
Winner Robustness via Swap- and Shift-Bribery:
Parameterized Counting Complexity and Experiments

Niclas Boehmer1 , Robert Bredereck2 , Piotr Faliszewski3 and Rolf Niedermeier1
1Algorithmics and Computational Complexity, TU Berlin, Germany

2Humboldt-Universität zu Berlin, Germany
3AGH University, Poland

niclas.boehmer@tu-berlin.de, robert.bredereck@hu-berlin.de, faliszew@agh.edu.pl,
rolf.niedermeier@tu-berlin.de

Abstract
We study the parameterized complexity of counting
variants of SWAP- and SHIFT-BRIBERY, focusing
on the parameterizations by the number of swaps
and the number of voters. Facing several compu-
tational hardness results, using sampling we show
experimentally that SWAP-BRIBERY offers a new
approach to the robustness analysis of elections.

1 Introduction
Consider a university department which is about to hire a new
professor. There are m candidates and the head of the depart-
ment decided to choose the winner by Borda voting. Each
faculty member (i.e., each voter) ranked the candidates from
the most to the least appealing one, each candidate received
m − i points for each vote where he or she was ranked as
the i-th best, and the candidate with the highest score was
selected. However, after the results were announced, some
voters started wondering if, perhaps, some other voters acci-
dentally “misranked” some of the candidates (worrying about
mistakes in the votes is an old democratic tradition). For in-
stance, if some voter viewed two candidates as very similar,
then he or she could have ranked them either way, depending
on an impulse. Or, some voter would have ranked two can-
didates differently if he or she had more information on their
merits. It is, thus, natural to ask for the probability of chang-
ing the election outcome by making some random swaps. In-
deed, this approach was recently pursued by Baumeister and
Hogrebe [2020] and we follow-up on it, but with a different
focus (see the discussion of related work).

Specifically, in our model for each r ∈ N and each candi-
date c, we let Pc(r) be the probability that c wins an election
obtained by making r random swaps of candidates ranked on
adjacent positions in the votes (we refer to such elections as
being at swap distance r from the original one). Such values
can be quite useful. For example, if for each r we had (some
estimate of) the probability that in total there are r acciden-
tal swaps in the votes, then we could compute the probability
of each candidate’s victory. If it were small for the original
winner, then we might want to recount the votes or reexamine
the election process. The values Pc(r) are also useful with-
out the distribution of r’s. For example, we may want to find
the smallest number of swaps for which the probability of

the original winner’s victory drops below some value (such
as 50%) or for which he or she is no longer the most prob-
able winner. As we show in our experiments, this approach
provides new insights on the robustness of election results.

To determine the value Pc(r), we need to divide the num-
ber of elections at swap distance r where c wins, by the total
number of elections at this distance. While computing the
latter is easy—at least in the sense that there is an efficient
algorithm for this task—computing the former requires solv-
ing the counting variant of the SWAP-BRIBERY problem (de-
noted #SWAP-BRIBERY). Briefly put, in the decision variant
of the problem, we ask if it is possible to ensure that a des-
ignated candidate wins a given election by making r swaps
of adjacent candidates in the votes (we assume the unit prices
setting; see Section 2). In the counting variant, we ask how
many ways there are to achieve this effect (using exactly r
swaps). Unfortunately, already the decision variant is NP-
hard for many voting rules, and we show that the counting
one is hard even for Plurality. On the positive side, we can
get a good estimate of Pc(r) by sampling (see Footnote 2).

We also consider the SHIFT-BRIBERY problem, a variant
of SWAP-BRIBERY where we can only shift the designated
candidate forward (in the constructive case) or backward (in
the destructive one, where the goal is to ensure that the des-
ignated candidate loses). These problems also can be used
to evaluate robustness of election results but, to maintain fo-
cus, in our experiments we only consider SWAP-BRIBERY.
Yet, we include SHIFT-BRIBERY in our complexity analysis
because it illustrates some interesting phenomena.

Main contributions. We focus on #SWAP- and #SHIFT-
BRIBERY for the Plurality and Borda voting rules (for unit
prices). We consider their computational complexity for pa-
rameterizations by the number of unit swaps/shifts (which we
refer to as the swap/shift radius) and by the number of voters
(see Table 1). We also present experiments, where we use
#SWAP-BRIBERY to evaluate the robustness of election re-
sults. Our main results are as follows:

1. For Plurality, SWAP-BRIBERY is known to be in P, but
we show that the counting variant is #W[1]-hard when
parameterized by the swap radius.

2. For Borda, hardness results for #SWAP-BRIBERY follow
from those for #SHIFT-BRIBERY, which themselves are
intriguing: E.g., the destructive variant parameterized by

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

52

the shift radius is #W[1]-hard, but the constructive one
is in FPT; in the decision setting the former is easier.1

3. Using sampling, we estimate the candidate’s winning
probabilities in elections from a dataset generated by
Szufa et al. [2020]. One of the high-level conclusions
is that the score differences between the election win-
ners and the runners-up can be quite disconnected from
their strengths (measured using #SWAP-BRIBERY).

We defer several proofs (marked F) and analyses to a full
version available at arxiv.org/abs/2010.09678.
Related work. Our work is most closely related to the pa-
pers of Hazon et al. [2012], Bachrach et al. [2010], and
Baumeister and Hogrebe [2020]. Similarly to our approach,
their authors study the complexity of computing the probabil-
ity that a given candidate wins, provided that the votes may
change according to some probability distribution. In partic-
ular, Hazon et al. [2012] assume that each voter is endowed
with an explicitly encoded list of possible votes, each with its
own probability of being cast, Bachrach et al. [2010] consider
elections where the votes are partial and all completions are
equally likely, and Baumeister and Hogrebe [2020] consider
both these models, as well as a third one, which—in terms
of computational complexity—is equivalent to our model for
swap bribery.

There are two methodological differences between our
work and the three above-discussed papers. Foremost, we
provide an experimental analysis showing that counting vari-
ants of SWAP-BRIBERY are indeed helpful for evaluating
the robustness of election winners. In contrast, Bachrach et
al. [2010] and Baumeister and Hogrebe [2020] focus entirely
on the complexity analysis, whereas Hazon et al. [2012] also
provide experiments, but their focus is on the running time
and memory consumption of their algorithm.

The second difference is that we focus on a parameterized
complexity analysis—with an explicit focus on establishing
FPT and #W[1]-hardness results—which was not done in
previous works (except for obtaining XP algorithms for fixed
numbers of candidates or voters).

Historically, SWAP- and SHIFT-BRIBERY were introduced
by Elkind et al. [2009]. Various authors studied these
problems for different voting rules (see, e.g., the works of
Maushagen et al. [2018] and Zhou and Guo [2020] regarding
iterative elections), sought approximation algorithms [Elkind
and Faliszewski, 2010; Faliszewski et al., 2019], established
parameterized complexity results [Dorn and Schlotter, 2012;
Bredereck et al., 2016a; Knop et al., 2020], considered re-
stricted preference domains [Elkind et al., 2020], and ex-
tended the problem in various ways [Bredereck et al., 2016b;
Kaczmarczyk and Faliszewski, 2019; Baumeister et al., 2019;
Yang et al., 2019]. The idea of using SWAP-BRIBERY to mea-
sure the robustness of election results is due to Shiryaev et
al. [2013], but is also closely related to computing the mar-
gin of victory [Magrino et al., 2011; Cary, 2011; Xia, 2012;
Brill et al., 2020]; recently it was also applied to committee
elections [Bredereck et al., 2021].

1We abuse notation here by using P and FPT for also referring
to algorithmically positive counting complexity results although for-
mally these classes are only defined for decision problems.

Plurality Borda
decision counting decision counting

SWAP- #P-hard NP-hard #P-hard
BRIBERY P #W[1]-h.(r) FPT(r) ?

FPT(n) W[1]-h.(n) #W[1]-h.(n)

CONST. NP-hard #P-hard
SHIFT- P P FPT(r) FPT(r)

BRIBERY W[1]-h.(n) #W[1]-h.(n)
DEST. #P-hard

SHIFT- P P P #W[1]-h.(r)
BRIBERY #W[1]-h.(n)

Table 1: (Parameterized) complexity of SWAP- and SHIFT-
BRIBERY with unit prices; r and n refer to the parameterizations by
the swap/shift radius and by the number of voters, respectively. Re-
sults for the counting variants are new (however, see also the work
of Baumeister and Hogrebe [2020] for results related to the #P-
hardness of PLURALITY SWAP-BRIBERY); results for the decision
variants are due to Elkind et al. [2009], Bredereck et al. [2016b],
Bredereck et al. [2016a], and Kaczmarczyk and Faliszewski [2019].

So far, the complexity of counting problems received lim-
ited attention in the context of elections. In addition to the
works of Hazon et al. [2012], Bachrach et al. [2010], and
Baumeister and Hogrebe [2020], we mention two more: Woj-
tas and Faliszewski [2012] studied counting solutions for con-
trol problems, and Kenig and Kimelfeld [2019] followed up
on the work of Bachrach et al. [2010] and provided approxi-
mation algorithms for their setting.

2 Preliminaries
For each integer k, by [k] we mean the set {1, . . . , k}.
Elections. An election E = (C, V) consists of a set
C = {c1, . . . , cm} of candidates and a collection V =
(v1, . . . , vn) of voters. Each voter vi has a preference order,
which ranks all candidates from the most to the least desired
one (we sometimes refer to preference orders as votes). For
a voter vi, we write vi : c1 � c2 � · · · � cm to indicate that
he or she ranks c1 first, then c2, and so on. If we put a subset
of candidates in such a description of a preference order, then
we mean listing its members in an arbitrary order.

Voting rules. A voting rule R is a function that, given an
election, returns a set of candidates that tie as winners. We fo-
cus on Plurality and Borda, which assign scores to the candi-
dates and select those with the highest ones. Under Plurality,
each voter gives one point to the top-ranked candidate. Un-
der Borda, each voter gives |C| − 1 points to the top-ranked
candidate, |C|−2 points to the next one, and so on. We write
scoreE(c) to denote the score of candidate c in election E
(the voting rule will be clear from the context).

Swap distance. Let u and v be two votes over the same
candidate set. The swap distance between u and v, de-
noted dsw(u, v), is the length of the shortest sequence of
swaps of adjacent candidates whose application transforms u
into v. Given electionsE = (C, V) andE′ = (C, V ′), where
V = (v1, . . . , vn) and V ′ = (v′1, . . . , v

′
n), their swap dis-

tance is
∑n

i=1 dsw(vi, v
′
i). By R(E, r), we denote the set of

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

53

arxiv.org/abs/2010.09678

elections that are at swap distance r from E.

Swap- and Shift-Bribery. Let R be a voting rule. In the
decision variant of the R SWAP-BRIBERY problem, we are
given an electionE, a designated candidate p, and a budget r.
Further, for each voter and each two candidates c and d, we
have a nonnegative price πv(c, d) for swapping them in v’s
preference order (a swap is legal if at the time of its applica-
tion c and d are adjacent). We ask if there is an election E′

where p is anR-winner, such that E′ can be obtained from E
by performing a sequence of legal swaps of cost at most r. In
the counting variant, we ask for the number of such elections,
and we require the cost of swaps to be exactly r (the last con-
dition is for our convenience and all our results would still
hold if we asked for cost at most r; the same would be true if
instead of counting elections where p won, we would count
those where he or she lost). Since we are interested in com-
puting the candidates’ probabilities of victory in elections at
a given swap distance, we focus on the case where each swap
has the same, unit price.

CONSTRUCTIVE SHIFT-BRIBERY is a variant of SWAP-
BRIBERY where all swaps must involve the designated can-
didate, shifting him or her forward. DESTRUCTIVE SHIFT-
BRIBERY is defined analogously, except that our goal is to
preclude the designated candidate’s victory, and we can only
shift him or her backward [Kaczmarczyk and Faliszewski,
2019]. Counting variants are defined in a natural way. We
focus on the case where each unit shift has a unit price and,
in general, speak of shift or swap radius r instead of budget.

Counting complexity. We assume basic familiarity with
(parameterized) complexity theory, including the classes P,
NP, FPT, and W[1], and reducibility notions.

Let X be a decision problem from NP, where for each in-
stance we ask if there exists some mathematical object with
a given property. In its counting variant, traditionally de-
noted #X, we ask for the number of such objects. For ex-
ample, in MATCHING we are given an integer k and a bi-
partite graph G—with vertex set U(G)] V (G) and edge set
E(G)—and we ask if G contains a matching of size k (i.e.,
a set of k edges, where no two edges touch the same vertex).
In #MATCHING we ask how many such matchings exist.

The class #P is the counting analog of NP; a problem be-
longs to #P if it can be expressed as the task of counting
the number of accepting computations of a nondeterminis-
tic polynomial-time Turing machine. We say that a counting
problem #A (polynomial-time) Turing reduces to #B if there
exists an algorithm that solves #A in polynomial time, pro-
vided that it has oracle access to #B. A problem is #P-hard if
every problem from #P Turing reduces to it. While MATCH-
ING is in P, it is well known that #MATCHING is #P-hard
and #P-complete [Valiant, 1979].

#W[1] relates to W[1] in the same way as #P relates to
NP. As examples of #W[1]-hard problems, we mention
counting size-k cliques in a graph, parameterized by k [Flum
and Grohe, 2004] and #MATCHING, parameterized by the
size of the matching [Curticapean and Marx, 2014]. For-
mally, #W[1]-hardness is defined using a slightly more gen-
eral notion of a reduction, but for our purposes polynomial-
time Turing reductions (where the parameters in the queried

instances are bounded from above by a function of the param-
eter in the input instance) will suffice.

3 Algorithms and Complexity Results
In this section, we present our results regarding the complex-
ity of #SWAP- and #SHIFT-BRIBERY. We first consider Plu-
rality, mostly focusing on #SWAP-BRIBERY, and then discuss
Borda, mostly focusing on #SHIFT-BRIBERY.

3.1 Plurality and #SWAP-BRIBERY
We start with a hardness result. While there is a polynomial-
time algorithm for the decision variant of PLURALITY SWAP-
BRIBERY [Elkind et al., 2009], the counting variant is in-
tractable, even with unit prices (#P-hardness for a slightly
different but computationally equivalent model is also re-
ported by Baumeister and Hogrebe [2020]).

Theorem 1. PLURALITY #SWAP-BRIBERY is #P-hard and
#W[1]-hard when parameterized by the swap radius, even
for unit prices.

Proof. We give a reduction from #MATCHING. We will use
a swap radius upper-bounded by a function of the desired
matching size, so we obtain both #P- and #W[1]-hardness.

Let (G, k) be an instance of #MATCHING, where G is
a bipartite graph with vertex set U(G)] V (G) and k is
the size of matchings that we are to count. Assume that
U(G) = {u1, . . . , un}, V (G) = {v1, . . . , vn}, and k ≤
n. To form an election, we let the candidate set be C :=
U(G)]V (G)]{p, a, b}]X , whereX := {x1, . . . , x3k+1}.
The candidates in U(G)] V (G) will model the graph, p will
be our designated candidate, a and b will control the size of
the matching, and the candidates in X will block undesirable
swaps. We will have the following scores of the candidates:

∀c ∈ C \ {a, b} : scoreE(c) = n,

scoreE(a) = n− k, scoreE(b) = n+ k.

We form the following four groups of voters:

1. For each {ui, vj} ∈ E(G), there is an edge voter eij
with preference order eij : ui � vj � X � · · · .

2. For each j ∈ [n], we have an a-voter aj with preference
order aj : vj � a � X � · · · .

3. For each i ∈ [n], we have a b-voter bi with preference
order bi : b � ui � X � · · · .

4. Finally, the score voters implement the desired Plurality
scores. For each candidate c ∈ U(G) ∪ V (G) ∪ {p},
there are exactly as many voters with preference order
c � X � · · · as necessary to ensure that in total c has
score n. Similarly, for each xi ∈ X there are n voters
with preference order xi � X \ {xi} � · · · . There are
also n − k voters with preference order a � X � · · ·
and k voters with preference order b � X � · · · .

Let E be an election with the above-described candidates
and voters. We form an instance I of PLURALITY #SWAP-
BRIBERY with this election, unit prices, and swap radius r :=
3k. Then, we make an oracle query for I and return its an-
swer. In the remainder of the proof, we argue that this answer

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

54

is equal to the number of size-k matchings in G. The idea is
that to make p a winner, we have to transfer k points from b
to a via swaps that correspond to a matching.

LetE′ be some election inR(E, r), i.e., an election at swap
distance r from E, where p wins. We note that p and the
candidates from X have score n in E′ (indeed, in elections
from R(E, r), p has score at most n and the average score of
the candidates in X is at least n). Further, in E′ each edge
voter, a-voter, and b-voter either ranks on top the same can-
didate as in E or the candidate that he or she ranked second
in E, and each score voter ranks the same candidate on top
as in E (otherwise some candidate in X would have score
above n). We call this the top-two rule.

Since b must have at most n points in E′, by the top-two
rule, there must be at least k b-voters inE′ that rank members
of U(G) on top. Let Ub be the set of these members of U(G).
As each member ofU(G) can be swapped with b at most once
in the b-votes, we have |Ub| ≥ k.

Compared to E, in E′ each member of Ub gets an addi-
tional point from the b-voters. Thus, for each ui ∈ Ub there
must be a voter that ranked ui on top in E but does not do
so in E′. By the top-two rule, this must be an edge voter.
LetM be the set of pairs {ui, vj} such that inE edge voter eij
ranks ui on top, but inE′ he or she ranks vj on top. Naturally,
we must have |M | ≥ |Ub|.

For each pair {ui, vj} ∈ M , there must be a voter who
swapped vj out of the top position in E′, because other-
wise vj would have more than n points. By the top-two rule,
this must be voter aj . Let Va be the set of those members
of V (G) that in E′ are swapped out of the top positions in the
a-votes. It must be that |Va| ≥ |M |.

Altogether, we have |Va| ≥ |M | ≥ |Ub| ≥ k and, in
fact, each of these sets must have exactly k elements (because
their elements correspond to unique swaps). Further, M is a
matching. If it were not, then some member of U(G)]V (G)
would appear in two pairs in M , but then we would have to
have two a-voters or two b-voters that corresponded to this
candidate, which is not possible in our construction.

This way we have shown that for each election in R(E, r)
where p wins, there is a corresponding size-k matching. As
the other direction is immediate, the proof is complete.

A natural way to circumvent such intractability results is
to seek FPT algorithms parameterized by the number of can-
didates or by the number of voters. For the former, one typ-
ically expresses SWAP-BRIBERY problems as integer linear
programs (ILPs) and invokes the classic algorithm of Lenstra,
Jr. [1983], or some more recent one; see, e.g., the work of
Knop et al. [2020]. Unfortunately, in case of counting there
are two issues. First, counting analogues of these algorithms,
dating back to the seminal work of Barvinok [1994], have
XP running times. However, fortunately, the ILPs used for
SWAP-BRIBERY have such a special form that in their case
Barvinok’s algorithm would run in FPT time for the param-
eterization by the number of candidates. The second obstacle
is more serious. Even though we could count the number
of solutions to our ILPs, each of these solutions would poten-
tially correspond to a different number of solutions for SWAP-
BRIBERY. Dealing with this problem, so far, remains elusive

and we leave it as an open problem. Yet, for unit prices we
do show an FPT algorithm parameterized by the number of
voters.
Theorem 2 (F). For unit prices, PLURALITY #SWAP-
BRIBERY parameterized by the number of voters is in FPT.

The restriction to unit prices in Theorem 2 is necessary.
Otherwise, a reduction from the problem of counting linear
extensions of a partially ordered set [Brightwell and Winkler,
1991] shows #P-hardness even for a single voter.
Theorem 3 (F). PLURALITY #SWAP-BRIBERY is #P-hard
even for a single voter and unary-encoded prices.

We conclude with a brief mention of #SHIFT-BRIBERY.
Both the constructive and the destructive variant are in P,
even with arbitrary unary-encoded prices (for the binary en-
coding, #P-hardness follows by a reduction from #PAR-
TITION). Our algorithms use dynamic programming over
groups of voters with the same candidate as their top choice.
Theorem 4 (F). For unary-encoded prices, both the con-
structive and the destructive variant of PLURALITY #SHIFT-
BRIBERY are in P.

3.2 Borda and #SHIFT-BRIBERY
Our results for BORDA #SWAP-BRIBERY follow from those
for #SHIFT-BRIBREY, so we focus on the latter problem.

In the decision setting, the constructive variant of BORDA
SHIFT-BRIBERY is NP-hard (and is in FPT when parame-
terized by the shift radius, but is W[1]-hard for the number of
voters), whereas the destructive variant is in P. In the count-
ing setting, both variants are #P-hard and #W[1]-hard for
the parameterization by the number of voters; the result for
the constructive case follows from a proof for the decision
variant due to Bredereck et al. [2016b] and for the destructive
case, we use a similar approach with a few tricks on top.
Theorem 5 (F). Both the constructive and the destruc-
tive variant of BORDA #SHIFT-BRIBERY are #P-hard and
#W[1]-hard when parameterized by the number of voters.

Surprisingly, when parameterized by the shift radius, the
constructive variant is in FPT and the destructive variant is
#W[1]-hard. Not only does the problem that was easier in
the decision setting now become harder, but also—to the best
of our knowledge—it is the first example where a destruc-
tive variant of an election-related problem is harder than the
constructive one. Yet, SHIFT-BRIBERY is quite special as the
two variants differ in the available actions, i.e., either shifting
the designated candidate forward or backward (typically, de-
structive voting problems have the same sets of actions as the
constructive ones).

The FPT algorithm for the constructive case relies on the
fact that if we can ensure victory of the designated candidate
by shifting him or her by r positions forward, then there are
at most r candidates that we need to focus on (the others will
be defeated irrespective of what exact shifts we make). There
are no such bounds in the destructive setting.
Theorem 6 (F). Parameterized by the shift radius, BORDA
#CONSTRUCTIVE SHIFT-BRIBERY is in FPT (for unary-
encoded prices), but the destructive variant is #W[1]-hard,
even for unit prices.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

55

Proof sketch (destructive case). We give a polynomial-time
Turing reduction from #MATCHING to BORDA #DESTRUC-
TIVE SHIFT-BRIBERY. Let (G, k) be an instance of
#MATCHING, where G is a bipartite graph with vertex set
U(G)] V (G), and k is a positive integer. Assume that
U(G) = {u1, . . . , un}, V (G) = {v1, . . . , vn}, and k ≤ n.

Our reduction proceeds as follows. First, we form the set
of relevant candidates R := {d, p}] U(G)] V (G), where
d is the designated candidate. Moreover, for each relevant
candidate r ∈ R, we form a set D(r) of 3k + 1 dummy
ones. We will form an electionE, where these candidates will
have the following Borda scores (X is some positive integer,
whose value depends on the specifics of the construction; we
will be counting ways in which d can cease to be a winner by
shifting him or her backward by 3k positions):

scoreE(d) = X + 3k, scoreE(p) = X − k + 1,

scoreE(u1) = · · · = scoreE(un) = X − 1,

scoreE(v1) = · · · = scoreE(vn) = X − 1, and
each dummy candidate has score at most X − 3k − 1.

Election E contains the following voters:
1. For each edge e = {ui, vj} of the input graph, there is

an edge voter ve with preference order ve : d � ui �
vj � p � D(p) � · · · .

2. There is a group of voters who ensure that the scores
are as described above. They rank at least 3k dummy
candidates between each two relevant ones (so shifting d
by 3k positions back cannot change the score of another
relevant candidate).

Next, we form an election F identical toE, except that one of
the edge voters ranks p one position lower (so that p’s score
in F is X − k). Let IE and IF be instances of BORDA #DE-
STRUCTIVE SHIFT-BRIBERY with designated candidate d,
shift radius 3k, unit prices, and elections E and F , respec-
tively. Our reduction queries the oracle for the numbers of
solutions for IE and IF , subtracts the latter from the former,
and outputs this value. We claim that it is exactly the number
of size-k matchings in G.

To see why this is the case, consider some solution for IE .
There are two possibilities: Either d passes some member
of U(G)] V (G) twice (in which case this candidate gets at
least X + 1 points, whereas d always gets exactly X points),
or d passes each member of U(G)] V (G) at most once. In
the latter case, only p can defeat d (all other candidates have
at mostX points). However, for this to happen, dmust pass p
exactly k times (with the shift radius of 3k, d cannot pass p
more times). Further, since we assumed that d never passes a
member of U(G)] V (G) more than once, the votes where d
passes pmust correspond to a size-k matching inG. We refer
to such solutions as matching solutions.

The set of solutions for IF contains all solutions for IE
except for the matching ones (because in IF , p ends up with at
mostX points and notX+1). So, by subtracting the number
of solutions for IF from the number of solutions for IE , we
get exactly the number of size-k matchings in G.

For BORDA #SWAP-BRIBERY, we obtain #P-hardness
and #W[1]-hardness when parameterized by the number of

voters by noting that the proofs for #SHIFT-BRIBERY still
apply in this case. The parameterization by the swap radius
remains open, though (the proof of Theorem 6 does not work
as many new, hard to control, solutions appear).

Corollary 1. BORDA #SWAP-BRIBERY is #P-hard and
#W[1]-hard when parameterized by the number of voters,
even for the case of unit prices.

4 Experiments
In the following, we use #SWAP-BRIBERY to analyze the ro-
bustness of election winners experimentally. For clarity, in
this section we use normalized swap distances, which specify
the fraction of all possible swaps in a given election.

We used a dataset of 800 elections, each with 10 candidates
and 100 voters, prepared by Szufa et al. [2020]. This dataset
contains elections generated from various statistical cultures
such as the impartial culture, urn, Mallows, tD-Cube, and tD-
Sphere model (see our full version for definitions).

For each election E and candidate c, let PE,c(r) be the
probability that c wins—under a given voting rule—in an
election chosen uniformly at random from R(E, r). Ide-
ally, we would like to compute these values exactly. How-
ever, since #SWAP-BRIBERY is #P-hard for both our rules,
instead of computing these values exactly, we resorted to
sampling. Specifically, for each election (except those
with tied winners) and each normalized swap distance r ∈
{0.05, 0.1, . . . , 1} we sampled 500 elections at this distance
and for each candidate recorded the proportion of elections
where he or she won2 (see our full version for a detailed de-
scription of the sampling procedure). For each election, we
quantify the robustness of its winner by identifying the small-
est swap distance r, among the considered ones, for which he
or she has a winning probability below 50%. We refer to this
value as the 50%-winner threshold.

We present some of our findings and refer to the full
version for more detailed experiments and a deeper analy-
sis. We start by analyzing the relation between the 50%-
winner threshold and two other measures of winner robust-
ness, namely, the score difference between the winner and the
runner-up (i.e., the candidate ranked in the second place) and
the minimum number of swaps of adjacent candidates that
are necessary to change the election winner (this is simply
the optimal cost of a DESTRUCTIVE SWAP-BRIBERY with
unit prices; see the work of Shiryaev et al. [2013]3). To this
end, let us turn to Figure 1a (for Plurality) and Figure 1b (for
Borda), which are both split into a black part (dots) and a red
part (pluses). In both parts, each election is represented as a
marker of the respective color whose y-coordinate is the score
difference between the winner and the runner up, and whose
x-coordinate is either:

2By Hoeffding’s inequality, the probability that the estimated
winning probability for a given candidate deviates by more than
10% from the true one can be upper-bounded by 0.1%.

3Notably, both PLURALITY DESTRUCTIVE SWAP-BRIBERY
and BORDA DESTRUCTIVE SWAP-BRIBERY are in P [Shiryaev et
al., 2013]. For both problems, it suffices to iterate over all candidates
d 6= c (where c is the original winner) and calculate the minimum
cost of modifying the election so that d has a higher score than c.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

56

0 .05 .1 .15 .2 .25 .3 .35 .4 .45
0

20

40

60

80

100

50%-winner threshold ()

sc
or

e
d

iff
er

en
ce

0 10 20 30 40 50

optimal bribery ()

(a) Plurality

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5
0

50

100

150

200

250

50%-winner threshold ()

sc
or

e
d

iff
er

en
ce

0 50 100 150 200

optimal bribery ()

(b) Borda

Figure 1: Each election is represented by a red plus and a black dot
marker. The y-coordinate of each marker gives the difference be-
tween the scores of the winner and the runner-up. The x-coordinate
of the black dot gives the 50%-winner threshold (perturbed, if many
elections would overlap), while the x-coordinate of the red plus
gives the minimum cost of a successful destructive swap bribery.

0 0.2 0.4

0.2

0.4

0.6

0.8

1

r

P
c
(r
)

577 575
535 482

(a) Urn 0.01

0 0.2 0.4

0.2

0.4

0.6

0.8

1

r

707 703
642 518

(b) Urn 0.02

Figure 2: Plots showing PE,c(r) under Borda as a function of r for
two selected elections. Each line represents PE,c(r) for one partic-
ular candidate. In the legend, the Borda scores of the candidates in
the original election are displayed. Only the four candidates with
the highest Borda scores are included. Both elections were sampled
from the urn model.

1. the 50%-winner threshold (for black dots, perturbed a
bit if many elections were to take the same place), or

2. the minimum cost of a successful destructive swap
bribery (for red pluses).

Finding 1. The score difference between the winner and the
runner-up strongly correlates with the minimum cost of a suc-
cessful destructive bribery. By contrast, the score difference
has a limited predictive value for the 50%-winner threshold.

Examining the figures, we see that the score difference is
very strongly correlated with the minimum cost of a success-
ful destructive swap bribery, but that the correlation between
the score difference and the 50%-winner threshold is far less
pronounced. Indeed, the same score difference may lead to
a wide range of 50%-winner thresholds (e.g., for Plurality a
score difference of 10 may lead to the threshold being any-
thing between 0.1 and 0.4). Thus our framework adds a new
dimension to the robustness analysis of election winners.

To exemplify this phenomenon, we visualize PE,c(r) un-
der Borda for two particular elections from the 800-elections
dataset in Figure 2 (for these two elections, we estimated
PE,c(r) for r ∈ {0.0125, 0.025, . . . , 0.5} using 10’000 sam-
ples in each case). We want to emphasize that these elections
are not artificial extreme examples but were generated both
as part of 180 elections generated by the Urn model with dif-
ferent parameters. In fact, there exist several other elections
in the dataset exhibiting a similar behavior.

Noticeably, the difference between the Borda score of the
red and the blue candidate in both elections is quite similar,
i.e., in Election (a) the difference is two and in Election (b) the
difference is four. Nevertheless, the robustness of the election
winner is quite different. In Election (a), the winner is very
sensitive to random swaps: The blue candidate already wins
a majority of elections even if only a 0.0125 fraction of all
possible swaps are applied (i.e., about half a swap per vote,
on average). It is quite surprising that so few random swaps
may change the outcome with a fairly high probability. In
contrast, in Election (b), the 50%-winner threshold is around
swap distance 0.3 and the red candidate even stays the most

probable winner until more than 40% of swaps are performed.
We now turn to the differences between Plurality and

Borda when it comes to the robustness of election winners:

Finding 2. The Borda winner of an election is usually more
robust against random swaps than the Plurality winner.

For Borda, 230 elections out of the 800 considered have
a 50%-winner threshold of 0.45, while every other threshold
occurs fewer than 90 times. In contrast, for Plurality the dis-
tribution is more uniform (with small spikes of around 110
elections at thresholds 0.1 and 0.45). So, Plurality elections
are more likely to change results after relatively few swaps
than the Borda ones. Two explanations are that (a) under Plu-
rality there can be “strong contenders” who do not win, but
who are often ranked close to the first place and, thus, can
overtake the original winner after a few swaps, and (b) the
Plurality winner has the highest chance of losing points, as
he or she is ranked first most often. Under Borda, the candi-
dates usually have similar chances of both gaining and losing
a point with a single swap.

5 Conclusions
We have shown that the counting variants of SWAP-BRIBERY
have high worst-case complexity, but, nonetheless, are very
useful for analyzing the robustness of election winners. In
particular, we have observed that the scores of the candidates
do not suffice to evaluate their strengths. Establishing the
complexity of BORDA #SWAP-BRIBERY parameterized by
the swap radius and the complexity of all considered #P-hard
problems parameterized by the number of candidates remain
as intriguing open problems.

Acknowledgments
NB was supported by the DFG project MaMu (NI 369/19).
Work started while PF was visiting TU Berlin based on a
Friedrich Wilhelm Bessel Award from the Alexander von
Humboldt Foundation. RB was partially supported by the
DFG project AFFA (BR 5207/1 and NI 369/15).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

57

References
[Bachrach et al., 2010] Y. Bachrach, N. Betzler, and P. Fal-

iszewski. Probabilistic possible winner determination. In
Proceedings of AAAI-2010, pages 697–702, 2010.

[Barvinok, 1994] A. Barvinok. A polynomial time algorithm
for counting integral points in polyhedra when the dimen-
sion is fixed. Math. Oper. Res., 19(4):769–779, 1994.

[Baumeister and Hogrebe, 2020] D. Baumeister and
T. Hogrebe. Complexity of election evaluation and
probabilistic robustness: Extended abstract. In Proceed-
ings of AAMAS-2020, pages 1771–1773, 2020.

[Baumeister et al., 2019] D. Baumeister, T. Hogrebe, and
L. Rey. Generalized distance bribery. In Proceedings of
AAAI-2019, pages 1764–1771, 2019.

[Bredereck et al., 2016a] R. Bredereck, J. Chen, P. Fal-
iszewski, A. Nichterlein, and R. Niedermeier. Prices mat-
ter for the parameterized complexity of shift bribery. Inf.
Comput., 251:140–164, 2016.

[Bredereck et al., 2016b] R. Bredereck, P. Faliszewski,
R. Niedermeier, and N. Talmon. Complexity of shift
bribery in committee elections. In Proceedings of
AAAI-2016, pages 2452–2458, 2016.

[Bredereck et al., 2021] R. Bredereck, P. Faliszewski,
A. Kaczmarczyk, R. Niedermeier, P. Skowron, and
N. Talmon. Robustness among multiwinner voting rules.
Artif. Intell., 290:103403, 2021.

[Brightwell and Winkler, 1991] G. Brightwell and P. Win-
kler. Counting linear extensions. Order, 8(3):225–242,
1991.

[Brill et al., 2020] M. Brill, U. Schmidt-Kraepelin, and
W. Suksompong. Refining tournament solutions via mar-
gin of victory. In Proceedings of AAAI-2020, pages 1862–
1869, 2020.

[Cary, 2011] D. Cary. Estimating the margin of victory for
instant-runoff voting. Presented at 2011 Electronic Voting
Technology Workshop/Workshop on Trushworthy Elec-
tions, 2011.

[Curticapean and Marx, 2014] R. Curticapean and D. Marx.
Complexity of counting subgraphs: Only the bounded-
ness of the vertex-cover number counts. In Proceedings
of FOCS-2014, pages 130–139, 2014.

[Dorn and Schlotter, 2012] B. Dorn and I. Schlotter. Multi-
variate complexity analysis of swap bribery. Algorithmica,
64(1):126–151, 2012.

[Elkind and Faliszewski, 2010] E. Elkind and P. Faliszewski.
Approximation algorithms for campaign management. In
Proceedings of WINE-2010, pages 473–482, 2010.

[Elkind et al., 2009] E. Elkind, P. Faliszewski, and
A. Slinko. Swap bribery. In Proceedings of SAGT-
2009, pages 299–310, 2009.

[Elkind et al., 2020] E. Elkind, P. Faliszewski, S. Gupta, and
S. Roy. Algorithms for swap and shift bribery in structured
elections. In Proceedings of AAMAS-2020, pages 366–
374, 2020.

[Faliszewski et al., 2019] P. Faliszewski, P. Manurangsi, and
K. Sornat. Approximation and hardness of shift-bribery.
In Proceedings of AAAI-2019, pages 1901–1908, 2019.

[Flum and Grohe, 2004] J. Flum and M. Grohe. The param-
eterized complexity of counting problems. SIAM J. Com-
put., 33(4):892–922, 2004.

[Hazon et al., 2012] N. Hazon, Y. Aumann, S. Kraus, and
M. Wooldridge. On the evaluation of election outcomes
under uncertainty. Artif. Intell., 189:1–18, 2012.

[Kaczmarczyk and Faliszewski, 2019] A. Kaczmarczyk and
P. Faliszewski. Algorithms for destructive shift bribery.
Auton. Agents Multi-Agent Syst., 33(3):275–297, 2019.

[Kenig and Kimelfeld, 2019] B. Kenig and B. Kimelfeld.
Approximate inference of outcomes in probabilistic elec-
tions. In Proceedings of AAAI-2019, pages 2061–2068,
2019.

[Knop et al., 2020] D. Knop, M. Koutecky, and M. Mnich.
Voting and bribing in single-exponential time. ACM Trans.
Econ. Comput., 8(3):12:1–12:28, 2020.

[Lenstra, Jr., 1983] H. Lenstra, Jr. Integer programming with
a fixed number of variables. Math. Oper. Res., 8(4):538–
548, 1983.

[Magrino et al., 2011] T. Magrino, R. Rivest, E. Shen, and
D. Wagner. Computing the margin of victory in IRV elec-
tions. In Proceedings of EVT/WOTE-2011, 2011.

[Maushagen et al., 2018] C. Maushagen, M. Neveling,
J. Rothe, and A.-K. Selker. Complexity of shift bribery in
iterative elections. In Proceedings of AAMAS-2018, pages
1567–1575, 2018.

[Shiryaev et al., 2013] D. Shiryaev, L. Yu, and E. Elkind. On
elections with robust winners. In Proceedings of AAMAS-
2013, pages 415–422, 2013.

[Szufa et al., 2020] S. Szufa, P. Faliszewski, P. Skowron,
A. Slinko, and N. Talmon. Drawing a map of elections in
the space of statistical cultures. In Proceedings of AAMAS-
2020, pages 1341–1349, 2020.

[Valiant, 1979] L. Valiant. The complexity of computing the
permanent. Theor. Comput. Sci., 8(2):189–201, 1979.

[Wojtas and Faliszewski, 2012] K. Wojtas and P. Fal-
iszewski. Possible winners in noisy elections. In
Proceedings of AAAI-2012, pages 1499–1505, 2012.

[Xia, 2012] L. Xia. Computing the margin of victory for var-
ious voting rules. In Proceedings of EC-2012, pages 982–
999, 2012.

[Yang et al., 2019] Y. Yang, Y. Raj Shrestha, and J. Guo. On
the complexity of bribery with distance restrictions. Theor.
Comput. Sci., 760:55–71, 2019.

[Zhou and Guo, 2020] A. Zhou and J. Guo. Parameterized
complexity of shift bribery in iterative elections. In Pro-
ceedings of AAMAS-2020, pages 1665–1673, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

58

	Introduction
	Preliminaries
	Algorithms and Complexity Results
	Plurality and #Swap-Bribery
	Borda and #Shift-Bribery

	Experiments
	Conclusions

