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Abstract
In their AAMAS 2020 paper, Szufa et al. pre-
sented a “map of elections” that visualizes a set of
800 elections generated from various statistical cul-
tures. While similar elections are grouped together
on this map, there is no obvious interpretation of
the elections’ positions. We provide such an inter-
pretation by introducing four canonical “extreme”
elections, acting as a compass on the map. We use
them to analyze both a dataset provided by Szufa
et al. and a number of real-life elections. In ef-
fect, we find a new parameterization of the Mallows
model, based on measuring the expected swap dis-
tance from the central preference order, and show
that it is useful for capturing real-life scenarios.

1 Introduction
Experiments are gaining increasing attention in the computa-
tional social choice literature. While such studies often give
insights that would be very difficult to obtain otherwise, they
are not easy to design. For example, if we wanted to eval-
uate the running time of a certain algorithm for computing
election winners, what data should we run it on? To answer
such questions, we need to understand the space of possible
elections. This includes knowing, e.g., what elections arise in
practice, what elections are generated from standard election
models, what makes elections difficult for our algorithm, and
so on. In this paper we continue the quest for understanding
the space of election by means of analyzing their distances,
as initiated by Szufa et al. [2020].

Specifically, Szufa et al. [2020] proposed a technique for
visualizing sets of ordinal elections—i.e., elections where
each voter ranks the candidates from the most to the least ap-
pealing one—based on given distances between them. They
have applied this technique to 800 elections coming from
various statistical cultures, ranging from the classic urn and
Mallows models to various types of restricted domains, and
they obtained a map of elections, where elections with similar
properties are grouped together (see Figure 1; each dot rep-
resents a single election and, generally, the closer two elec-
tions are in the picture, the smaller is their distance). Indeed,

Figure 1: A map for the 10x100 dataset of Szufa et al. [2020].

we see that elections from the same statistical cultures, repre-
sented with the same color, are nicely grouped together; Sz-
ufa et al. [2020] have also shown other evidence that nearby
elections are closely related.1 Yet, the map has two major
drawbacks. First, while similar elections are plotted next to
each other, there is no clear meaning to absolute positions on
the map. Second, the map regards statistical cultures only
and it is not obvious where real-life elections—such as those
stored in PrefLib [Mattei and Walsh, 2013]—would lie on the
map. Our goal is to address both these issues.

We start by looking more closely at the distance metric
for elections that Szufa et al. [2020] used. The idea is that
given an election withm candidates, one computes anm×m
frequency matrix which specifies what fraction of the voters
ranks each candidate in each position (such matrices are bi-
stochastic, i.e., their entries are nonnegative and each column
and each row sums up to one). Measuring the distance be-
tween two elections boils down to computing their frequency
matrices and summing up the earth mover’s distances be-
tween their columns, where columns are reordered to min-

1The map in the figure regards elections with 10 candidates and
100 voters, whereas Szufa et al. [2020] focused on the case of
100 candidates and 100 voters. Nonetheless, they also provided such
smaller datasets and we focus on them because we want to compare
them to real-life elections, which typically have few candidates.
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(a) The compass and the dataset of Szufa et al. [2020]. (b) The compass and various real-life elections.

Figure 2: Maps of elections for the 10x100 dataset of Szufa et al. [2020] (on the left) and some real-life elections (on the right). The maps
include the compass matrices and their connecting paths (shown in black, red, and blue). To highlight the paths, the dots corresponding to
the elections of Szufa et al. [2020] (in the left figure) are shown in lighter colors than in Figure 1. On the right, the pale blue area is where
Mallows elections end up (for various φ parameters) and the pale orange area is where urn elections end up (for various α parameters).

imize the distance (see Section 2 for definitions); Szufa et
al. [2020] call this distance positionwise. Using frequency
matrices makes it possible to compare elections with different
numbers of voters, and reordering the columns ensures that
candidate names are irrelevant (as suggested for such settings
by Faliszewski et al. [2019]).

Our first result is an algorithm that, given a bistochastic
matrix and a number n, finds some election with n voters
whose frequency matrix is (nearly) identical to the one from
the input (achieving perfect accuracy is not always possible,
but our algorithm achieves the best result one may, in general,
hope for). As a consequence, instead of considering elections,
we may directly look at the space of bistochastic matrices,
which simplifies many discussions. Consequently, we often
speak of matrices and elections interchangeably.

Next, we form what we call a compass. The idea is to pick
matrices that, on the one hand, are far away from each other,
and, on the other hand, have natural interpretations. Specifi-
cally, we consider the following four “extreme” matrices, cor-
responding to four types of (dis)agreement among the voters:

1. The identity matrix, ID, modelling perfect agreement
(all voters have the same preference order).

2. The uniformity matrix, UN, modelling lack of agree-
ment (each candidate takes each position equally often).

3. The stratification matrix, ST, modelling partial agree-
ment (voters agree that half of the candidates are better
than the other half, but lack agreement on anything else).

4. The antagonism matrix, AN, modelling conflict (half of
the voters have opposite preferences to the other half).

For each two of these “compass” matrices, we also con-
sider a spectrum of their convex combinations (“paths” be-
tween the matrices). In visualizations, these paths appear as
a parallelogram-like shape with corresponding “diagonals”;
see, e.g., Figure 2a, where we apply the compass method to
the dataset from Figure 1 (the black, blue, and red points are

certain convex combinations of the corresponding endpoints,
which are the compass matrices). The remainder of the paper
largely consists of explaining why we get what we see here.

The compass allows us to make a number of observa-
tions. For example, in Figure 2a we see that 1D Interval elec-
tions are closer to the antagonism matrix, whereas higher-
dimensional hypercube elections are closer to the stratifica-
tion one. This is intriguing as, on a formal level, these two
kinds of elections are very similar. Figure 2b, which shows
a map of real-life elections (some from PrefLib and some
new ones) is even more striking. Most of the real-life elec-
tions (including all political ones) end up in one “quadrant”
of the parallelogram, and essentially all elections end up in
the vicinity of some Mallows elections (the pale blue area is
where Mallows elections end up, depending on the parameter
of the model; the pale orange area is where urn elections end
up). So, if one were to run experiments with a single statisti-
cal culture, the Mallows model might be a wise choice.

Yet, we find that seemingly natural ways of sampling Mal-
lows elections (e.g., by choosing the Mallows parameter uni-
formly at random, or using a fixed parameter for different
numbers of candidates), which are used in many research pa-
pers, are biased. We propose a normalization and argue, both
theoretically and by considering the compass, that it produces
more balanced results. In other words, we recommend using
the Mallows model, but in conjunction with our normaliza-
tion.

We provide details missing from this paper in its full ver-
sion, available as a technical report [Boehmer et al., 2021].

2 Preliminaries
Given an integer t, we write [t] to denote the set {1, . . . , t}.
By R+ we mean the set of nonnegative real numbers. Given a
vector x = (x1, . . . , xm), we interpret it as an m× 1 matrix,
i.e., we use column vectors. For a matrix X , we write xi,j to
refer to the entry in its i-th row and j-th column.
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Elections. An election E is a pair (C, V ), where C =
{c1, . . . , cm} is a set of candidates and V = (v1, . . . , vn)
is a collection of voters. Each voter v ∈ V has a preference
order �v , which ranks the candidates from the most to the
least desirable one according to v. If v prefers candidate a
to candidate b, then we write v : a � b, and we extend this
notation to more candidates in a natural way. For a voter v
and a candidate c, we write posv(c) to denote the position
on which v ranks c (the top-ranked candidate has position 1,
the next one has position 2, and so on). We refer to both the
voters and their preference orders as the votes. The intended
meaning will always be clear from the context.
Position and frequency matrices. Let E = (C, V ) be an
election, where C = {c1, . . . , cm} and V = (v1, . . . , vn).
For a candidate c ∈ C and position i ∈ [m], we write
#posE(c, i) to denote the number of voters in electionE that
rank c on position i. By #posE(c) we mean the vector:

(#posE(c, 1),#posE(c, 2), . . . ,#posE(c,m)).

The position matrix for election E, denoted #pos(E), is the
m×m matrix that has vectors #posE(c1), . . . ,#posE(cm)
as its columns. We also consider vote frequencies rather than
absolute counts. To this end, for a candidate c and a po-
sition i ∈ [m], let #freqE(c, i) = #posE(c,i)/n, let vector
#freqE(c) = (#freqE(c, 1), . . . ,#freqE(c,m)), and let the
frequency matrix for election E, denoted #freq(E), consist
of columns #freqE(c1), . . . ,#freqE(cm). Note that in each
position matrix, each row and each column sums up to the
number of voters in the election. Similarly, in each frequency
matrix, the rows and columns sum up to one (such matrices
are called bistochastic).
Example 1. Let E = (C, V ) be an election, where C =
{a, b, c}, V = (v1, . . . , v6), and the preference orders are
v1 : a � b � c, v2 : a � b � c, v3 : a � b � c, v4 : b � a �
c, v5 : c � a � b, v6 : c � a � b. The position and frequency
matrices for this election are:

[ a b c

1 3 1 2
2 3 3 0
3 0 2 4

]
and

[ a b c

1 1/2 1/6 1/3
2 1/2 1/2 0
3 0 1/3 2/3

]
Earth mover’s distance (EMD). Let x = (x1, . . . , xt) and
y = (y1, . . . , yt) be two vectors from Rt+, whose entries sum
up to 1. The earth mover’s distance between x and y, denoted
EMD(x, y), is defined as the lowest total cost of operations
that transform vector x into vector y, where each operation
is of the form “subtract δ from position i and add δ to posi-
tion j” and costs δ · |i − j|. Such an operation is legal if the
current value at position i is at least δ. EMD(x, y) can be
computed in polynomial time using a greedy algorithm.
Positionwise distance. Let E = (C, V ) and F = (D,U)
be two elections with m candidates each (we do not require
that |V | = |U |). The positionwise distance between E
and F , denoted POS(E,F ), is defined in terms of fre-
quency matrices #freq(E) = (e1, . . . , em) and #freq(F ) =
(f1, . . . , fm) as follows [Szufa et al., 2020]:

POS(E,F ) := minσ∈Sm

(∑m
i=1 EMD(ei, fσ(i))

)
,

where Sm is the permutation group on m elements. In
other words, the positionwise distance is the sum of the earth
mover’s distances between the frequency vectors of the can-
didates from the two elections, matched optimally according
to σ. The positionwise distance is invariant to renaming the
candidates and reordering the voters.

Statistical cultures. We define the following three statisti-
cal cultures, i.e., models of generating random elections:2

Impartial culture Under the Impartial Culture (IC) model,
we sample all votes uniformly at random.

Pólya-Eggenberger urn model [Berg, 1985] The urn mo-
del uses a nonnegative parameter α, which gives the
level of correlation between the votes (this parameter-
ization is due to McCabe-Dansted and Slinko [2006]).
To generate an election with m candidates, we start with
an urn containing one copy of each possible preference
order and generate the votes iteratively: In each step we
uniformly at random draw an order from the urn (this is
the voter’s preference order) and return it to the urn to-
gether with αm! copies. For α = 0 we obtain the IC
model.

Mallows model [Mallows, 1957] The Mallows model uses
parameter φ ∈ [0, 1] and a central preference order v.
Each vote is generated randomly and independently. The
probability of generating preference order u is propor-
tional to φκ(v,u), where κ(v, u) is the swap distance be-
tween u and v (i.e., the minimum number of swaps of
adjacent candidates needed to transform u into v).

Maps of elections. Szufa et al. [2020] drew a map of elec-
tions by computing the positionwise distances between 800
elections drawn from various statistical cultures and visual-
izing them using the force-directed algorithm of Fruchter-
man and Reingold [1991]. They focused on elections with
100 candidates and 100 voters, but also generated smaller
datasets, available on their website. We consider their dataset
with 10 candidates and 100 voters (see Figure 1 for its map).
We use the same algorithm as they do for our visualizations,
except that for each two elections we set their attraction coef-
ficient to be the square of their positionwise distance (and not
the distance itself, as done by Szufa et al.; this groups simi-
lar elections more tightly and gives more visually appealing
results for elections with few candidates). We stress that the
maps that both we and Szufa et al. [2020] provide are help-
ful tools to illustrate the distances between particular (fami-
lies of) elections, but are certainly not perfect. For example,
since the visualization algorithm is randomized, we can get
slightly different maps for each run of the algorithm. The vi-
sualizations also depend on the exact composition of the set
of depicted elections. Thus, whenever we say that some two
elections are close to each other, we mean that their position-
wise distance is small. While this is typically reflected by
these two elections being close on the map, on its own, close-
ness on the map does not suffice for such a claim.

2Sometimes, we refer to other statistical cultures used by Szufa
et al. [2020]. We do not define them formally here, but we attempt
to make our discussions intuitively clear.
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3 Recovering Elections from Matrices
Throughout this paper we often deal with frequency matri-
ces of elections. While computing a frequency matrix of an
election is straightforward, the reverse direction is less clear.

We first note that each m × m position matrix has a cor-
responding m-candidate election with at most m2 − 2m + 2
distinct preference orders.

Proposition 1 (Leep and Myerson [1999]). Given an m ×
m position matrix X , one can compute in O(m4.5) time an
election E with at most m2 − 2m + 2 different votes, such
that #pos(E) = X .

Next, we consider recovering elections based on frequency
matrices. Given an m×m bistochastic matrix X and a num-
ber n of voters, we would like to find an election E with po-
sition matrix nX . This may be impossible as nX may have
fractional entries, but we can get very close to this goal. The
next proposition justifies speaking of elections and frequency
matrices interchangeably.

Proposition 2. Given an m × m bistochastic matrix X
and an integer n, one can compute in polynomial time an
election E with n voters whose position matrix P satisfies
|nxi,j − pi,j | ≤ 1 for each i, j ∈ [m] and, under this condi-
tion, minimizes the value

∑
1≤i,j≤m |nxi,j − pi,j |.

4 Setting up the Compass
Our “compass” consists of two main components: Four ma-
trices that occupy very different areas of the election space
and represent different types of (dis)agreement among the
voters, and six paths consisting of their convex combinations.

4.1 The Four Matrices
Below we define the four matrices and explain our choice.

Identity and uniformity. Our first two matrices are the
identity matrix, IDm, with ones on the diagonal and zeros
elsewhere, and the uniformity matrix, UNm, with each entry
equal to 1/m. The identity matrix corresponds to elections
where each voter has the same preference order, i.e., there is
a common ordering of the candidates from the most to the
least desirable one. In contrast, the uniformity matrix cap-
tures elections where each candidate is ranked on each po-
sition equally often, i.e., where, in aggregate, all the candi-
dates are viewed as equally good. Uniformity elections are
quite similar to the IC ones and, in the limit, indistinguish-
able from them (i.e., with sufficiently many voters, we would
not see a difference between IC and UN; with fewer voters,
IC elections are at some small distance from uniformity).

Stratification. The next matrix, stratification, is defined as
follows (we assume that m is even):

STm =

[
UNm/2 0

0 UNm/2

]
.

Stratification matrices correspond to elections where the vot-
ers agree that half of the candidates are more desirable than
the other half, but, in aggregate, are unable to distinguish be-
tween the qualities of the candidates in each group.

Antagonism. Let rIDm be the matrix obtained by reversing
the order of the columns of the identity matrix IDm. We de-
fine the antagonism matrix, ANm, to be 1/2IDm + 1/2rIDm.
Such matrices are generated, e.g., by elections where half of
the voters rank the candidates in one order, and half of the
voters rank them in the opposite one, so there is a clear con-
flict. In some sense, stratification and antagonism are based
on similar premises. Under stratification, the group of can-
didates is partitioned into halves with different properties,
whereas in antagonism the voters are partitioned. However,
the nature of the partitioning is, naturally, quite different.

We chose the above matrices because they capture natural,
intuitive phenomena and seem to occupy very different ar-
eas of the space of elections (although we are sure that other
choices would be possible, too). Below we calculate the po-
sitionwise distances between our matrices.
Proposition 3. If m is divisible by 4, then it holds that:

1. POS(IDm,UNm) = 1
3 (m

2 − 1),

2. POS(IDm,ANm) = POS(UNm, STm) = m2

4 ,

3. POS(IDm, STm) = POS(UNm,ANm) = 2
3 (
m2

4 − 1),

4. POS(ANm, STm) = 13
48m

2 − 1
3 .

To normalize these distances, we divide them by D(m) =
POS(IDm,UNm), which we suspect to be the largest posi-
tionwise distance between two matrices over m candidates.
For each two matrices X and Y among our four, we let
d(X,Y ) := limm→∞ POS(Xm,Ym)/D(m). A simple compu-
tation shows the following (see also Figure 3a; we sometimes
omit the m subscript for clarity):

d(ID,UN) = 1, d(ID,AN) = d(UN, ST) = 3/4,

d(AN, ST) = 13/16, d(ID, ST) = d(UN,AN) = 1/2.

For small m, using ILPs, we verified that each compass
matrix is almost as far away as possible from the others. Sim-
ilarly, for each m ∈ {3, . . . , 7} we verified that IDm and
UNm are the two most distant matrices under the position-
wise distance. Indeed, we believe that ID and UN are the two
most distant frequency matrices, i.e., they form the diameter
of our space. However, showing this seems to be challenging.

4.2 Paths Between Election Matrices
Next, we consider convex combinations of frequency matri-
ces. Given two such matrices, X and Y , and α ∈ [0, 1],
one might expect that matrix Z = αX + (1 − α)Y would
lie at distance (1 − α)POS(X,Y ) from X and at distance
αPOS(X,Y ) from Y , so that we would have:

POS(X,Y ) = POS(X,Z) + POS(Z, Y ).

However, without further assumptions this is not necessarily
the case. Indeed, if we take X = IDm and Y = rIDm,
then 0.5X + 0.5Y = ANm and POS(X,Y ) = 0, but
POS(X, 0.5X + 0.5Y ) = POS(ID,AN) > 0. Yet, if we
arrange the two matrices X and Y so that their positionwise
distance is achieved by the identity permutation of their col-
umn vectors, then their convex combination lies exactly be-
tween them.
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(a) Normalized distances be-
tween the four matrices.

(b) Urn elections (orange); α fol-
lows the Gamma distribution.

(c) Mallows elections (teal); φ
chosen uniformly at random.

(d) Mallows elections (teal); rel-φ
chosen uniformly at random.

Figure 3: Visualization of our four matrices and the connecting paths. In Figure 3a we show the normalized distances between the four
matrices, whereas in the remaining three pictures we show the matrices, the connecting paths, and, respectively, urn elections and Mallows
elections (for two distributions of their parameter). These visualizations are for 20 candidates and 100 voters.

Proposition 4. Let X = (x1, . . . , xm) and Y = (y1, . . . ym)
be two m×m frequency matrices such that:

POS(X,Y ) =
∑m
i=1 EMD(xi, yi).

Then, for each α ∈ [0, 1] it holds that POS(X,Y ) =
POS(X,αX + (1− α)Y ) + POS(αX + (1− α)Y, Y ).

Using Proposition 4, for each two compass matrices we
can generate a sequence of matrices that form a path between
them. For example, matrix 0.5ID + 0.5UN is exactly at the
same distance from ID and from UN. In Figure 2a we show
a map of elections that (in addition to the dataset of Szufa et
al. [2020]) contains our four compass matrices and for each
two of them, a set of d50 ·d(X,Y )ematrices obtained as their
convex combinations with values of α uniformly distributed
in [0, 1]. For all other maps including the compass, the six
paths were generated in the same way. The positionwise dis-
tances between any two of our four matrices are achieved by
the identity permutation, as required by Proposition 4.

5 Applying the Compass
In this section, we apply our compass for a deeper under-
standing of the map of elections created by Szufa et al. [2020]
and place some real-life elections on the map. We also con-
sider where Mallows and urn elections land on the maps.

5.1 A Map of Statistical Cultures with a Compass
In Figure 2a, we show a map of the 800 elections provided
by Szufa et al. [2020] in their 10x100 dataset, together with
the compass. As expected, the uniformity matrix is close to
the impartial culture elections, but still at some distance from
them. Similarly, the identity matrix is very close to the Mal-
lows elections with close-to-zero values of φ. Indeed, such
elections consist of nearly identical votes.

The red path, linking AN and ST, roughly partitions the
elections into those closer to UN and those closer to ID.
The latter group consists mostly of Mallows and urn elections
(with low φ or high α, respectively), but single-crossing and
some single-peaked elections also make an appearance.

Analyzing the distances of elections to AN and ST, it is
striking that 1D Interval elections lie closer to AN, while
other hypercube elections lie closer to ST, even though, for-
mally, they are similar. It is also intriguing that single-peaked
elections generated according to the Walsh model [Walsh,

2015] are closer to ST, whereas those from the Conitzer
model [Conitzer, 2009] (which are very similar to the 1D In-
terval ones) are closer to AN.3 A brief explanation for read-
ers familiar with single-peaked elections is as follows. In the
Conitzer model, given a societal axis (i.e., an underlying or-
der of the candidates, e.g., from left to right in the political
spectrum), we generate a vote by choosing a top-ranked can-
didate uniformly at random and extending the vote with can-
didates to the left and to the right (on the axis) with equal
probability. So, by choosing close-to-extreme candidates
from different sides of the axis as top-ranked, we generate
close-to-opposite preference orders with fairly high probabil-
ity. Under the Walsh model, we choose each single-peaked
preference order uniformly at random. There are few such
preference orders with extreme candidates ranked highly, but
many with the center ones on top. This leads to stratification.

5.2 Urn and Mallows Elections
Our next goal is to place “paths” of urn and Mallows elections
on the map. In both cases it requires some care. Recall that
the urn model has parameter α, which takes values between 0
and∞. To generate an urn election, we choose α according
to the Gamma distribution with shape parameter k = 0.8 and
scale parameter θ = 1 (this ensures that about half of the urn
elections are closer to UN than to ID; see Figure 3b).

Regarding the Mallows model, we have a parameter φ that
takes values between 0 and 1, where 0 leads to generating ID
elections and 1 leads to generating IC ones. It is thus intuitive
to choose φ uniformly at random from the [0, 1] interval. Yet,
as seen in Figure 3c, doing so places elections quite unevenly
on the map. Similarly, for different numbers of candidates
the same value of φ leads to choosing elections at different
distances from ID (see the left part of Figure 4). Thus we
seek a new parameterization of the Mallows model.

Normalizing Mallows. Consider a setting with m candi-
dates. For φ ∈ [0, 1], let expswaps(m,φ) be the expected
swap distance between an m-candidate vote generated us-
ing the Mallows model with parameter φ and the center
vote. We define the relative expected number of swaps as
relswaps(m,φ) = expswaps(m,φ)

m(m−1)/2 (see the right part of Fig-
ure 4 for plots of this value). In our approach, we choose

3The average distance of Walsh elections to ST is about half of
their distance to AN; for Conitzer elections this relation is reversed.
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Figure 4: Average normalized positionwise distances of Mallows
elections from ID (on the left), and relative expected number of
swaps in votes drawn from the Mallows model (on the right), both
depending on φ and for different numbers m of candidates.

a value rel-φ ∈ [0, 1] as a parameter, find a φ such that
relswaps(m,φ) = rel-φ, and draw an election from the Mal-
lows model using this φ (see the full paper for details). Work-
ing on rel-φ instead of φ not only allows for an intuitive and
natural interpretation of the parameter as the relative expected
number of swaps in each vote (or the normalized distance
from ID), but also for obtaining comparable elections for dif-
ferent numbers of candidates. In Figures 3c and 3d we vi-
sualize Mallows elections generated with φ ∈ [0, 1] and rel-
φ ∈ [0, 0.5] chosen uniformly at random, respectively (we use
rel-φ ≤ 0.5 because for larger values one obtains analogous
elections, but reversed; e.g., both rel-φ = 0 and rel-φ = 1
lead to identity elections). Figure 3d shows a far more bal-
anced distribution of points.

Importance of the new normalization. The new param-
eterization of Mallows seems to be important. The Mal-
lows model is often used in experiments and—in light of our
findings—using a fixed φ for different numbers of candidates
or drawing φ from a distribution independent of the number
of candidates, may be questionable. Yet, this is not uncom-
mon, as witnessed, e.g., in the works of Betzler et al. [2014],
Goldsmith et al. [2014], Skowron et al. [2015], Bachrach et
al. [2016], Garg et al. [2019], and in a number of other pa-
pers. We mention these works as examples only; their au-
thors designed their experiments as best practice suggested at
the time and we do not challenge their high-level conclusions.
Our point is that given the current evidence, they might prefer
to design their experiments a bit differently.

5.3 Real-Life Elections on the Map
Let us now consider where real-life elections appear on the
map. We start by describing the datasets that we use (mostly
from PrefLib, due to Mattei and Walsh [2013]). See the full
paper for details on how the data was selected and prepro-
cessed. In particular, we converted partial preference orders
to complete ones using a simplified variant of the approach
proposed by Doucette [2016]. Whenever we speak of real-life
elections in this section, we mean elections from our datasets.

We chose eleven real-life datasets, where each belongs
to one of three groups. The first group contains politi-
cal elections: city council elections from Glasgow and As-
pen ([O’Neill, 2013]), elections from North Dublin, Meath
(Irish), and elections held by non-profit organizations, trade
unions, and professional organizations (ERS). The second

group consists of sport elections: Tour de France (TDF), Giro
d’Italia (GDI), speed skating, and figure skating (the former
three dataset are due to us). The last group consists of sur-
veys: preferences over Sushi, T-Shirt designs, and costs of
living and population in different cities ([Caragiannis et al.,
2019]). For TDF and GDI, each race is a vote, and each
season is an election. For speed skating, each lap is a vote,
and each competition is an election. For figure skating, each
judge’s opinion is a vote, and each competition is an election.

In Figure 2b we show a map of these real-life elections
along with the compass, Mallows, and Urn elections. For
readability we present Mallows and Urn elections as large,
pale-colored areas. Not all real-life elections form clear clus-
ters, hence the labels refer to largest compact groupings.

While the map is not a perfect representation of distances
among elections, analyzing it leads to many conclusions.
Most strikingly, real-life elections occupy a very limited area
of the map; this is especially true for political elections and
surveys. Except for several sport elections, all elections are
closer to UN than to ID (strictly speaking, this is true for 142
elections out of 165), and none of the real-life elections falls
in the top-right part of the map (in the visualization). An-
other observation is that Mallows elections go right through
the real-life elections, while Urn elections are on average far
away. This means that for most real-life elections there exists
a parameter φ such that elections generated according to the
Mallows model with that parameter are relatively close (in
particular, we suggest using rel-φ ∈ [0.36, 0.39] to capture
political elections; see the full paper for more details).

Most of the political elections lie close to one another and
are located next to Mallows elections and high-dimensional
hypercube ones. Sport elections are spread over a larger part
of the map and, with the exception of GDI, are shifted toward
ID. As to the surveys, the City survey is basically equivalent
to a sample from IC. The Sushi survey is similar to political
elections. The T-shirt survey is shifted toward stratification.

6 Summary
We have provided a way to interpret locations on the map of
elections of Szufa et al. [2020]. We have also shown where
real-life elections end up on this map, which lead to a number
of observations regarding both synthetic and real-life elec-
tions. In doing so, we identified and fixed a certain flaw in a
typical way of sampling Mallows elections. It is important to
confirm our experimental observations theoretically. Perhaps
the most pressing such issue is to verify if identity and uni-
formity indeed are the two most distant frequency matrices.
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