored with color i ∈ [k] if the arrival time of a
strict foremost walk from pi to v is smaller than the respective
arrival times for all other players, i.e., vertex v ∈ V is colored
with color i ∈ [k] if td(pi, v) < td(pj , v) holds for all j 6=
i ∈ [k]. If at least two players have the earliest arrival time,
then the vertex is colored gray.

Note that we defined temporal diffusion games and tempo-
ral Voronoi games such that both temporal games played on
a temporal graph G with identical layers are equivalent to the
(non-temporal) game played on the static graph G↓. An ex-
ample of a temporal diffusion game and a temporal Voronoi
game is shown in Figure 1. Notably, in the displayed tempo-
ral diffusion game each player colors a superset of the vertices

p1 p2 layer

start
1

5
1 6

(a) Temporal diffusion game.

p1 p2 layer

1

5
1 6

start

(b) Temporal Voronoi game.

Figure 1: Example of the two games on the temporal path G =
([6], E1, . . . , E5) with Et = {{t, t+1}} for t ∈ [5], where player 1
selects vertex p1 = 2 and player 2 selects vertex p2 = 3 (for
temporal Voronoi games, we color a vertex in layer x if the ver-
tex is reached by a player until step x). In the diffusion game, the
color of a player cannot “pass” a vertex colored by the other player.
Thus, the two players split the vertices, i.e., player 1 colors the ver-
tices in [1, 2], while player 2 colors the vertices in [3, 6]. In con-
trast to this, in the Voronoi game, player 1 is able to “catch up”
with player 2: They both “arrive” at the vertices 4, 5, and 6 at the
same time. The displayed strategy profile is a Nash equilibrium in
Vor(G, 2) but not in Diff(G, 2).

they color in the temporal Voronoi game. In fact, by defini-
tion of the two games, this holds for every temporal graph (as
in the static case).

3 Temporal Diffusion Games
We start with temporal paths followed by temporal cycles.

3.1 Temporal Paths
We first prove that on a temporal path, in general, a Nash
equilibrium is not guaranteed to exist, even if each edge only
appears in one layer. Afterwards, we show that as soon as the
temporal path fulfills the superset property, up to symmetry
and tie-breaking, every game admits a unique Nash equilib-
rium. Lastly, we prove that enforcing that edges do not appear
over time is not enough to guarantee the existence of a Nash
equilibrium, even if the graph consists of only two layers.

We start by showing that the temporal diffusion game on
the temporal path depicted in Figure 1 (where every edge of
the underlying graph only occurs at one point of time) does
not admit a Nash equilibrium. This is in contrast to the static
case where a Nash equilibrium is guaranteed to exist on every
path [Roshanbin, 2014, Theorem 1].
Theorem 1. There is a temporal path P such that there is no
Nash equilibrium in Diff(P, 2).

Proof. We prove the theorem by showing that for P =
([6], E1, . . . , E5) with Et = {{t, t + 1}} for t ∈ [5] (see
Figure 1), there is no Nash equilibrium in Diff(P, 2). For the
sake of contradiction, assume that (p1, p2) with p1 < p2 is a
Nash equilibrium in Diff(P, 2). Player 1 colors all vertices
in [max(1, p1− 1), p2− 1] and player 2 all vertices in [p2, n].

Note that p2 = p1 + 1 must hold, as otherwise player 2 can
color additional vertices by moving to vertex p1 + 1. More-
over, if p1 ≥ 3, then player 1 can additionally color vertex 1
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Figure 2: A monotonically shrinking temporal path P for which
neither in Diff(P, 2) nor in Vor(P, 2) a Nash equilibrium exists.

by moving to vertex 1. Thus, p1 ∈ {1, 2}, p2 = p1 + 1,
and p2 ∈ {2, 3}. However, this implies that player 1 colors at
most two vertices and can increase her payoff by moving to
vertex 4, thereby coloring three vertices.

Superset Paths
As soon as the last layer of the examined temporal path is
the same as the underlying graph (i.e., the superset property
is fulfilled), a Nash equilibrium for temporal diffusion games
is guaranteed to exist and can even be precisely character-
ized. Notably, the characterization is exactly the same as in
the static case [Roshanbin, 2014, Theorem 1].

Theorem 2 (F). Let P be a superset temporal path of size n
and p1 < p2 ∈ [n]. A strategy profile (p1, p2) is a Nash
equilibrium in Diff(P, 2) if and only if p1 ∈ {bn2 c, d

n
2 e}

and p2 = p1 + 1.

Proof (Sketch). We only prove the “if”-direction here. Since
the last layer of P is a path connecting all vertices and the
diffusion process continues on the last layer, player 1 colors
all vertices in [1, p1] and player 2 colors all vertices in [p2, n].
Observe that each player colors at least bn2 c vertices. More-
over, for none of the two players is it possible to color more
than bn2 c vertices by changing positions, as there exist only at
most bn2 c vertices to the left of p1 and to the right of p2.

Using a slightly more involved yet similar argument, we
can also show that there exists a Nash equilibrium on every
superset temporal linear forest.

Theorem 3 (F). On every superset temporal linear forest F
a Nash equilibrium in Diff(F , 2) can be found in linear time.

Monotonically Shrinking Paths
We have seen above that a Nash equilibrium is guaranteed to
exist on superset and thereby also on monotonically growing
temporal paths. It turns out that enforcing the opposite, i.e.,
the graph is monotonically shrinking, does not guarantee the
existence of a Nash equilibrium:

Theorem 4. There is a monotonically shrinking temporal
path P consisting of two layers which only differ in one edge
such that there is no Nash equilibrium in Diff(P, 2).

Proof. Let P = ([8], E1, E2) with E1 = {{i, i + 1} | i ∈
[7]} and E2 = E1 \ {{2, 3}} (see Figure 2). For the sake
of contradiction, assume that (p1, p2) is a Nash equilibrium
in Diff(P, 2). We distinguish two cases:

1) p1 ∈ [3] or p2 ∈ [3]: Let p1 = i ∈ [3]. Then, p2 = i+ 1,
as this is the unique best response of player 2. Player 1 can
improve by deviating to vertex i+ 2.

2) p1 ∈ [4, 8] and p2 ∈ [4, 8]: If p1 = i ∈ [4, 5], then
p2 = i + 1 is the unique best response of player 2 from the
relevant interval [4, 8]. Player 1 can improve by choosing ver-
tex 3. If p1 = 6, then p2 = 3 is the unique best response of
player 2. If p1 = i ∈ [7, 8], then p2 = i− 1 is the unique best
response of player 2 from the relevant interval [4, 8]. Player 1
can improve by choosing vertex 3.

Intuitively, the reason why a disappearing edge is enough
to prevent the existence of a Nash equilibrium on a temporal
path is that players may want to play in the immediate sur-
rounding of such a disappearing edge, in order to color some
part of the temporal path that otherwise remains uncolored
(in Figure 2, these are the vertices {1, 2}). However, if the
disappearing edge is not located around the center, then the
player close to this edge is at risk of loosing many vertices to
the other player. This is in contrast to monotonically growing
temporal graphs where edges are not allowed to disappear.

As a consequence of Theorem 4, it follows that Nash equi-
libria cannot be guaranteed for non-superset temporal paths
when edges are allowed to disappear.

3.2 Temporal Cycles
In this section, we prove that in contrast to paths, a Nash
equilibrium may fail to exist on a superset temporal cycle.
However, enforcing that edges do not disappear over time is
enough to guarantee the existence of a Nash equilibrium.

Superset Cycles
The guaranteed existence of a Nash equilibrium on superset
temporal paths (Theorem 2) does not extend to superset tem-
poral cycles despite the fact that as on superset paths all ver-
tices will be colored in the end. This can be shown using the
graph depicted in Figure 1 with an additional layer connecting
all vertices to a cycle and a similar argument as in Theorem 1.
Theorem 5 (F). There is a superset temporal cycle C such
that there is no Nash equilibrium in Diff(C, 2).

Monotonically Growing Cycles
If we require that edges do not disappear over time, then a
Nash equilibrium is again guaranteed to exist:
Theorem 6 (F). On every monotonically growing temporal
cycle C = ([n], (Ei)i∈[τ ]) a Nash equilibrium in Diff(C, 2)
can be found in O(τ · n) time.

As the proof of Theorem 6 is quite involved, we present
only a high-level overview here. We start our description by
making some definitions that are only relevant for temporal
diffusion games:
Definitions. Let P = ([n], (Ei)i∈[τ ]) be a temporal path
and v1, v2 ∈ [n] with v1 ≤ v2. Let ` := v2 − v1 + 1. If ` is
odd, then we callm := v1+b `2c the central vertex of [v1, v2].
If ` is even, then we call ml := v1 + `

2 −1 and mr := v1 + `
2

central vertices of [v1, v2].
Without loss of generality, we assume that for a given tem-

poral cycle C = ([n], (Ei)i∈[τ ]), it holds that τ > 1 and that
the last two layers differ, i.e., Eτ 6= Eτ−1. For a temporal
cycle C = ([n], (Ei)i∈[τ ]), we denote by F(C) the monotoni-
cally growing temporal linear forest that results from deleting
the last layer from C, i.e., F(C) = ([n], (Ei)i∈[τ−1]).
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In the proof of Theorem 6 (see full version), we look at two
variants of temporal diffusion games, which are both zero-
sum games:

Temporal difference diffusion games (dDiff) A variant of
temporal diffusion games where the payoff of a player
is the difference between the number of vertices colored
by her and the number of vertices colored by the other
player.

Temporal lifetime difference diffusion games (ldDiff) A
variant of temporal difference diffusion games where
only one diffusion step is carried out on the last layer.

The proof of Theorem 6 is split into two parts. In the first
part, we prove the following lemma:

Lemma 1. Let C be a monotonically growing temporal cycle.
A Nash equilibrium in dDiff(C, 2) is guaranteed to exist.

To prove the lemma, it is sufficient to find a Nash equilib-
rium in ldDiff(F(C), 2), as both players color the same num-
ber of vertices after step τ − 1 in dDiff(C, 2). We show that
in all temporal lifetime difference diffusion games on mono-
tonically growing temporal linear forests there always exists
some non-empty set of vertices such that in case a player se-
lects one of them, she always colors at least as many vertices
as the other player. These are the nice central vertices:

Definition 1. Let F = ([n], (Ei)i∈[τ ]) be a monotonically
growing temporal linear forest. Let R be the maximum num-
ber of vertices that are reachable from any vertex in F until
step τ . A vertex v is a nice central vertex if v reaches R ver-
tices until step τ and if v is a central vertex of the set of ver-
tices reachable from v until step τ .

Notably, each strategy profile where the players play
on different nice central vertices is a Nash equilibrium
in ldDiff(F , 2). In addition, we prove that if only one nice
central vertex v exists, then (v, v + 1) is a Nash equilibrium.

In the second part of the proof, we show that at least one
Nash equilibrium in dDiff(C, 2) described above is also a
Nash equilibrium in Diff(C, 2).

Monotonically Shrinking Cycles
The example in Figure 2 can be modified to show that en-
forcing edges to only disappear over time is not enough to
guarantee the existence of a Nash equilibrium on a temporal
cycle (as in the case of temporal paths).

Theorem 7 (F). There is a monotonically shrinking tempo-
ral cycle C with two layers such that there is no Nash equilib-
rium in Diff(C, 2).

4 Temporal Voronoi Games
In this section, we study temporal Voronoi games. In contrast
to temporal diffusion games, here, the color of a vertex v is
determined solely by the temporal distances from the players’
positions to v.

4.1 Monotonically Shrinking Paths and Cycles
In Section 2, we observed that temporal diffusion games and
temporal Voronoi games might already differ on a simple

temporal path. In contrast to this, both games are equiva-
lent on monotonically shrinking temporal linear forests and
cycles, as no foremost walk ever needs to wait at any vertex
in these graphs.

Lemma 2. Let G = ([n], (Ei)i∈[τ ]) be a monotonically
shrinking temporal linear forest or cycle and let p1, p2 ∈ [n].
For strategy profile (p1, p2), the final coloring of the vertices
is the same in Diff(G, 2) and in Vor(G, 2).

Proof. As already noted in Section 2, a vertex v colored with
color i ∈ [2] in Vor(G, 2) is colored the same in Diff(G, 2),
as pi reaching v first implies that pi also reaches every vertex
on a foremost walk from pi to v first.

To see that on monotonically shrinking temporal linear for-
est and cycles the converse also holds, assume that v gets col-
ored with color 1 in Diff(G, 2). Note that there is exactly one
temporal walk from p1 to v which does not use vertex p2 and
no vertex repeatedly. Since no foremost walk ever needs to
wait in G and v is colored in color 1, this temporal walk must
have fewer edges than any temporal walk from p2 to v. For
the same reason, the walk from p1 to v consists of exactly
td(p1, v) edges. Thus, td(p1, v) < td(p2, v).

In particular, using Lemma 2, we can transfer Theorem 4
and Theorem 7 to temporal Voronoi games:

Corollary 1. There is a monotonically shrinking temporal
path P and a monotonically shrinking temporal cycle C both
consisting of two layers such that there is no Nash equilib-
rium in Vor(P, 2) and no Nash equilibrium in Vor(C, 2).

4.2 Superset Paths and Cycles
In contrast to temporal diffusion games, a Nash equilibrium in
a temporal Voronoi game on a superset temporal path may fail
to exist. In fact, the underlying dynamics of temporal Voronoi
games on superset temporal paths might be quite intriguing
and far more complex than for temporal diffusion games (as
highlighted in the next subsection).

Theorem 8. There is a superset temporal path P and a su-
perset temporal cycle C such that there is no Nash equilibrium
in Vor(P, 2) and no Nash equilibrium in Vor(C, 2).

Proof. Let P = ([8], (E1, E2)) be the temporal path from
Figure 2. By Lemma 2 and the proof of Theorem 4, there
is no Nash equilibrium in Vor(P, 2). By appending to P the
last layer P2 five times, we can ensure that either every vertex
is colored by some player until step seven or both players
reach the same set of vertices until step seven. Appending
any additional layers to P does not enable any player to color
further vertices (however, some additional vertices may be
colored gray). In particular, we may append a layer which is
a complete path or cycle.

4.3 Monotonically Growing Paths
Our main result for temporal Voronoi games is the guaranteed
existence of a Nash equilibrium on monotonically growing
temporal paths. It is open whether this can be extended to all
monotonically growing temporal cycles.
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Theorem 9 (F). On every monotonically growing tempo-
ral path P a Nash equilibrium in Vor(P, 2) can be found in
O(n2) time.

While the complete proof of Theorem 9 can be found in
the full version, we give an overview of some key ingredients
here. Subsequently, we always assume that the graph is a
monotonically growing path P = ([n], (Ei)i∈[τ ]).

A vertex b ≤ v is called a left boundary of v if ~τ b >
td(v, b), where ~τ b denotes the index of the first layer in which
the edge {b− 1, b} appears (or∞ if b = 1). Symmetrically, a
vertex b ≥ v is a right boundary of v if ~τb > td(v, b) with ~τb
referring to the first appearance of {b, b + 1}. Note that 1, v,
and n are always boundaries of v. The importance of bound-
aries arises from the following lemma.
Lemma 3. For three vertices v < w < x ∈ [n], td(v, x) =
td(w, x) if and only if there exists a right boundary r of v
with w ≤ r < x.

Proof. If there is such a right boundary r, then v will
reach r + 1 at time ~τr. Clearly, the same holds for w. There-
fore, td(v, x) = td(w, x) for all x > r.

Conversely, assume that td(v, x) = td(w, x) and let x be
minimal with this respect. Since td(w, x − 1) < td(v, x −
1) ≤ td(v, x) − 1 = td(w, x) − 1 (i.e., w needed to wait at
x − 1), we must have that ~τx−1 = td(w, x) = td(v, x) >
td(v, x− 1), i.e., x− 1 is a right boundary of v.

Let ` < `′ be two left boundaries of a vertex v such that
there is no other left boundary of v in between them. We call
the interval [`, `′[ ⊂ [n] a left boundary interval of v. The
definition of right boundary intervals is analogous. Note that
the boundary intervals of v partition [n]\{v}. For anyw 6= v,
we write v(w) to denote the boundary interval of v which
contains w. From Lemma 3, the following can be derived.
For an example, consider Figure 3.
Lemma 4. Let P be a monotonically growing temporal path
and p1, p2 ∈ [n]. In Vor(P, 2), it holds U1(p1, p2) ⊆ p2(p1)
and U2(p1, p2) ⊆ p1(p2).

Proof. As all other cases are symmetric, we only
show U1(p1, p2) ⊆ p2(p1) and assume that p2(p1) = ]r, r′]
is a right boundary interval of p2. Thus, we have
p2 ≤ r < p1 ≤ r′. Lemma 3 implies that all vertices
strictly to the right of r′ are colored gray. Further, as r is a
right boundary of p2, p2 reaches r before the edge {r, r + 1}
appears and thus before td(p1, r). This implies that neither r
nor any vertex to the left of it is colored with color 1.

This allows us to easily find best responses:
Lemma 5. Let p1 be an arbitrary vertex and J be a largest
boundary interval of p1. Then the vertex p2 ∈ J which is
closest to p1 is a best response to p1.

Proof. For strategy profile (p1, p2), by Lemma 3, player 2
colors all vertices in J . By Lemma 4, the claim follows.

Starting with an arbitrary vertex v1 and iteratively applying
Lemma 5, we obtain a sequence of vertices v1, v2, . . . , each
being a best response to its predecessor. The following lemma
then implies Theorem 9.

p1 p2 layer

start
1

10
1 15

` r1 r2 r3 r4

Figure 3: Voronoi game on a monotonically growing temporal path.
The left boundaries of p1 are 1, `, and p1 and the left boundaries
of p2 are 1, `, p1, and p2. The right boundaries of p1 are p1, r3, r4,
and 15. The right boundaries of p2 are p2, r1, . . . , r4, and 15. As
guaranteed by Lemma 4, the sets of vertices colored by the players
satisfy {p1} = U1(p1, p2) ⊆ p2(p1) = [p1, p2[ and [p2, r3] =
U2(p1, p2) ⊆ p1(p2) = ]p1, r3].

Lemma 6 (F). Let v1, v2, . . . be a best response sequence
as defined above. Then there exists an index i ≤ n such that
(vi, vi+1) is a Nash equilibrium.

5 Conclusion
Our work is meant to initiate further systematic studies of
(not only competitive) games on (classes of) temporal graphs.
There is a wealth of unexplored research directions to pursue.

An immediate and very concrete challenge from our work
is to analyze whether a Nash equilibrium is guaranteed to ex-
ist in all temporal Voronoi games on monotonically growing
temporal cycles. There are also many more special temporal
graphs to study. Another direction is to consider variations
of temporal diffusion and Voronoi games. For example, one
could limit the time horizon such that players can only color
vertices which they reach until the last layer (note that Theo-
rem 2 does not hold in this case). Also, the payoff could be
defined as the difference of the number of vertices colored by
the players. It is also natural to study the games with more
than two players or more initially chosen vertices. In addi-
tion, considering model variations already studied on static
games such as “splitting” gray vertices between players is
possible. Finally, for Voronoi games, there are several dif-
ferent temporal distance notions to consider. For example,
one may study non-strict walks, for which Theorem 9 triv-
ially holds (in fact, we have no example of a temporal graph
without a Nash equilibrium in a non-strict Voronoi game).
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