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Abstract
The Shapley value is a well recognised method
for dividing the value of joint effort in coopera-
tive games. However, computing the Shapley value
is known to be computationally hard, so stratified
sample-based estimation is sometimes used. For
this task, we provide two contributions to the state
of the art. First, we derive a novel concentration
inequality that is tailored to stratified Shapley value
estimation using sample variance information. Sec-
ond, by sequentially choosing samples to minimize
our inequality, we develop a new and more efficient
method of sampling to estimate the Shapley value.
We evaluate our sampling method on a suite of test
cooperative games, and our results demonstrate that
it outperforms or is competitive with existing strat-
ified sample-based estimation approaches to com-
puting the Shapley value.

1 Introduction
The Shapley value is a cornerstone measure in cooperative
game theory. It is an axiomatic approach to allocating a di-
visible reward or cost between participants where there is a
clearly defined notion of how much surplus or profit a group
or “coalition” of participants could achieve by themselves. It
has many applications, including analyzing the power of vot-
ing blocks in weighted voting games [Bachrach et al., 2009],
in cost and surplus division problems [Soufiani et al., 2014;
O’Brien et al., 2015; Aziz et al., 2016; Chapman et al., 2017],
as a measure of network centrality [Michalak et al., 2013];
and as a method of explaining the predictions of machine
learning models [Lundberg and Lee, 2017]. Specifically, un-
der the Shapley value, each player is allocated their aver-
age marginal contribution across every possible sequence of
player join orderings. Although the Shapley value is concep-
tually simple, its use is hampered by the fact that its exact
computation requires exponentially many evaluations of the
marginal contributions of the players in the coalition.

Given this difficulty, one can exploit the fact that the Shap-
ley value is an average by using estimation techniques to
approximate it. In particular, the coalitions evaluated in
the Shapley value computation can be naturally stratified by
coalition size, allowing it to be reformulated as an average

over strata averages. It is then possible to separately and
efficiently estimate these strata averages via sample alloca-
tion techniques. Such techniques in literature include simple
random sampling [Castro et al., 2009], simple stratified ran-
dom sampling, and a Neyman-type allocation [Castro et al.,
2017], and allocating stratified samples to minimize a Ho-
effding type inequality [Maleki et al., 2013].

In this paper, we improve on these approaches by develop-
ing a method for stratified sampling to maximally reduce an
expression of the uncertainty in the Shapley value estimate.
To do this, we develop a general expression associated with
that uncertainty, which takes the form of a concentration in-
equality; specifically, a stratified empirical Bernstein bound
(SEBB). This inequality considers factors such as: the sizes
of all the strata and the proportion of each that are sampled;
the sample variances of the samples from each of the strata;
the differences in the range of data of each strata; any addi-
tional importance weightings on the strata, and; whether any
(or all) of the strata are sampled with or without replacement.

Using our SEBB, we propose an online method for se-
quentially sampling in order to maximally reduce the bound
at each iteration, called the stratified empirical Bernstein
method (SEBM). We numerically demonstrate the value of
the SEBM by using it to compute the Shapley value in a suite
of benchmark cooperative games. Our comparisons to exist-
ing sample-based approaches to computing the Shapley value
show that our method is almost uniformly superior.

Next, Section 2 frames some context of the paper. Sec-
tion 3 provides several component lemmas. From this Sec-
tion 4 provides the derivation of our concentration inequality.
In Section 5, we evaluate the performance of our bound in
approximating the Shapley value. Section 6 discusses a mul-
tidimensional extension to the concentration inequality, and
Section 7 concludes.

2 Background
Stratified sampling is a well known sampling technique,
which estimates the mean of a population by partitioning it
into mutually exclusive subgroups, or strata. It proceeds by
applying a sampling estimator to each stratum, before weight-
ing and combining these estimates to form an estimate of the
population mean. If strata and their sizes are naturally given
or determined, there exists a further question of how to allo-
cate the sampling between the strata.
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One way of deriving a sampling method is to use a con-
centration inequality as a confidence bound on the error of
the population mean, and then selecting additional samples to
minimise it. For instance, minimising Chebyshev’s inequality
on the variance of the estimation of the population mean re-
sults in the well-known Neyman allocation [1938], which has
been inspiration as a method of estimating the Shapley value
[Castro et al., 2017]. Hoeffding’s inequality is another com-
monly used concentration inequality whose minimisation has
also been adapted in the context of Shaplay value sampling
[Maleki et al., 2013].

Recently, there has been interest in concentration inequal-
ities called empirical Bernstein bounds (EBBs) [Maurer and
Pontil, 2009], which are probabilistic bounds for the sample
mean and sample variance. EBBs have been subject to rapid
development [Audibert et al., 2009; Audibert et al., 2007;
Bardenet and Maillard, 2015] and have replaced Hoeffding’s
inequality in a number of computational applications [Mnih
et al., 2008; Thomas et al., 2015; Carpentier et al., 2011].

Sampling without replacement offers the opportunity to
further tighten the concentration bounds over the sampling-
with-replacement case. The refinement was first demon-
strated with a martingale argument by Serfling [1974] which
was recently improved to created an EBB suitable for sam-
pling without replacement by Bardenet and Maillard [2015].

Our observation, is that the components of these analyses
can be used to create a variance-sensitive concentration in-
equality tailored for stratified random sampling, which then
can be minimised in the context of Shapley value estimation.

3 Preliminaries
We now state lemmas which we use to derive our stratified
empirical Bernstein bound (SEBB); the proofs of lemmas and
theorems are as supplemental documentation (section A). The
first lemma is an often-used and rather weak result used to
fuse simple statements of probability:

Lemma 3.1 (Probability Union). For any random variables:

P(a > c) ≤ P(a > b) + P(b > c)

The next lemma is a result of algebra that relates the sample
squares about the mean to the sample variance.

Lemma 3.2 (Variance Relation). For random variable X
with mean µ, and n samples {xk}k=1,...,n. The sample mean
µ̂ = 1

n

∑
k xk, sample variance, σ̂2 = 1

n

∑
k(xk − µ̂)2, cen-

tered average sample squares σ̂2
0 = 1

n

∑
k(xk − µ)2, obey:

σ̂2
0 − σ̂2 = (µ̂− µ)

2
.

We use this result to create bounds for the sample variance
from bounds on the sample squares. We also use the next
lemma, which extends directly from Markov’s inequality:

Lemma 3.3 (Chernoff Bound). For a random variable X ,
and for any s > 0 and t:

P(X ≥ t) ≤ E [exp(sX)] exp(−st)

Many well-known inequalities follow from upper bounds for
E [exp(sX)], also known as the moment generating function.

3.1 Bounds on the Moment Generating Function
The next three lemmas give three upper bounds for moment
generating functions. The first is the famous Hoeffding’s
lemma [1963] which is essentially constructed by fitting a line
over the exponential function of the moment generating func-
tion:
Lemma 3.4 (Hoeffding’s Lemma). For random variable X
bounded a ≤ X ≤ b with D = b− a, for any s > 0:

E [exp(s(X − E[x]))] ≤ exp

(
1

8
D2s2

)
.

The next is a similar bound on the moment generating func-
tion that involves information about the variance.
Lemma 3.5. For random variable X bounded a ≤ X ≤ b
with D = b− a and variance σ2, for any s > 0:

E [exp(s(X − E[x]))] ≤ exp

((
D2

17
+
σ2

2

)
s2

)
The proof of this lemma is provided in supplementary ma-

terial (section A), and essentially involves fitting a parabola
(instead of a line) over the exponent in the moment generat-
ing function. This lemma is a simplified half-way result used
in a derivation of Bennett’s inequality as presented by Ho-
effding [1963], and derived by Bennett [1962].

The next lemma stems from the creation of an upper bound
on the random variable −X2 instead of X . In this con-
text the moment generating function becomes the expectation
value of a Gaussian function which can be bound above by a
parabola, yielding:
Lemma 3.6. For random variable X bounded a ≤ X ≤ b,
with D = b− a and variance σ2,and for any q > 0:

E[exp(q(σ2 − (X − E[X])2))] ≤ exp

(
1

2
σ2q2D2

)
The three inequalities above (Lemmas 3.4, 3.5 and 3.6) are

used in the derivation of our stratified sampling concentration
inequality in Section 4.

3.2 Moment Generating Function of Means
In the previous subsection we considered bounds on the mo-
ment generating function of random variables, but we must
also relate these to bounds on the moment generating func-
tion of sample means from that of the random variables. The
first is the most straightforward way to do this in the case of
sampling with replacement, and directly assumes the inde-
pendence of the samples:
Lemma 3.7 (Replacement Bound). For random variable X
bounded a ≤ X ≤ b with a mean of zero, with D = b − a
and variance σ2. Let χm = 1

m

∑m
i=1Xi be the average of

m independently drawn (with replacement) samples. If there
exists an α, β ≥ 0 such that for any s > 0 that

E[exp(sX)] ≤ exp((αD2 + βσ2)s2)

then:

E[exp(sχm)] ≤ exp((αD2Ωnm + βσ2Ψn
m)s2)

where Ωnm = Ψn
m = 1

m
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However, for the context of sampling without replacement,
there is an alternative result which can be substituted and may
be (or may not be) tighter. In this context substituting one for
the other can be done judiciously on a case-by-case basis to
create the tightest possible bound. All the numerical results
in this paper have been produced with this judicious choice
conducted. This result directly extends a reverse martingale
argument from Bardenet and Maillard [2015]:

Lemma 3.8 (Martingale Bound). For finite data set
x1, x2, . . . xn that is bounded a ≤ xi ≤ b, and has a mean of
zero and variance σ2 = 1

n

∑n
i=1 x

2
i , denote X1, X2, . . . , Xn

the random variables corresponding to the data sequentially
drawn randomly without replacement, and χm the average of
the first m of them.

E[exp(sχm)] ≤ exp((αD2Ω̄nm + βσ2Ψ̄n
m)s2)

where

Ω̄nm =
n−1∑
k=m

1

k2
≤ (m+ 1)(1−m/n)

m2

and

Ψ̄n
m =

n−1∑
k=m

n

k2(k + 1)
≤ n+ 1−m

m2
.

Under the assumption that for any random variable Z with
a mean of zero such that a ≤ Z ≤ b and D = b − a, with
variance σ2

Z that there exists an α, β ≥ 0 such that for any
s > 0 that E[exp(sZ)] ≤ exp((αD2 + βσ2

Z)s2).

Proofs of both of these lemmas are found in supplementary
material (section A).

4 The Stratified Finite Empirical Bernstein
Bound and Sampling Method

We derive a novel probability bound for the error of the strat-
ified sampling estimate, we begin by precisely defining the
context of our derivations, to which our bound applies.

Definition 4.1 (Problem context). Let a population consist of
n number of strata of finite data points, where ni is the num-
ber of data points in the ith stratum. All values in a stratum
are bound within a finite support of width Di. Denote the
mean and variance of the ith stratum µi and σ2

i , respectively.
Denote random variables for values sequentially drawn (with
or without) replacement as Xi,1, Xi,2, . . . , Xi,ni . Then, for
the first mi of these samples:

• χi,mi = 1
mi

∑mi
j=1Xi,j is their average;

• their biased sample variance is σ̂2
i = 1

mi

∑mi
j (Xi,j −

χi,mi)
2, and;

• their unbiased sample variance is ˆ̂σ2
i = miσ̂

2
i /(mi− 1).

We are interested in the average of the means of the strata
as weighted by constant positive factors {τi}i∈{1...n}. In the
derivation we use arbitrary positive variables {θi}i∈{1...n}.

Given this context, the following two sections contain the
derivation of the stratified empirical Bernstein bound (SEBB)
and the sequential sampling method (SEBM), respectively.

4.1 Bound Derivation
The bound is now developed in four theorems, which build
on each other in sequence:

1. Theorem 4.2 bounds the error in the stratified population
mean estimate

∑n
i=1 τiχi,mi in the context of variance

information.

2. Theorem 4.3 bounds the variance information in the con-
text of sample variance information and the squared stra-
tum mean errors.

3. Theorem 4.4 bounds the squared stratum mean errors.

4. Theorem 4.5 combines the three previous theorems to-
gether using union bounds (to eliminate the dependence
on variance information and squared stratum mean er-
rors), to create a concentration inequality for the error in
the stratified population mean estimate given the sample
variance information.

We begin with an expression for a probability bound on the
absolute error of the weighted stratified sample means about
the weighted strata means, and is developed from lemma 3.5:

Theorem 4.2. Assuming the context given in Definition 4.1,
and let Ωnimi and Ψni

mi be given as in Lemma 3.7, then:

P

(
|
∑n
i=1 τi(χi,mi − µi)|
≥
√

4 log(2/t)
∑n
i=1

(
1
17D

2
iΩ

ni
mi + 1

2σ
2
i Ψni

mi

)
τ2
i

)
≤ t (1)

In most cases, the weights τi can be considered as the prob-
ability weights τi = ni/(

∑n
j=1 nj), and in this context this

probability bound can be used as-is for a measure of uncer-
tainty in stratified random sampling if the true variances (or
alternatively, upper bounds on the true variances) of the strata
are known. However, in other contexts, the weighted sum of
variances must be estimated from the data collected, and to
include this factor we develop and incorporate a probability
bound for the estimate of the sum of variances (as weighted
by arbitrary θi), as follows from use of Lemma 3.6.

Theorem 4.3. Assuming the context given in Definition 4.1.
Then with Ψni

mi per Lemma 3.7:

P
(∑n

i=1 θi(σ
2
i − σ̂2

i − (µi − χi,mi)2)

≥
√

2 log(1/y)
∑n
i=1 σ

2
i θ

2
iD

2
iΨ

ni
mi

)
≤ y (2)

This inequality gives the probability bound between the
weighted variances of the strata, the weighted (biased) sam-
ple variances and the weighted square error of the sample
means. Although the weighted square error of the sample
means may go to zero quickly as additional samples are taken,
we nonetheless develop another probability bound to incorpo-
rate specific consideration of it, from lemma 3.4.

Theorem 4.4. Assuming the context given in Definition 4.1.
Then with Ωnimi as in Lemma 3.7:

P

(
n∑
i=1

θi(µi − χi,mi)2 ≥ log(2n/r)

2

n∑
i=1

θiD
2
iΩ

ni
mi

)
≤ r

(3)
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This theorem bounds the weighted square error of the sam-
ple means. In the next, and final, step we combine the in-
equalities of Equations (1), (2) and (3) together, to complete
our derivation of the SEBB.
Theorem 4.5 (Stratified Empirical Bernstein Bound
(SEBB)). Assuming the context given in Definition 4.1. Then
with Ωnimi ,Ψ

ni
mi per Lemma 3.7:

P

(
|
∑n
i=1 τi(χi,mi − µi)|√

log(6/p)
≥
√
α+

(√
β +
√
γ
)2
)
≤ p

(4)
where:

α =
n∑
i=1

4

17
ΩnimiD

2
i τ

2
i ,

β = log(3/p)
(

max
i
τ2
i Ψni

mi
2D2

i

)
γ =2

n∑
i=1

τ2
i Ψni

mi(mi − 1)ˆ̂σ2
i /mi

+ log(6n/p)
∑
i

τ2
i D

2
iΩ

ni
miΨ

ni
mi

+ log(3/p)
(

max
i
τ2
i Ψni

mi
2D2

i

)
This completes the derivation. In Equation (4) of The-

orem 4.5, we have a concentration inequality for the sum
of weighted strata sample mean errors relative to the sam-
ple variances. In this context, the weights τi are flexible but
would naturally be probability weights proportional to strata
size, τi = ni/(

∑n
j=1 nj), in which case the inequality pro-

vides a concentration of measure in stratified random sam-
pling. Based on this bound, we proceed to propose an online
process of sequentially choosing samples from the strata in
order to minimize it.

The derivation of our inequality extends from considera-
tion of Chernoff bounds and probability unions in a simi-
lar vein to other EBB derivations [Maurer and Pontil, 2009;
Bardenet and Maillard, 2015]. However, the various bounds
on the moment generating functions that we developed in
Section 3 use some loosening approximations in their deriva-
tions, and hence stronger and/or more representative bounds
could be developed at the cost of greater mathematical com-
plexity. Alternatively, integrating other kinds of inequali-
ties such as entropic [Boucheron et al., 2003] or Efron-Stein
[Efron and Stein, 1981] could result in different and poten-
tially tighter bounds. Nonetheless, when we use this bound
in a sequential sampling algorithm, as described next, we see
clear-cut estimation efficiency improvements in the Shapley
value estimation task, as demonstrated in Section 5.

4.2 Sequential Sampling using the Stratified
Empirical Bernstein Method

We introduce a method of sampling, the stratified empirical
Bernstein method (SEBM) which sequentially minimizes the
bound in Theorem 4.5 (SEBB). Pseudocode for the calcula-
tion of the bound and the process of sampling to minimize it,
is given in Algorithm 1.

Algorithm 1 Stratified Empirical Bernstein Method (SEBM)
with replacement

Require: probability p, strata number N , stratum sizes ni,
initial sample numbers mi, initial stratum sample vari-
ances ˆ̂σ2

i , weights τi, widths Di, sample budget B
1: while

∑
imi < B do

2: beststrata← −1
3: lowestbound←∞
4: for k = 0 to N do
5: mk ← mk + 1
6: a← [0, 0], b← [0, 0], c← [0, 0], d← [0, 0]
7: for i = 0 to N do
8: Ωmin ← min(Ω̄nimi ,Ω

ni
mi)

9: Ψmin ← min(Ψ̄ni
mi ,Ψ

ni
mi)

10: a0 ← a0 + log(6N/p)D2
i Ψ̄

ni
miΩminτ

2

11: a1 ← a1 + log(6N/p)D2
iΨ

ni
miΩminτ

2

12: b0 ← max(b0, log(3/p)D2
i Ψ̄

ni
miΨminτ

2)

13: b1 ← max(b1, log(3/p)D2
iΨ

ni
miΨminτ

2)

14: c0 ← c0 + 2Ψ̄ni
mi((mi − 1)ˆ̂σ2

i /mi)τ
2

15: c1 ← c1 + 2Ψni
mi((mi − 1)ˆ̂σ2

i /mi)τ
2

16: d0 ← d0 + 4
17D

2
i Ω̄

ni
miτ

2

17: d1 ← d1 + 4
17D

2
iΩ

ni
miτ

2

18: end for
19: w ←

√
minj(dj + (

√
cj + aj + bj +

√
bj)2)

20: if w < lowestbound then
21: beststrata← k
22: lowestbound← w
23: end if
24: mk ← mk − 1
25: end for
26: take an extra sample from strata: beststrata
27: mbeststrata ← mbeststrata + 1
28: recalculate ˆ̂σ2

beststrata
29: end while

Specifically, Algorithm 1 is a repetitive process involving a
scan through the possible strata and then the selection of one
stratum to sample from to minimize the SEBB under mild
assumptions. The process of scanning involves calculating
the confidence bound width (SEBB) that would result if an
additional sample were to be taken from that stratum with-
out changing its sample variance (line numbers 5-17 in Al-
gorithm 1). The stratum that yields the smallest confidence
bound width in the context of an additional sample is then
selected (line 18-21) and sampled (line 24), the sample vari-
ance of that stratum is updated (line 26); this process repeats
until the maximum sample budget is reached (per the outer
loop, line 1). In this way the process attempts to iteratively
minimize the SEBB in expectation with each additional sam-
ple taken; and hence lead to potentially greater accuracy in
stratified sampling as a result.

We note that computing the SEBB requires the sample vari-
ances of all the strata having been calculated. Accordingly,
Algorithm 1 must be initialized with at least two samples
from each stratum so that sample variance can be calculated.
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Algorithm 1 describes a process specific to sampling with-
out replacement and involves the calculation of the SEBB
with the tightest possible uses of Lemmas 3.8 and 3.7. In par-
ticular, for any stratum i that is sampled without replacement,
any specific bound with an associated Ωnimi and Ψni

mi may be
substituted for Ω̄nimi and Ψ̄ni

mi to potentially tighten the bound,
and this corresponds to choice of Lemma 3.8 or Lemma 3.7
in the bound’s derivation. Since the SEBB is a composition of
such bounds with such choices throughout, there is a structure
of valid pairs of substitutions Ω,Ψ for Ω̄, Ψ̄ in the optimal
calculation of the SEBB, which is shown in the steps 8-15 of
Algorithm 1, using partial terms {a, b, c, d}. The equivalent
algorithm for sampling with replacement simply is the same
algorithm altered by replacing all use of Ω̄, Ψ̄ with Ω,Ψ.

5 Numerical Evaluation: Shapley Value
Approximation

We assess the benefits of using our sampling method by com-
paring its performance to other approaches in a set of example
cooperative games.

For each game, we compute the exact Shapley value, and
then the average absolute errors in the approximated Shap-
ley value for a given budget of marginal-contribution samples
across multiple computational runs. The results are shown
in Table 1, where eSEBM is the error associated with our
method, SEBM, which is compared to the average absolute
error in the Shapley value by sampling with:
• A Hoeffding-bound method [Maleki et al., 2013], de-

noted eMa,
• Simple random sampling of the without stratification,

the described ‘ApproShapley’ method [Castro et al.,
2009], denoted eapp

• The stratified simple sampling method ‘St-
ApproShapley’ [Castro et al., 2017], denoted esim

• Castro’s Neyman-type sampling method ‘St-
ApproShapley-opt’ [Castro et al., 2017], denoted
eCa

Next, we describe the example cooperative games, and
then discuss our results.

5.1 Example Cooperative Games
In general, a cooperative game, 〈N, v〉 ∈ GN , comprises a
set of n players, N = {1, 2, . . . , n}, and a characteristic
function, v : S ⊂ N → R, which is a function specifying
the reward which can be achieved if a subset of the players
S ⊂ N cooperate, where v(∅) = 0. In this context the Shap-
ley value ϕ is a unique mapping from cooperative games to
the player rewards GN → Rn which satisfies many attractive
axioms. If vi,k is the average marginal contribution which
player i can make across coalitions of size k:

vi,k =
1(
n−1
k

) ∑
S⊂N\{i},|S|=k

(v(S ∪ {i})− v(S)) (5)

Then the Shapley value can be expressed as an average:

ϕi(〈N, v〉) =
1

n

n−1∑
k=0

vi,k (6)

The example games are described next, wherew is a vector
of weights in all the games. The first two are inspired by other
benchmark games [Castro et al., 2017].
Example Game 1 (Airport Game). An n = 15 player game
with characteristic function:

v(S) = max
i∈S

wi

where

w = [1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 7, 8, 8, 8, 10]

The maximum marginal contribution is 10, so we assign
Di = 10 for all i.
Example Game 2 (Voting Game). An n = 15 player game
with characteristic function:

v(S) =

{
1, if

∑
i∈S wi >

∑
j∈N wj/2

0, otherwise

where

w = [1, 3, 3, 6, 12, 16, 17, 19, 19, 19, 21, 22, 23, 24, 29]

The maximum marginal contribution is 1, so we assign
Di = 1 for all i.
Example Game 3 (Simple Reward Division). An n = 15
player game with characteristic function:

v(S) =
1

2

(∑
i∈S

wi
100

)2

where

w = [45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10]

The maximum marginal contribution is 1.19025, so we assign
Di = 1.19025 for all i.
Example Game 4 (Complex Reward Division). An n = 15
player game with characteristic function:

v(S) =

(∑
i∈S

wi
50

)2

−

⌊∑
i∈S

wi
50

⌋2

where

w = [45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10]

In this game, we assign Di = 2 for all i.

5.2 Results and Discussion
Overall, the results in Table 1 show that our method has ex-
cellent performance across the benchmark example games.
Specifically, in comparison to existing approaches to approx-
imating the Shapley value, our sampling method shows im-
proved performance on almost all accounts, as shown in Ta-
ble 1. This was particularly the case in the context of large
sample budgets, as our method (SEBM, with error eSEBM )
is sampled without replacement, while the other methods (per
their design) are sampled with replacement.

Despite this performance, we make note of the computa-
tional overhead of iteratively minimizing (one sample at a
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a) Airport Game Average Errors

m/n2 10 50 100 500 1000
eMa 298.4 133.1 99.64 41.96 29.26
eapp 883.6 394.8 266.5 117.0 79.15
esim 357.8 146.1 106.2 44.55 36.33
eCa 325.7 115.8 75.85 31.01 22.12
eSEBM 259.2 73.8 54.76 7.71 1.30

b) Voting Game Average Errors

m/n2 10 50 100 500 1000
eMa 131.0 57.78 41.52 18.66 13.18
eapp 154.7 71.65 47.88 21.57 15.27
esim 145.7 59.72 40.31 17.56 12.84
eCa 142.1 47.35 31.05 14.08 9.800
eSEBM 122.8 47.44 33.18 8.55 1.995

c) Simple Reward Division Game average errors

m/n2 10 50 100 500 1000
eMa 25.68 11.62 7.792 3.481 2.290
eapp 101.4 47.55 34.03 14.52 9.949
esim 22.10 9.045 6.218 2.642 1.938
eCa 22.37 8.925 6.692 2.727 1.940
eSEBM 19.25 7.044 5.158 1.183 0.2817

d) Complex Reward Division Game average errors

m/n2 10 50 100 500 1000
eMa 276.1 118.9 87.00 40.15 27.44
eapp 276.0 124.8 82.78 38.01 28.11
esim 251.4 108.0 78.63 34.64 26.82
eCa 290.5 116.5 81.82 35.70 26.50
eSEBM 214.2 78.47 54.10 12.45 2.711

Table 1: Average absolute errors in the Shapley Value calculation across all players in the four cooperative games (units in 10−4), for the
different sampling schemes with different sampling budgetsm per number of strata (with n2 = 152 for all). Lowest error results are boldened.

time) our inequality in the context of our simple example
games, where this overhead can be a significant drawback.
However, on more complicated games, such as where the
characteristic function is slower to calculate (e.g. as in [Aziz
et al., 2016] or [O’Brien et al., 2015]), any overhead asso-
ciated with the sampling choice is expected to be much less
relevant. We also note that our method’s performance may be
further improved by selecting more refined Di values for our
example games.

One primary limitation of our method is that it rests
on assumption of known data widths Di (and in the case
of sampling-without-replacement, also on strata sizes Ni),
which may not be exactly known in practice. One way to
overcome this may be to use our method with a reliable over-
estimate these parameters (by expert opinion or otherwise).
In practice, may also be advisable to run our method with an
underestimate of the data widths Di, as the sampling process
is sensitive to the shape of the inequality and not necessarily
its magnitude or accuracy as a bound. Finally, although there
may be ways to further strengthen our concentration inequal-
ity at the cost of greater mathematical complexity, our compu-
tational results1 show that using our bound greatly improves
stratified sampling methods for Shapley value estimation.

6 Multidimensional Extension
Looking beyond Shapley value estimation, our concentration
inequality and sampling method can also be extended directly
to the context of multidimensional data. Specifically, instead
of considering data that is single-valued, we consider data
points that are vectors.

Formally, for n strata of finite data points which are all
vectors of size M , let ni be the number of data points in
the ith stratum. Let the data in the ith stratum have a

1see: https://github.com/markopolo141
/Stratified Empirical Bernstein Sampling

mean vector values µi (with µi,j for the jth component of
the vector), which are value bounded within a finite width
Di,j , and have vector value variances σ2

i,j . Given this, let
Xi,1, Xi,2, . . . , Xi,ni (where Xi,k,j is the jth component, of
the kth vector from stratum i) be vector random variables cor-
responding to those data values randomly and sequentially
drawn (with or without) replacement.
Denote the average of the first mi of these random variables
from the ith stratum by χi,mi = 1

mi

∑mi
k=1Xi,k (with χi,mi,j

being the jth component of that vector average). And let
ˆ̂σ2
i,j = i

mi−1

∑mi
k=1(Xi,k,j − χi,mi,j)2 be the unbiased sam-

ple variance of the mi variables in the jth component. As
before, we assume weights τi for each stratum.

In this context we have the following theorem (proof pro-
vided in supplimentary material):
Theorem 6.1 (Vector SEBM bound). In the context above,
then with Ωnimi ,Ψ

ni
mi per Lemma 3.7:

P

(∑M
j=1 (

∑n
i=1 τi(χi,mi,j − µi,j))

2 ≥
log(6/p)

∑M
j=1

(
αj +

(√
βj +

√
γj
)2)) ≤Mp (7)

where:

αj =
n∑
i=1

4

17
ΩnimiD

2
i,jτ

2
i ,

βj = log(3/p)
(

max
i
τ2
i Ψni

mi
2D2

i,j

)

γj =2
n∑
i=1

τ2
i Ψni

mi(mi − 1)ˆ̂σ2
i,j/mi

+ log(6n/p)
∑
i

τ2
i D

2
i,jΩ

ni
miΨ

ni
mi

+ log(3/p)
(

max
i
τ2
i Ψni

mi
2D2

i,j

)
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The left hand side of (7) is the square Euclidean dis-
tance between our weighted stratified sample vector estimate∑n
i=1 τiχi,mi and the true mean stratified vector

∑n
i=1 τiµi.

7 Conclusion
This paper develops an improved stratified sampling method
for estimating the Shapley value of cooperative games. The
sampling method is built on a novel empirical Bernstein
bound, a concentration inequality for sampling from strata
without replacement. This bound is used in a sampling
strategy tailored to Shapley value estimation. Numerical re-
sults clearly demonstrate the benefit of our stratified sampling
method for Shapley value estimation, by consistently outper-
forming the state of the art.
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A great thanks to Sylvie Thiébaux and Paul Scott for aca-
demic advice, encouragement and support.

A Supplementary Material: Proofs
Proof of Lemma 3.1. For any events A and B,
P(A ∪B) ≤ P(A) + P(B) hence:
P ((a > b) ∪ (b > c)) ≤ P(a > b) + P(b > c).
If a > c, then (a > b) ∪ (b > c) is true irrespective of b, so:
P(a > c) ≤ P ((a > b) ∪ (b > c))

Proof of Lemma 3.2. By expanding terms:

σ̂2 = 1
n

∑
i

(
xi − 1

n

∑
j xj

)2

= 1
n

∑
i x

2
i − 1

n2

∑
i,j xixj

σ̂2
0 = 1

n

∑
i (xi − µ)

2
= 1

n

∑
i x

2
i −

2µ
n

∑
i xi+µ

2 therefore:

σ̂2
0−σ̂2 = 1

n2

∑
i,j xixj−

2µ
n

∑
i xi+µ

2 =
(

1
n

∑
j xj − µ

)2

Proof of Lemma 3.3. P(X ≥ t) = P (exp(sX) ≥ exp(st))
≤ E [exp(sX)] exp(−st) by Markov’s inequality.

Theorem A.1 (Parabola Fitting). For a < b and b, z > 0,
there exists α, β, γ that: αx2 + βx+ γ ≥ exp(x) for all a ≤
x ≤ b, and zα+ γ = (z exp(b) + b2 exp(−z/b))(z + b2)−1.

Proof. Parabola αx2+βx+γ that satisfies these requirements
touches the exponential curve at one point (at x = f < b) and
intersects it at another (at x = b), per Figure 1, thus:[

α
β
γ

]
=

b2 b 1
f2 f 1
2f 1 0

−1 [
exp(b)
exp(f)
exp(f)

]

This gives α, β, γ, in terms of f and b, hence:
zα+γ = (((z+fb−b)(f−b−1)−b)ef+(f2+z)eb)(b−f)−2

Minimizing with f occurs at f = −z
b and gives the result.

Proof of Lemma 3.5. Assume WLOG that X has a mean of
zero. We construct an upper bound for E [exp(sX)] by
parabola over exp(sX). There exists a parabola defined by
α, β, γ (Theorem A.1) and thus we expand: E [exp(sX)]
≤ E[αs2X2 + βsX + γ] = αs2 E[X2] + γ = αs2σ2 + γ

=
(
σ2

b2 exp
(
s
(
b+ σ2

b

))
+ 1
)

exp
(
− sσ

2

b

)(
σ2

b2 + 1
)−1

.

This is monotonically increasing with b, and D > b.
Therefore: log(E [exp(sX)]) ≤
log
(
σ2

D2 exp
(
s
(
D + σ2

D

))
+ 1
)
− sσ2

D − log
(
σ2

D2 + 1
)

Using the fact that for any κ, x ≥ 0:
log(κ exp(x) + 1) ≤ log(κ+ 1) + xκ

κ+1 + x2
1
17 +κ

2

(κ+1)2

The result follows using κ = σ2

D2 and x = s(D+σ2/D).

Proof of Lemma 3.6. Assume WLOG X has a mean of
zero. We construct an upper bound for E

[
exp(−qX2)

]
by

parabola over exp(−qX2). For α, γ such that αX2 + γ ≥
exp(−qX2) for all a < X < b. If we define d = max(b,−a)
we can choose γ = 1 and α = (exp(−qd2)− 1)d−2

(see figure 2) which results in:
logE[exp(−qX2)] ≤ log

(
σ2

D2 exp(−qD2)− σ2

D2 + 1
)

Given that for any 0 ≤ κ ≤ 0.5 and γ ≤ 0 that:
log (κ exp(γ)− κ+ 1) ≤ κγ + 1

2κ(1− κ)γ2

Letting κ = σ2

D2 and γ = −qD2

(which is valid by Popoviciu’s inequality σ2 ≤ D2/4)
E[exp(−qX2)] ≤ exp

(
1
2σ

2q2(D2 − σ2)− σ2q
)

≤ exp
(

1
2σ

2q2D2 − σ2q
)

and the result follows by multiplying by exp(qσ2).

Proof of Lemma 3.7. By the independence of samples:
E[exp(sχm)] = E

[
exp

(
s
m

∑m
i=1Xi

)]
=∏m

1 E
[
exp

(
s
mX

)]
≤ exp

(
s2

m2

∑m
1

(
αD2 + βσ2

))
Proof of Lemma 3.8. χm = 1

m

∑m
i=1Xi

= χm+1 + 1
m (χm+1 −Xm+1)

= (χm − χm+1) + (χm+1 − χm+2) + · · ·+ (χn−1 − χn)
= 1

m (χm+1 − Xm+1) + 1
m+1 (χm+2 − Xm+2) + · · · +

1
n−1 (χn −Xn)

Then because: exp(sχm) =
∏n−1
k=m exp

(
s
k (χk+1 −Xk+1)

)
E[exp(sχm)] =

E
[∏n−1

k=m E
[
exp

(
s
k (χk+1 −Xk+1)

)
|χk+1 . . . χn

]]
by repeated application of the law of total expectation.
Since: E[Xk+1|χk+1 . . . χn] = χk+1 then χk+1 − Xk+1 is
a random variable with a mean of zero bounded within width
D, and it also has a variance given by:

σ2
k+1 =

nσ2−
∑n
j=k+1X

2
j

n−(n−k−1) − χ2
k ≤ nσ2

k+1

by application of Lemma 3.2. Therefore:
E[exp(sχm)] ≤ exp

(∑n−1
k=m

(
αD2 + β nσ

2

k+1

)
s2

k2

)
Proof of Theorem 4.2. Applying Lemma 3.3:
P (
∑n
i=1 τiχi,mi −

∑n
i=1 τiµi ≥ t)

≤ E [exp (
∑n
i=1 τis (χi,mi − µi))] exp(−st)

=
∏n
i=1 E [exp (τis (χi,mi − µi))] exp(−st)

by independence of the sampling between the strata. This is
sufficient for Lemmas 3.7, and 3.5 to apply giving:
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P (|
∑n
i=1 τi(χi,mi − µi)| ≥ t)

≤ 2 exp
(∑n

i=1

(
1
17D

2
iΩ

ni
mi + 1

2σ
2
i Ψni

mi

)
τ2
i s

2 − st
)

Minimizing with s and rearranging gives result.

Proof of Theorem 4.3. To bound the sum of variances
(weighted by arbitrary positive θi), consider the aver-
age square of samples about the strata means. Applying
Lemma 3.3 gives:
P
(∑n

i=1 θi(σ
2
i − 1

mi

∑mi
j=1(Xi,j − µi)2) ≥ y

)
≤

E
[
exp

(∑n
i=1 sθi

(
σ2 − 1

mi

∑mi
j=1(Xi,j − µi)2

))]
exp(−sy)

≤ exp(−sy)
∏n
i=1 E

[
exp

(
sθi
mi

∑mi
j=1(σ2 − (Xi,j − µi)2)

)]
by independence of the sampling between the strata. This is
sufficient for Lemma 3.7 with Lemma 3.6 to apply:
P
(∑n

i=1 θi(σ
2
i − 1

mi

∑mi
j=1(Xi,j − µi)2) ≥ y

)
≤

exp
(

1
2

∑n
i=1 σ

2
i θ

2
i s

2D2
iΨ

ni
mi − sy

)
Minimizing with respect to s, rearranging, and applying
Lemma 3.2 gives result.

Proof of Theorem 4.4. We consider the weighted square
error of the sample means:
P
(∑n

i=1 θi(µi − χi,mi)2 ≥ r
)

≤ 1−
∏n
i=1 P

(
θi(µi − χi,mi)2 ≤ ri

)
= 1−∏n

i=1

(
1− P

(
µi − χi,mi ≥

√
ri
θi

)
− P

(
χi,mi − µi ≥

√
ri
θi

))
such that

∑
ri = r, by independence of the sampling and

probability complementarities.
Applying Lemma 3.3 together with Lemmas 3.7, 3.4, gives:
P
(∑n

i=1 θi(µi − χi,mi)2 ≥ r
)

≤ 1−
∏n
i=1

(
1− 2 exp

(
− 2ri
θiD2

iΩ
ni
mi

))
Choosing ri to minimize this expression gives:

ri =
(
rθiD

2
iΩ

ni
mi

) (∑
j θjD

2
jΩ

nj
mj

)−1

Thus: P
(∑n

i=1 θi(µi − χi,mi)2 ≥ r
)
≤

1−
∏n
i=1

(
1− 2 exp

(
−2r∑

j θjD
2
jΩ

nj
mj

))
Using log(1 − (1 − exp(x))n) ≤ x + log(n) for negative x,
and rearranging, gives result.

Proof of Theorem 4.5. By widening the bound of Equa-
tion (2) we get:

P
(∑n

i=1 θiσ
2
i −

∑n
i=1 θi(σ̂

2
i + (µi − χi,mi)2) ≥√

2 log(1/y)(maxi θiD2
iΨ

ni
mi)

∑n
i=1 θiσ

2
i

)
≤ y

Completing the square gives for
√∑n

i=1 θiσ
2
i gives:

P


√√√√ n∑

i

θiσ2
i ≥

√∑n
i θi(σ̂

2
i + (µi − χi,mi)2)

+ log(1/y)
2

(
maxi θiD

2
iΨ

ni
mi

)
+
√

log(1/y)
2 (maxi θiD2

iΨ
ni
mi)

 ≤ y.

Combining with Equation (3) with a union bound
(Lemma 3.1) gives:

P


√√√√ n∑

i

θiσ2
i ≥

√√√√√
∑n
i θiσ̂

2
i

+ log(2n/r)
2

∑
i θiD

2
iΩ

ni
mi

+ log(1/y)
2

(
maxi θiD

2
iΨ

ni
mi

)
+
√

log(1/y)
2 (maxi θiD2

iΨ
ni
mi)

 ≤ y+ r,

Which is a bound for the weighted sum variances in terms of
the sample variances. Letting θi = 1

2τ
2
i Ψni

mi and combining
with (1) with a union bound (Lemma 3.1), and then assigning
r = t = y = p/3 and rewriting in terms of unbiased sample
variance, gives the result.

Proof of Theorem 6.1. Squaring (4) and applying it specifi-
cally to the jth component of all the vectors gives:

P

(
(
∑n
i=1 τi(χi,mi − µi))

2

log(6/p)
≥ αj +

(√
βj +

√
γj

)2
)
≤ p

Taking a series of union bounds (Lemma 3.1) over j gives us
our result.

x

ex

αx2 + βx+ γ

a f b

Figure 1: A parabola parametarized by touching and in-
tercepting points f, b above an exponential curve for all
a ≤ x ≤ b

x
e−qx2

g(x)

a b

Figure 2: Parabola g(x) = (exp(−qd2)− 1)d−2x2 +1
over function exp(−qx2) for all a ≤ x ≤ b where d =
max(b,−a)
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Molina, and Juan Tejada. Improving polynomial estima-
tion of the Shapley value by stratified random sampling
with optimum allocation. Computers & Operations Re-
search, 82:180 – 188, 2017.

[Chapman et al., 2017] Archie C. Chapman, Sleiman
Mhanna, and Gregor Verbič. Cooperative game theory
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