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Abstract

A common theme of decision making in multi-
agent systems is to assign utilities to alternatives,
which individuals seek to maximize. This rationale
is questionable in coalition formation where agents
are affected by other members of their coalition.
Based on the assumption that agents are benevolent
towards other agents they like to form coalitions
with, we propose loyalty in hedonic games, a bi-
nary relation dependent on agents’ utilities. Given
a hedonic game, we define a loyal variant where
agents’ utilities are defined by taking the minimum
of their utility and the utilities of agents towards
which they are loyal. This process can be iterated
to obtain various degrees of loyalty, terminating in
a locally egalitarian variant of the original game.

We investigate axioms of group stability and effi-
ciency for different degrees of loyalty. Specifically,
we consider the problem of finding coalition struc-
tures in the core and of computing best coalitions,
obtaining both positive and intractability results. In
particular, the limit game possesses Pareto optimal
coalition structures in the core.

1

Decision making in multi-agent systems is highly driven by
the idea of the homo economicus, a rational decision taker
that seeks to maximize her individual well-being. Follow-
ing the classical Theory of Games and Economic Behavior
by von Neumann and Morgenstern, agents assign utilities to
alternatives and aim for an outcome that maximizes individ-
ual utility. Such behavior entails many delicate situations in
non-cooperative game theory such as the prisoner’s dilemma
or the tragedy of the commons [Hardin, 19681, where agents
take decisions in their individual interest without regarding
other agents. This leads to outcomes that are bad for the so-
ciety as a whole and often, as it is the case in the prisoner’s
dilemma, agents have an incentive to coordinate to improve
their respective situation.

From the theoretical point of view, one can either accept
the existence of such dilemmata and study their social im-
pact, for instance, by means of the price of anarchy [Kout-
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soupias and Papadimitriou, 1999], or one can ask for the de-
gree of individual dependency on the social outcome neces-
sary to escape a situation of inferior welfare. The latter idea
is implemented by adapting the utility function of players as
a weighted sum of individual and joint utility, an idea repeat-
edly developed in network design [Elias et al., 2010], arti-
ficial intelligence [Apt and Schifer, 20141, or public choice
[Mueller, 1986]. Specifically, the selfishness level by Apt and
Schifer is the lowest weight on the joint utility such that a
Nash equilibrium becomes a social optimum.

On the other hand, empirical evidence does not only ques-
tion whether agents behave according to the utility model
by von Neumann and Morgenstern [Kahneman and Tversky,
19791, but even supports the hypothesis that human behavior
is steered by the well-being of the whole society [Colman et
al., 2008]. However, in scenarios of high competition, agents
might also act spiteful towards other agents, i.e., there is an
incentive to harm other agents [Levine, 1998].

In cooperative game theory, it seems to be an even more
reasonable assumption to include other agents into the own
valuation. We follow this line of thought in the setting of
coalition formation, where we propose loyalty, a possibility
to modify utilities by taking into account other agents’ utili-
ties towards which loyalty is perceived. Loyalty is a binary
relation directly extracted from the agents’ utilities over part-
nership, i.e., coalitions of size 2. Loyalty is sensed towards
the agents within the own coalition that yield positive utility
in a partnership. Following the paradigm of a chain that is
only as strong as its weakest link, loyal utilities are obtained
by taking the minimum of the own utility and the utilities of
agents receiving our loyalty. As such, we obtain a loyal vari-
ant of the original game, which is itself a coalition formation
game, and we can iterate towards various degrees of loyalty.
As we will see, this process terminates in a game which satis-
fies a high degree of egalitarianism. We consider common so-
lution concepts concerning group stability and efficiency for
different degrees of loyalty and the limit game, and provide
both existential and computational results.

We study coalition formation in the framework of hedonic
games [Dréze and Greenberg, 1980; Banerjee et al., 2001;
Bogomolnaia and Jackson, 2002]. Our contribution lies in
studying aspects of empathy in hedonic games [Brinzei and
Larson, 2011; Monaco et al., 2018; Nguyen et al., 2016]. Pre-
vious work considers empathy between agents through vari-
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ous alternative utility functions based on friendship relations
among the agents extracted from utility functions or a social
network. Closest to our work are altruistic hedonic games in-
troduced by Nguyen et al. [2016] and subsequently studied
by Wiechers and Rothe [2020], Kerkmann and Rothe [2020],
and Schlueter and Goldsmith [2020]. Our first degree of loy-
alty in symmetric friend-oriented hedonic games coincides
with minimum-equal-treatment altruistic hedonic games as
defined by Wiechers and Rothe [2020]. We significantly ex-
tend their model, but since most of our hardness results work
for the restricted class of symmetric friend-oriented hedonic
games, they have immediate consequences for this type of al-
truistic hedonic games. Also, loyal variants of hedonic games
fit into the framework of super altruistic hedonic games by
Schlueter and Goldsmith [2020] if their aggregation is mod-
ified by taking the average instead of the minimum of other
agents’ utilities.

2 Preliminaries and Model

We start with some notation. Define [i] = {1,...,4} and
[iy] = {3, 5} fori,j € Z.i < j.

Also, we use standard notions from graph theory. Let G =
(V, E) be an undirected graph. For a subset of agents W C
V, denote by G[W] the subgraph of G induced by W. Given
two vertices v, w € V, we denote by dg (v, w) their distance
in G, i.e., the length of a shortest path connecting them. The
graph G is called regular if there exists a non-negative integer
r such that every vertex of G has degree r.

In the following subsections, we introduce hedonic games,
our concept of loyalty, and desirable properties of coalition
structures.

2.1 Cardinal Hedonic Games

Let N = {1,...,n} be a finite set of agents. A coalition is a
non-empty subset of N. By A; we denote the set of coalitions
agent ¢ belongs to, i.e., N; = {S C N: i € S}. A coalition
structure, or simply a partition, is a partition 7 of the agents
N into disjoint coalitions, where 7 () denotes the coalition
agent ¢ belongs to. A hedonic game is a pair (N, ), where
7 = (Zi)ien is a preference profile specifying the prefer-
ences of each agent ¢ as a complete and transitive preference
relation 7—; over ;. In hedonic games, agents are only con-
cerned about their own coalition. Accordingly, preferences
over coalitions naturally extend to preferences over partitions
as follows: 7 7—; 7' if and only if 7(7) =; 7' (4).

Throughout the paper, we assume that rankings over the
coalitions in N; are given by utility functions u;: NV; — R,
which are extended to evaluate partitions in the hedonic way
by setting u;(m) = u;(7(i)). A hedonic game together with
a representation by utility functions is called cardinal hedo-
nic game. Because the sets N are finite, preferences could
in principle always be represented by cardinal values. This is
impractical due to two reasons. First, such utility functions
require exponential space to represent. Therefore it would be
desirable to consider classes of hedonic games with succinct
representations. Second, we would like to compare different
agents’ utility functions such that a certain cardinal value ex-
presses the same intensity of a preference for all agents. This
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cannot be guaranteed by arbitrary utility representations of
ordinal preferences. Our model of loyalty is therefore partic-
ularly meaningful in succinctly representable classes of car-
dinal hedonic games. These include the following classes of
hedonic games, which aggregate utility functions over single
agents of the form u; : N — R where u;(¢) = 0, which can
be represented by a complete weighted digraph.

e Additively separable hedonic games (ASHGs) [Bogo-
molnaia and Jackson, 2002]: utilities are aggregated
by taking the sum of single utilities, i.e., wu;(m)
Zjeﬂ(i) ui(j).

e Friend-oriented hedonic games (FOHGs) [Dimitrov et
al., 2006]: the restriction of ASHGs where utilities for
other agents are either n (the agent is a friend) or —1
(the agent is an enemy), i.e., for all ¢,5 € N with
i # j, ui(j) € {n,—1}. Given an FOHG, the set
F; ={j € N: u;(j) = n}is called friend set of agent i.
The unweighted digraph G = (N, A) where (i,j) € A
if and only if 7 € Fj is called friendship graph. An
FOHG can be represented by specifying the friend set
for every agent or by its friendship graph.

e Modified fractional hedonic games (MFHGs) [Olsen,
2012]: utilities are aggregated by dividing the sum of
single utilities by the size of the coalition minus 1, i.e.,

wi(m) = 0if (i) = {i}, and uy(m) = 2@ oih
erwise. In other words, the utility of a coalition structure
is the expected utility achieved through another agent in

the own coalition selected uniformly at random.

A cardinal hedonic game is called mutual if, for all pairs
of agents 4,5 € N, u;(j) > 0 implies u;(¢) > 0. It is called
symmetric if, for all pairs of agents i,j € N, u;(j) = u;(4).
Clearly, symmetric games are mutual. Throughout most of
the paper, we will consider at least mutual variants of the
classes of hedonic games, which we just introduced.

2.2 Loyalty in Hedonic Games

We are ready to define our concept of loyalty. Given a cardi-
nal hedonic game, its loyal variant needs to specify two key
features. First, for every agent, we need to identify a loyalty
set, which contains the agents towards which loyalty is ex-
pressed. Second, we need to specify how loyalty is expressed,
i.e., how to obtain new, loyal utility functions.

Formally, given a cardinal hedonic game and an agent
i € N, we define her loyalty set as L; = {j € N\
{i}: w;({i,5}) > 0}. In other words, agents are affected
by agents that influence them positively when being in a
joint coalition. Note that for all hedonic games consid-
ered in this paper, the loyalty set is equivalently given by
L, ={j € N\ {i}: w;({i,5}) > w;(4)}, i.e., it contains
the agents with which ¢ would rather form a coalition of size
2 than staying on her own. The loyalty graph is the directed
graph G, = (N, A) where (i, j) € Aifand only if j € L;.

It remains to specify how agents aggregate utilities in a
loyal way. Given a cardinal hedonic game, its loyal variant
is defined on agent set N by the utility function ul(7) =
Min;eq(i)n(z;u{i}) % (7(7)). Interestingly, the loyal variant
is itself a hedonic game, and we can consider its own loyal
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variant. Following this reasoning, we recursively define the
k-fold loyal variant by setting the 1-fold loyal variant to the
loyal variant and the (k + 1)-fold loyal variant to the loyal
variant of the k-fold loyal variant. Also, we denote by u¥ and
LY the utility function and the loyalty set of an agent i, and
by G¥ the loyalty graph of the k-fold loyal variant.

In fact, we will see that this process terminates after at
most n steps in a limit game that satisfies egalitarianism at
the level of coalitions. For simplicity, we restrict attention
to mutual cardinal hedonic games, where the loyalty sets
defines a symmetric binary relation and the loyalty graph
can be represented by an undirected graph.! For an agent
i € N, let G7 (i) be the agents in the connected compo-
nent of the subgraph of G, induced by 7 (%) containing .
Now, define the locally egalitarian variant of a cardinal he-
donic game as the game on agent set N with utilities given
by uf(m) = minjegr (s) u; (7). In other words, an agent re-
ceives the minimum utility among all agents reachable within
her coalition in the loyalty graph.

Finally, we introduce a technical assumption. A mutual
cardinal hedonic game is called loyalty-connected if, for all
agents ¢ € N and coalition structures 7, u;(G7 (i) > u;(m).
This property precludes negative influence through agents
outside the reach of loyalty, and is satisfied by reasonable
classes of cardinal hedonic games like ASHGs, MFHGs, or
fractional hedonic games [Aziz et al., 2019].

2.3 Solution Concepts

We evaluate the quality of coalition structures by measures of
stability and efficiency.

A common concept of group stability is the core. Given
a coalition structure m, a coalition C C N is blocking w
(respectively, weakly blocking ) if for all agents i € C,
u;(C) > u;(m) (respectively, for all agents i € C, u;(C) >
u; (m), where the inequality is strict for some agent in C). A
coalition structure 7 is in the core (respectively, strict core)
if there exists no non-empty coalition blocking (respectively,
weakly blocking) .

A fundamental concept of efficiency is Pareto optimality.
A coalition structure 7' Pareto dominates a coalition struc-
ture 7 if, for all ¢ € N, u;(7'(i)) > w;(w(i)), where the
inequality is strict for some agent in N. A coalition struc-
ture 7 is called Pareto optimal if it is not Pareto dominated by
another coalition structure. In other words, given a Pareto op-
timal coalition structure, every other coalition structure that
is better for some agent, is also worse for another agent.

Another concept of efficiency concerns the welfare of a
coalition structure. There are many notions of welfare depen-
dent on how to aggregate single agents’ utilities for a social
evaluation. In the context of loyalty, egalitarianism seems to
be especially appropriate. It aims to maximize the well-being
of the agent that is worst off. Formally, the egalitarian wel-
fare of a partition 7 is defined as £(7) = min;en u; (7 (i)).
Also, let £¥(m) denote the egalitarian welfare of the k-fold
loyal variant. Following this definition, coalition structures

I'This restriction is in accordance with our results, but it can be
lifted with some technical effort.
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maximizing egalitarian welfare are not necessarily Pareto op-
timal. However, there exists always a Pareto optimal coali-
tion structure maximizing egalitarian welfare. Specifically,
a coalition structure maximizes leximin welfare if its utility
vector, sorted in non-decreasing order, is lexicographically
largest. A coalition structure maximizing leximin welfare is
Pareto optimal and maximizes egalitarian welfare.

Apart from finding efficient coalition structures, an indi-
vidual goal of an agent : is to be in a best coalition, i.e., in a
coalition in AV; maximizing her utility. Formally, the problem
of, given a cardinal hedonic game, an agent ¢* € NN, and a ra-
tional number g € Q, deciding if there exists a subset C' C N
with ¢* € C and u;+(C) > g, is called BestCoalition.

3 Loyalty Propagation and Best Coalitions

Our first proposition collects some initial observations. It
states, how loyalty propagates through the loyalty graph for
higher degree loyal variants, terminating with the locally
egalitarian variant, and considers egalitarian welfare.

Proposition 1. Let a mutual cardinal hedonic game on agent
set N with |[N| = n be given. Letk > 1,4 € N, and 7 a
coalition structure. Then, the following statements hold.

1. The loyalty graph and loyalty sets are the same for all
loyal variants, i.e., G} = G} and L¥ = L}.

Loyalty extends to agents at distance k, i.e., u¥ ()
min{u;(7): j € () with dGL[Tr(i)] (1,7) < k}.
Utilities converge to the utilities of the locally egalitar-
ian variant, i.e., ui = uZE foralll > n.

4. Egalitarian welfare is preserved, i.e., £* (1) = ().

Proof. The first statements follow immediately from mutual-
ity. We prove the second statement by induction over k. For
k = 1, the assertion follows directly from the definition of
the loyal variant.

Now, let k& > 2 be an integer. Let C' = (i), C = 7(i) N
(Ly U{i}), H = G[n(i)], and for p > 1,let Cp(j) = {m €
C with dg (4, m) < p}. Then,

(o)

uf(r) = Jréucri u;

= min min{u,,(C): m € Cr_1(j)}
jeCyr

= min
JEC: dy (i,5)<1
= min{u;(C): j € C with dpy (i, j) < k}.

min{u,,(C): m € Cr_1(j)}

There, the second equality follows by induction, the third
equality by definition of the loyalty graph, and the last equal-
ity by observing that the vertices with a distance of at most
k from ¢ are precisely the vertices with a distance of at most
k — 1 from an arbitrary neighbor.

The third statement follows from the second one, and the fi-
nal statement follows from the observation that the minimum
utility among agents in a coalition structure is preserved when
transitioning to a loyal variant. O

Example 1. We provide an example showing that part 4
of Proposition 1 does not extend to leximin welfare.
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Figure 1: Friendship graph of Example 1. The black and white coali-
tions constitute a coalition structure minimizing leximin welfare for
the 2-fold loyal variant, which is not Pareto optimal under the origi-
nal utilities.

Consider a symmetric FOHG with agent set N
{ai,bi,ei: 1 < @ < 4} U {21,202}, and the friendship
graph in Figure 1. It can be shown that the coalition
structure T = {{2;, a2i—1, 2,021, b2, C2i—1,C2i}: T =
1,2} maximizes leximin welfare for its 2-fold loyal vari-
ant (consider agents of type b;). However, m is not
even Pareto optimal under the original utilities. Indeed,
7' = {{z1,a1,a4,b1,b4,c1,ca}, {22, 02, a3,b2,b3,co,c3}}
is a Pareto improvement. All agents receive at least the same
utility, and as, a4, c1, and c3 are better off.

Our next goal is to reason about finding best coalitions for
an agent. Note that this problem can usually be solved in
polynomial time. For instance, in ASHGs, given an agent ¢,
every coalition that contains ¢ together with all agents that
give positive utility to ¢ and no agent that gives negative util-
ity to ¢ is a best coalition for i. By contrast, we obtain hard-
ness results for loyalty even in symmetric FOHGs. While it
is possible to determine the number of friends of the unhap-
piest friend in a best coalition in polynomial time [Wiechers
and Rothe, 2020], the problem becomes hard if the number of
enemies is to be minimized at the same time. We omit some
proof details and proofs due to space restrictions, but they can
all be found in the extended version of the paper.

Theorem 2. Let k > 1. Then, BestCoalition is NP-
complete for the k-fold loyal variant of symmetric FOHGs.

Proof sketch. Membership in NP is clear. For hardness,
we provide a reduction from the NP-complete problem
SetCover [Karp, 1972]. An instance of SetCover con-
sists of a triple (A, S, k), where A is some finite ground set,
S C 24 is a set of subsets of A, and  is an integer. The in-
stance (A, S, k) is a Yes-instance if there exists S’ C S with
Upes B = Aand [S’| < k. The reduction is illustrated in
Figure 2.

Let £ € N. Define M = [%J . Given an instance
(A, S, k) of SetCover, define a = |A|. We define an in-
stance ((N, (F})ien),i*,q) of BestCoalition based on
an FOHG (N, (F;);en) represented via friend sets by speci-
fying each individual component. The agent set is defined as
N ={w;: i €[0,a+2]}U{v;: i € [0,a—1]}U{al,B!: i €
[a],j € [M]} UAUS, and consists of representatives of the
elements of A and S, and auxiliary agents. If k is even, set
1" = wp and if k is odd, i* = vg. The friend sets are given as

M 7va71}s

° le - {’lUO,U)Q,UJg, e awa+2},

o Fy, = {w1,vo,..
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M times

Figure 2: Schematic of the hardness reduction in Theorem 2 for
k > 2. The figure shows the friendship graph for the instance
of SetCover given by A = {z1,z2,23,24} and S = {51 =
{Jil, T2, .%‘3}, S2 = {Jil, 3, .%‘4}, 83 = {a)z, .I‘4}} The black ver-
tex indicates a complete subgraph on a + 2 vertices. We ask
BestCoalition for the agents vo and wo, respectively, indicated
by double circles.

o Fy, ={w;:jela+2],j#i}forie[2,a+2],
o F,, ={wg,al,...,al}forie€ [0,a—1]ifk > 2,
o F,, ={wotUAforie[0,a—1]ifk <2,

o Fu= {voy -+, va—1,B}} fori € [a],

o F={B"",....5,7",p]} fori € [a), j € [2, M],

o Fy={al,a]™ ... ot} fori€ [a], j € [M - 1],

o Fyu ={a}M}UAforie [a],

o F,={BM:icla}u{se S:zecs}forzec Aif
k> 2,

o I, = {U()a--
k <2, and

o F, = {x € A: 2 € s} for s € S (in other words,
Fy =5).

Finally, with n = |N|, specify the threshold utility ¢
nfa+1) —(a+ k) fork = 1land ¢ = n(a + 1) —
(14 K+ 2(M + 1)a), otherwise. Note that the distance be-
tween ¢* and the x; in the loyalty graph is exactly k.

If (A, S, k) is a Yes-instance, let S’ C S be a set cover
of A with at most x sets. For k = 1, consider the coalition
C=AUS U{vg,...,v4-1,wp,ws}. For k > 2, consider
the coalition C' = (N \ S) U S’. Tt is quickly checked that in
each case uf (C) > q.

Conversely, assume that C' is a coalition with ¢* € C and
uk, (C) > q. Then, all agents that have a distance of at most
k in the loyalty graph have to be included due to the degrees
of vertices at a distance of at most k. In particular, A C C' for
any k. Let S’ =CnNS.

First, consider the case k = 1. Then, u,,(C) = n(a +
1) —a — |S’]. Hence uy (C) > ¢ implies that |S’| < k. In
addition, every agent z € A must have at least a + 1 friends
present in C. In other words, for every x € A there exists
s € ' with « € s. Hence, S’ is a cover of A with at most &
elements.

Va1t U{s € S:z € s}forx € Aif
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For arbitrary k& > 2, it holds that u;« (C) = n(a+1)—1—
|S"| = (M + 2)a. Hence uy (C') > q implies that | S| < k.
The remainder follows analogous to the case k = 1. O

Since the instances in the previous reduction contain agents
with an arbitrarily large distance (parametrized by k), we
cannot deduce direct consequences for the locally egalitarian
variant. However, it is possible to bound the diameter in the
reduced instances globally to obtain a similar result.

Theorem 3. BestCoalition is NP-complete for the lo-
cally egalitarian variant of symmetric FOHGsS.

If we change the underlying class of hedonic games, we
can circumvent the hardness results of the last two theorems.

Theorem 4. Let k > 1. Then, BestCoalition can be
solved in polynomial time for the k-fold loyal variant and the
locally egalitarian variant of symmetric MFHGsS.

4 Coalition Structures in the Core

In this section we consider group stability in the locally egal-
itarian variant and the loyal variants.

4.1 Core in the Locally Egalitarian Variant

We start with a general lemma yielding a sufficient condition
for existence of Pareto optimal coalition structures in the core.

Lemma 5. Consider a class of hedonic games with the fol-
lowing two properties:
1. Restrictions of the game to subsets of agents are in the
class.

2. For every coalition in any game of the class, the value of
the coalition is the same for every player in the coalition.

Then, for every game in the class, there exists a coalition
structure in the core which is Pareto optimal.

Weakening the second condition of the lemma to the ex-
istence of some coalition that is best for all of its members
is sufficient to find a coalition structure in the core. We dis-
cuss this in the extended version of the paper. Interestingly,
the lemma can be applied to the locally egalitarian variant of
cardinal hedonic games under fairly weak assumptions.

Theorem 6. Let a loyalty-connected, mutual cardinal hedo-
nic game be given. Then, there exists a Pareto optimal coali-
tion structure in the core of its locally egalitarian variant.

Proof. Let a loyalty-connected, mutual cardinal hedonic
game be given and consider its locally egalitarian variant. We
modify the utility functions such that u” (C) stays the same if
C is connected in the loyalty graph, and set it to 0, otherwise.
It suffices to find a Pareto optimal member of the core un-
der this modification, because, by loyalty-connectivity, split-
ting coalitions into their connected components in the loyalty
graph is weakly better for every agent, even under u”. Con-
sider the class of hedonic games given by this modified n-fold
loyal variant together with all of its restrictions, in which we
apply the same modifications towards the utility values for
non-connected coalitions.

By Proposition 1, the utility for a coalition is the same
for every player in the coalition. Hence, all requirements of
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Lemma 5 are satisfied and we find the desired coalition struc-
ture. ]

In the extended version of the paper, we provide an exam-
ple for the necessity of loyalty-connectivity in the previous
theorem.

Example 2. We extend an example by Wiechers and
Rothe [2020] that shows that the previous result cannot be
strengthened to find a coalition structure in the strict core.
Consider the symmetric FOHG on agent set {a,b,c,d, e}
with loyalty graph depicted below.

Consider its locally egalitarian variant. Then, {a,b,c} is
the unique best coalition for agents b and c and among the
best coalitions for agent a. Hence, it has to be contained in
every coalition structure in the strict core. Similarly, {a,d, e}
has to be a coalition in the strict core. As these conditions
cannot be satisfied simultaneously, the strict core is empty.

Note that both the coalition structure {{a,b,c},{d,e}}
and {{a,d, e}, {b,c}} are in the core and Pareto optimal.

€ C

d b

The construction in Lemma 5 gives rise to a simple recur-
sive algorithm that computes Pareto optimal coalition struc-
tures in the core. Still, the computational complexity highly
depends on the underlying cardinal hedonic game. While a
modified version of the algorithm by Bullinger [2020] for
computing Pareto optimal coalition structures in symmetric
MFHG:s finds a coalition structure in the core of their locally
egalitarian variants, a version of our reduction on best coali-
tions shows an intractability for FOHGs.

Theorem 7. The following statements hold.

1. Computing a coalition structure in the core can be done
in polynomial time for the locally egalitarian variant of
symmetric MFHGsS.

2. Computing a coalition structure in the core is NP-hard
for the locally egalitarian variant, even in the class of
symmetric FOHGs with non-empty core.

4.2 Core in the Loyal Variants

In contrast to the locally egalitarian variant, the k-fold loyal
variant may have an empty core for arbitrary k. This is even
true in a rather restricted class of symmetric ASHGs with in-
dividual values restricted to {n,n + 1, —1}.

Proposition 8. For every k > 1, there exists a symmetric
ASHG with O(k) agents such that the core of its k-fold loyal
variant is empty.

Proof sketch. We only describe the instance. Let & € N.
We define an ASHG (N, (u;)ien). Set m kif k is
an even number and m k+ 1if k is odd. Let A; =
{a;, b4, ... b, ci,...,ct.} for i € [3]. Define N

rvmo
U2, A; as the set of agents and let n = |N|. Reading in-
dices ¢ modulo 3, we define symmetric utilities according to

o u(a;,bt) =u(a;,ct) =n+1fori e [3],

o u(bi, air1) =u(ct,,a;+1) =nfori € [3],
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o u(b},bj41)
[m — 1], and
e u(v,w) = —1 for all other utilities.
Note that |[N| = 3(2m + 1) = O(k).

= u(ch, i) = n+1fori e 3,5 €

O

We can use the previous counterexample as a gadget in a
sophisticated reduction to obtain computational hardness.

Theorem 9. Let k > 1. Deciding whether the core is non-
empty is NP-hard for the k-fold loyal variant of symmetric
ASHGs.

Naturally, the question arises whether the core is always
non-empty for loyal variants of FOHGs. While we leave
the ultimate answer to this question as an open problem, we
give evidence into both directions. First, we determine cer-
tain graph topologies that allow for coalition structures in the
core. By contrast, we provide an intractability result for the
computation of coalition structures in the core, and in the ex-
tended version of the paper we show that the dynamics related
to blocking coalitions can cycle.

Proposition 10. Let a symmetric FOHG with connected, reg-
ular friendship graph be given. Then the coalition structure
consisting of the grand coalition is in the strict core for the
k-fold loyal variant for every k > 1.

Proof. Assume that the friendship graph is regular with ev-
ery vertex having degree r. Singleton coalitions are clearly
not weakly blocking, so we may assume that » > 2. In addi-
tion, we may assume that a weakly blocking coalition induces
a connected subgraph of G. In a weakly blocking coalition
C C N, some agent would have less than r friends, strictly
decreasing her utility. Hence, the grand coalition is in the
strict core. O

Albeit the previous proposition may look rather innocent,
regular substructures in the loyalty graph have been very use-
ful in dealing with core (non-)existence (see, e.g., the many
cycles in the games of Proposition 8 and Theorem 9).

For symmetric FOHGs with a tree as loyalty graph, it is
easy to see that a coalition structure is in the core if and only
if its coalitions form an inclusion-maximal matching. In the
case of ASHGs, we can apply a greedy matching algorithm
to compute coalition structures in the core.

Proposition 11. Let k > 1. A coalition structure in the core
of the k-fold loyal variant can be computed in polynomial
time for symmetric ASHGs with a tree as loyalty graph.

On the negative side, even under the existence of core par-
titions, it may be hard to compute them. Interestingly, the
next theorem does not cover the case k = 1.

Theorem 12. Let k > 2. Computing a coalition structure in
the core is NP-hard for the k-fold loyal variant of symmetric
FOHGs with non-empty core.

On the other hand, if the games originate from symmetric
MFHGs, we obtain a polynomial-time algorithm by a modi-
fication of the algorithm in Theorem 7.

Theorem 13. Let k > 1. Computing a coalition structure in

the core can be done in polynomial time for the k-fold loyal
variant of symmetric MFHGsS.
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Symmetric k-fold

. Core Solution
loyal variant

Best Coalition

orig.  poly. poly.P
[Dimitrov et al., 2006]
FOHGs 1 NP-h[Thm.2]  open®®
kE>2 NP-h[Thm.2] NP-h.(?)[Thm. 12]
limit NP-h.[Thm. 3] NP-h.(P [Thm. 7]
orig.  poly. NP-h.O
ASHGs [Aziz et al., 2013]
k>1 NP-h[Thm.2] NP-h© [Thm.9]
limit NP-h.[Thm. 3] NP-h.(P [Thm. 7]
MFHGs all poly.[Thm. 4] poly.® [Thms. 7,13]

Table 1: Computational complexity of computing best coalitions and
core partitions. The circled +, —, and 7 indicate whether elements
in the core always exist, may not exist, or whether this is unknown.

5 Conclusion and Open Problems

We have introduced loyalty in hedonic games as a possible
way to integrate relationships of players in a coalition into
the coalition formation process. Given a hedonic game, play-
ers can modify their utilities to obtain a new hedonic game
which regards loyalty among coalition partners. Applying
loyalty multiple times yields a sequence of hedonic games
with increasing loyalty, eventually terminating in a hedonic
game with utilities that represent a local form of egalitarian-
ism. The limit game usually contains Pareto optimal coalition
structures in the core, but their efficient computability is de-
pendent on the initial input game. We show that computing
best coalitions is hard if the input is an FOHG, a reduction
that can also be applied to the computation of coalition struc-
tures in the core, revealing a close relationship of the two
problems. An overview of our results is given in Table 1.

Our work offers plenty directions for further investigation.
First, similarly to altruistic hedonic games, one can make the
aggregation mechanism for loyal utilities dependent on a pri-
ority amongst the agents, or take averages instead of sums.
This yields new notions of loyalty that are worth to inves-
tigate and compare. Second, it would be interesting to ap-
proach loyalty for other underlying classes of hedonic games
such as fractional hedonic games. This includes also to find
a reasonable way to define loyalty for purely ordinal input.
Note that our (equivalent) definition of the loyalty set is also
applicable in this case. Finally, an intriguing open problem
concerns the existence of coalition structures in the core for
loyal variants of FOHGs, in particular for the 1-fold variant,
where we could not show hardness of the computational prob-
lem.
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