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Abstract
We study the problem of fairly allocating indivis-
ible items to agents with different entitlements,
which captures, for example, the distribution of
ministries among political parties in a coalition
government. Our focus is on picking sequences
derived from common apportionment methods, in-
cluding five traditional divisor methods and the
quota method. We paint a complete picture of these
methods in relation to known envy-freeness and
proportionality relaxations for indivisible items as
well as monotonicity properties with respect to the
resource, population, and weights. In addition, we
provide characterizations of picking sequences sat-
isfying each of the fairness notions, and show that
the well-studied maximum Nash welfare solution
fails resource- and population-monotonicity even
in the unweighted setting. Our results serve as an
argument in favor of using picking sequences in
weighted fair division problems.

1 Introduction
After a national election, the parties forming a coalition gov-
ernment are faced with the task of dividing the ministries
among themselves. How can they perform this task in a fair
manner, taking into account both their preferences on min-
istries and the votes that they received in the election?

The study of fairly allocating resources to interested agents
(in this case, parties), commonly known as fair division, has a
long history dating back several decades [Brams and Taylor,
1996; Moulin, 2003]. Among the most prominent fairness
criteria are envy-freeness—no agent prefers another agent’s
allocated bundle over her own—and proportionality—if there
are n agents, then every agent receives at least 1/n of her
value for the entire resource. These criteria implicitly assume
that all agents have the same entitlement to the resource, an
assumption that is made in the vast majority of the fair di-
vision literature, yet utterly fails in our ministry example as
well as when allotting supplies to districts, organizations, or
university departments, which typically have different sizes.
Fortunately, both envy-freeness and proportionality allow for
taking the entitlements, or weights, into account in a natu-
ral way. For instance, if agent A’s weight is twice that of

agent B, then A will be satisfied with respect to weighted
envy-freeness as long as she derives at least twice as much
value for her own bundle as for B’s bundle. While such
weight-based extensions of classical fairness concepts are ap-
propriate for scenarios with different entitlements, they some-
times cannot be satisfied when allocating indivisible items
like ministries (e.g., when every party places all of its value
on the same important ministry). Consequently, recent work
has proposed relaxations including weighted envy-freeness up
to one item (WEF1) [Chakraborty et al., 2020] and weighted
proportionality up to one item (WPROP1) [Aziz et al., 2020],
each of which can always be fulfilled.

An attractive class of procedures for allocating items is the
class of picking sequences: these procedures let agents take
turns picking their favorite items according to a prespecified
order. Picking sequences are intuitive, can be implemented
efficiently, and help preserve privacy since each agent only
has to reveal the picks in her turns as opposed to her full
preferences. In fact, several methods for apportioning seats
in a parliament—a setting commonly known as apportion-
ment—can be formulated as picking sequences.1 For exam-
ple, Adams’ method assigns each pick to an agent i who min-
imizes ti/wi, where ti and wi denote the number of times
that agent i has picked so far and her weight, respectively.
Brams and Kaplan [2004] proposed using picking sequences
to allocate ministries, noting that such sequences have been
used in Northern Ireland and Denmark, and Chakraborty et
al. [2020] showed that the allocation produced by Adams’
method always fulfills WEF1 but not necessarily WPROP1.
It is therefore an important question which fairness criteria, if
any, are satisfied by picking sequences based on other preva-
lent apportionment methods.

In addition to fairness, another desirable set of properties
for allocation procedures is monotonicity in terms of the pa-
rameters of the setting. In particular, resource-monotonicity
means that whenever an extra item is added, no agent re-
ceives a lower utility as a result. Similarly, population-
monotonicity stipulates that introducing an additional agent
should not increase the utility of any existing agent, and
weight-monotonicity implies that when the weight of an agent
increases, her utility does not go down.2 Segal-Halevi and

1Note that apportionment is a special case of our setting where
all items are identical [Balinski and Young, 2001].

2Resource-monotonicity is known as house-monotonicity in the
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Sziklai [2019] showed that for divisible items in the un-
weighted setting, the maximum Nash welfare (MNW) solu-
tion, which chooses an allocation maximizing the product of
the agents’ utilities, is resource- and population-monotone.
How do picking sequences and (a weighted generalization of)
MNW perform with respect to monotonicity properties in the
weighted allocation of indivisible items?

1.1 Our Results
In this paper, we conduct a thorough investigation of picking
sequences based on common apportionment methods, as well
as the maximum (weighted) Nash welfare solution, in relation
to fairness and monotonicity properties. In addition to WEF1
and WPROP1, we consider weak weighted envy-freeness up
to one item (WWEF1), a weakening of WEF1 proposed by
Chakraborty et al. [2020]. For brevity, we say that an allo-
cation rule satisfies a fairness notion if the allocation that it
produces for an arbitrary input instance satisfies that notion.

We begin in Section 3 by establishing fundamental re-
sults on our properties in the context of picking sequences.
In particular, we define three consistency properties with
respect to the resource, population, and weights—for ex-
ample, resource-consistency means that whenever an item
is added, the new picking sequence should simply be the
old one with an additional pick appended at the end. We
show that resource- and population-consistency imply the re-
spective monotonicity properties for any number of agents,
while weight-consistency implies weight-monotonicity only
for two agents. In addition, for each fairness notion, we char-
acterize the picking sequences whose output always satisfies
that notion.

With this groundwork laid, we proceed to determine the
properties satisfied by each allocation rule in Section 4. First,
we consider the picking sequences derived from five tradi-
tional divisor methods due to Adams, Jefferson, Webster,
Hill, and Dean. These methods assign each pick to an agent i
who minimizes the ratio f(ti)/wi capturing the proportion
between the number of times the agent has picked so far and
the agent’s weight, where the function f varies from method
to method. We establish that all five methods satisfy resource-
and population-monotonicity for any number of agents as
well as weight-monotonicity for two agents; however, they all
fail weight-monotonicity when there are three agents. On the
fairness front, all of the methods satisfy WWEF1, but Adams’
is the only one satisfying the stronger notion of WEF1 while
Jefferson’s is the only one fulfilling WPROP1.

Next, in Section 5, we address the picking sequence de-
rived from another important apportionment method: the
quota method. While not itself a divisor method, the quota
method has a definition similar to that of Jefferson’s method,
which uses the function f(t) = t + 1, but also imposes a
“quota” to determine each agent’s eligibility. We show that
the quota method exhibits similar monotonicity behavior as
the divisor methods, with the notable exception that it fails

context of apportionment; a violation of it is referred to as the Al-
abama paradox [Balinski and Young, 2001]. Likewise, violations
of (variants of) population- and weight-monotonicity are called the
new states paradox and the population paradox, respectively.

population-monotonicity. As for fairness, like Jefferson’s
method, the quota method satisfies WWEF1 and WPROP1.
In fact, these two rules are the first to have been shown to
satisfy both WWEF1 and WPROP1, to the best of our knowl-
edge.

Finally, in Section 6, we examine the maximum weighted
Nash welfare (MWNW) solution, which is a natural gener-
alization of the well-studied MNW solution to the weighted
setting. Chakraborty et al. [2020] already proved that
MWNW satisfies WWEF1 but not WEF1; we show that
it fails WPROP1. We then present examples demonstrat-
ing that even in the unweighted setting (where MWNW re-
duces to MNW), the rule fails both resource- and population-
monotonicity. This result stands in stark contrast to the
aforementioned result of Segal-Halevi and Sziklai [2019] that
MNW is resource- and population-monotone in the context of
divisible items, and is perhaps even more striking given that
MNW is known to fulfill several desirable properties [Cara-
giannis et al., 2019; Halpern et al., 2020]. On the positive
side, MWNW satisfies weight-monotonicity for any number
of agents, and is the only rule to do so among the ones we
consider in this paper.

Our results are summarized in Table 1. Overall, we be-
lieve that they serve as an argument in favor of using picking
sequences in division problems with unequal entitlements in
view of both fairness and monotonicity considerations.

1.2 Related Work
The fair allocation of indivisible items has received substan-
tial recent attention, notably among computer scientists—see
the surveys of Bouveret et al. [2016] and Markakis [2017].
A large majority of work assumes that all agents have equal
entitlements, in which case the notions envy-freeness up to
one item (EF1) [Lipton et al., 2004; Budish, 2011] and pro-
portionality up to one item (PROP1) [Conitzer et al., 2017;
Aziz et al., 2019a] are often considered. Both WEF1 and
WWEF1 reduce to EF1 in the unweighted setting, while
WPROP1 reduces to PROP1. Even though EF1 implies
PROP1, Chakraborty et al. [2020] showed that no rule can si-
multaneously satisfy WEF1 and WPROP1. Aziz et al. [2020]
gave a protocol satisfying WPROP1 along with the eco-
nomic efficiency notion of Pareto optimality, while Babaioff
et al. [2019] considered competitive equilibrium for agents
with different budgets representing their weights. Farhadi
et al. [2019] proposed a weighted version of maximin share
fairness [Budish, 2011; Kurokawa et al., 2018], and Aziz et
al. [2019b] studied the analogous notion for chores (i.e., items
that yield negative utilities).

Like fair division, apportionment methods have given
rise to a long line of work that analyzes their advantages
and disadvantages according to various desiderata [Balin-
ski and Young, 2001; Pukelsheim, 2014]. As Balinski and
Young [2001] noted, Adams’ method tends to favor agents
with smaller weights and Jefferson’s typically benefits those
with larger weights, whereas the other three divisor meth-
ods lie in between. Apportionment has also attracted interest
in artificial intelligence [Brill et al., 2017; Brill et al., 2020;
Bredereck et al., 2020] as well as in philosophy [Wintein and
Heilmann, 2018].
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Resource-mon. Population-mon. Weight-mon. WEF1 WWEF1 WPROP1
Adams 3 3 7 3 3 7

Jefferson 3 3 7 7 3 3
Webster 3 3 7 7 3 7

Hill 3 3 7 7 3 7
Dean 3 3 7 7 3 7
Quota 3 7 7 7 3 3

MWNW 7 7 3 7 3 7

Table 1: Summary of our results. Chakraborty et al. [2020] showed that Adams’ method satisfies WEF1 and WWEF1 but not WPROP1,
while MWNW satisfies WWEF1 but not WEF1. All other results are new to this paper. All rules satisfy weight-monotonicity in the case of
two agents. MWNW fails resource- and population-monotonicity even in the unweighted setting.

Finally, picking sequences have been studied by several au-
thors due to their simplicity and practicality [Bouveret and
Lang, 2011; Bouveret and Lang, 2014; Aziz et al., 2015;
Tominaga et al., 2016; Beynier et al., 2019], with a number of
authors investigating manipulation issues. We assume in this
paper that agents are not strategic and always pick their most
preferred item available. In the unweighted setting, a popu-
lar picking sequence is the round-robin algorithm, which lets
agents pick items in cyclic order until the items run out.

2 Preliminaries
We consider a discrete resource allocation setting with a set
of agents N = [n] and a set of indivisible items M = [m],
where [k] := {1, 2, . . . , k} for any k ∈ N. Each agent i ∈
N is endowed with a weight wi > 0 and a utility function
ui : 2M → R≥0; for convenience, we sometimes write ui(j)
instead of ui({j}) for an item j ∈M . As is very common in
the fair division literature, we assume that the utility functions
are additive, i.e., ui(M ′) =

∑
j∈M ′ ui(j) for all i ∈ N and

M ′ ⊆ M . An allocationM = (M1, . . . ,Mn) is a partition
of the items into n bundles so that agent i receives bundleMi.
An instance consists of the agents, items, weights, and utility
functions. When all weights are equal (in which case we can
take them to be 1 without loss of generality), we refer to the
resulting setting as the unweighted setting.

We consider the following three fairness notions. The first
two notions were proposed by Chakraborty et al. [2020] and
the third by Aziz et al. [2020].

Definition 2.1. An allocation (M1, . . . ,Mn) is said to satisfy

• weighted envy-freeness up to one item (WEF1) if for any
i, j ∈ N , there exists B ⊆ Mj with |B| ≤ 1 such that
ui(Mi)

wi
≥ ui(Mj\B)

wj
;

• weak weighted envy-freeness up to one item (WWEF1)
if for any i, j ∈ N , there exists B ⊆ Mj with |B| ≤ 1

such that ui(Mi)
wi

≥ ui(Mj\B)
wj

or ui(Mi∪B)
wi

≥ ui(Mj)
wj

;

• weighted proportionality up to one item (WPROP1) if
for any i ∈ N , there exists B ⊆ M \Mi with |B| ≤ 1

such that ui(Mi) ≥
(

wi∑
i′∈N wi′

· ui(M)
)
− ui(B).

Chakraborty et al. [2020] showed that no rule can simulta-
neously satisfy WEF1 and WPROP1. In particular, consider
an instance where m = n and every agent has a nonzero

utility for every item. Any WEF1 allocation has to assign
exactly one item to each agent.3 On the other hand, if a cer-
tain agent has the same utility for all items and a sufficiently
larger weight than every other agent, WPROP1 will require
this agent to receive at least m− 1 items.

A domain refers to a set of instances. A domain may
include all instances with any number of agents and items,
weights, and utility functions, or it may only include—for
example—all instances with two agents, or all instances with
equal weights (this corresponds to the unweighted setting).
An allocation rule is a function that maps each instance in a
given domain to an allocation; it is said to satisfy a fairness
notion if the allocation that it produces always fulfills that
notion. We now define the three monotonicity properties that
we consider—the first two have been studied by Segal-Halevi
and Sziklai [2018; 2019], while the third has not been studied
in fair division to the best of our knowledge.

Definition 2.2. An allocation ruleR with domain I satisfies

• resource-monotonicity if the following holds: for any in-
stance withm items, when an extra item is added as item
m+ 1, if both the original and the modified instance be-
long to I, then each agent receives no higher utility from
the allocation produced by R in the original instance
than in the modified instance;

• population-monotonicity if the following holds: for any
instance with n agents, when an extra agent is added as
agent n+1, if both the original and the modified instance
belong to I, then each of the first n agents receives at
least as much utility from the allocation produced by R
in the original instance as in the modified instance;

• weight-monotonicity if the following holds: for any in-
stance, when the weight of an agent increases, if both the
original and the modified instance belong to I, the util-
ity that the agent receives from the allocation produced
byR does not decrease.

While these monotonicity properties are intuitive and it
may seem that any reasonable allocation rule should satisfy
them, this is in fact not the case: In the full version of our
paper [Chakraborty et al., 2021], we show that two popu-
lar fair division algorithms—the envy cycle elimination al-

3Otherwise an agent with no item will (weighted-)envy an agent
with at least two items by more than one item.
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gorithm and the adjusted winner procedure—fail resource-
monotonicity even in the unweighted setting.

Next, we provide definitions related to picking sequences.

Definition 2.3. A picking sequence on n agents and m items
is a sequence πn,m,w = (a1, a2, . . . , am), where ai ∈ N
for each i ∈ M . A family of picking sequences is a col-
lection Π = {πn,m,w}, with at most one picking sequence
for each pair of positive integers n,m and weight vector
w = (w1, . . . , wn). A family of picking sequences Π is called

• resource-consistent if for every n,m,w such that both
πn,m,w and πn,m+1,w belong to Π, the sequence πn,m,w
forms a prefix of πn,m+1,w;

• population-consistent if for every n,m,w,w′ such that
w′ = (w1, . . . , wn, w

′
n+1) where w′n+1 is the weight of

agent n+1 and both πn,m,w and πn+1,m,w′ belong to Π,
the sequence πn+1,m,w′ can be obtained from πn,m,w by
inserting agent n + 1 in some positions (possibly none)
and trimming the suffix of the resulting sequence so that
the sequence has length m.

• weight-consistent if the following holds: for every
n,m,w and w′i > wi such that both πn,m,w and πn,m,w′

belong to Π, where w′ = (w1, . . . , w
′
i, . . . , wn), the se-

quence πn,m,w′ can be obtained from πn,m,w by moving
some of agent i’s picks earlier (possibly none), inserting
agent i in some positions (possibly none), and trimming
the suffix of the resulting sequence so that the sequence
has length m.

Given a picking sequence (a1, . . . , am) and the agents’
utility functions, we assume that in the ith turn, agent ai picks
her highest-valued item from among the remaining items,
breaking ties in a consistent manner (say, in favor of lower-
numbered items). We sometimes drop the subscript from
πn,m,w when n,m,w are clear from the context. A family
of picking sequences generates an allocation rule, which we
will refer to interchangeably with the family itself. We also
refer to a picking sequence π interchangeably with the family
of picking sequences that consists only of π.

All omitted proofs can be found in the full version of this
paper [Chakraborty et al., 2021].

3 General Picking Sequences
We begin by proving results for general picking sequences. In
addition to being interesting in their own right, these results
will later help us determine the properties that each appor-
tionment method satisfies. First, we present characterizations
of picking sequences whose output is guaranteed to satisfy
each of the fairness notions WEF1, WWEF1, and WPROP1.
In particular, we show that a picking sequence guarantees a
fairness notion for agents with arbitrary utility functions if
and only if it does so for agents with identical utility func-
tions that put utility 1 on some items and 0 on the remaining
items. This means that the fairness guarantees for general
utilities can be expressed as relatively simple conditions on
the number of picks in each prefix of the picking sequence.

Theorem 3.1. A picking sequence π satisfies WEF1 if and
only if for every prefix of π and every pair of agents i, j with

tj ≥ 2, we have ti
tj−1 ≥

wi

wj
, where ti and tj denote the num-

ber of agent i’s and agent j’s picks in the prefix, respectively.
Theorem 3.2. A picking sequence π satisfies WWEF1 if and
only if for every prefix of π and every pair of agents i, j with
tj ≥ 2, both of the following hold:

• ti
tj−1 ≥

wi

wj
if wi ≥ wj;

• ti+1
tj
≥ wi

wj
if wi ≤ wj ,

where ti and tj denote the number of agent i’s and agent j’s
picks in the prefix, respectively.

As an example of a picking sequence that satisfies WWEF1
but not WEF1, suppose that n = 2, w1 = 1, w2 = 2, and
consider the sequence (1, 2, 2, 2, 2). For this sequence, we
have t1 = 1 and t2 = 4, and therefore t1+1

t2
= w1

w2
> t1

t2−1 .

Theorem 3.3. A picking sequence π satisfies WPROP1 if
and only if for every prefix of π and every agent i, we have
ti ≥

(
wi∑

i′∈N wi′
· k
)
− 1, where ti and k denote the number

of agent i’s picks in the prefix and the length of the prefix,
respectively.

Next, we establish a strong relationship between resource-
and population-consistency and the corresponding mono-
tonicity notions.
Theorem 3.4. Any resource-consistent family of picking se-
quences satisfies resource-monotonicity.
Theorem 3.5. Any population-consistent family of picking
sequences satisfies population-monotonicity.

The relationship between weight-consistency and weight-
monotonicity is less straightforward: we show that the former
implies the latter in the case of two agents. As we will see
later (Proposition 4.2), this relationship breaks down when
there are three agents.
Theorem 3.6. For two agents, any weight-consistent family
of picking sequences satisfies weight-monotonicity.

4 Divisor Methods
As we explained in the introduction, a divisor apportionment
method gives rise to a picking sequence that, in each turn,
lets an agent i with the smallest f(ti)/wi pick the next item
(breaking ties in a consistent manner, say, in favor of lower-
numbered agents), where ti denotes the number of times
that agent i has picked so far and f : Z≥0 → R≥0 is a
strictly increasing function specific to the method such that
t ≤ f(t) ≤ t + 1. 4 We will refer to the divisor meth-
ods and their associated families of picking sequences in-
terchangeably. By definition, it is clear that every divisor
method yields a family of picking sequences (for all n,m,w)
that are resource-, population-, and weight-consistent. Theo-
rems 3.4, 3.5, and 3.6 therefore imply the following:
Corollary 4.1. Every divisor method satisfies resource-
monotonicity and population-monotonicity; it also satisfies
weight-monotonicity when there are two agents.

4Some non-divisor apportionment methods such as Hamilton’s
method do not give rise to a picking sequence and are therefore not
useful in our context [Brams and Kaplan, 2004, p. 149].
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The five traditional divisor methods of Adams, Jefferson,
Webster, Hill, and Dean have the function f(t) equal to t,
t + 1, t + 1

2 ,
√
t(t+ 1), and t(t+1)

t+ 1
2

, respectively [Balinski
and Young, 2001, p. 99]. We prove that, perhaps surprisingly,
all five methods fail weight-monotonicity in the case of three
agents.5 This also means that weight-consistency does not
imply weight-monotonicity beyond two agents.

Proposition 4.2. Each of the five traditional divisor meth-
ods does not satisfy weight-monotonicity even when there are
three agents.

We now explore how the five divisor methods fare with
respect to the three fairness notions, starting with WEF1.

Theorem 4.3. Of the five traditional divisor methods,
Adams’ method is the only one satisfying WEF1.

Next, we show that interestingly, all five methods satisfy
WWEF1, meaning that each of them can guarantee fairness
beyond the setting with identical items (i.e., apportionment).

Theorem 4.4. All five traditional divisor methods satisfy
WWEF1.

Proof. We claim that any divisor method whose function f
fulfills the following two conditions satisfies WWEF1:

• f(a)
f(b) ≤

a
b for any integers 1 ≤ b ≤ a;

• f(a)
f(b) ≤

a+1
b+1 for any integers 0 ≤ a ≤ b with b 6= 0.

To prove the claim, consider such a divisor method, and fix a
pair of agents i, j. It suffices to show that every time agent j
picks an item starting from her second pick, the conditions
in Theorem 3.2 are satisfied. By definition of the divisor
method, after agent j’s pick it holds that f(tj−1)

wj
≤ f(ti)

wi
;

otherwise agent i should have picked instead of agent j. Con-
sider two cases as in the conditions of Theorem 3.2 with
tj ≥ 2.

Case 1: wi ≥ wj . Since f is strictly increasing, we have
f(tj − 1) > f(0) ≥ 0, and so 1 ≤ wi

wj
≤ f(ti)

f(tj−1) . This
means that ti ≥ tj − 1, and our assumption on f implies that
wi

wj
≤ f(ti)

f(tj−1) ≤
ti

tj−1 , as desired.
Case 2: wi ≤ wj . We have f(tj − 1) > 0 and wi

wj
≤

f(ti)
f(tj−1) . If ti ≥ tj − 1, then wi

wj
≤ 1 ≤ ti+1

tj
. Otherwise,

ti < tj − 1, and our assumption on f implies that wi

wj
≤

f(ti)
f(tj−1) ≤

ti+1
(tj−1)+1 = ti+1

tj
, as desired.

Next, we show that the functions f of all five divisor
methods satisfy the two conditions above. First, consider
f(t) = t + c for any constant c ∈ [0, 1]. If 1 ≤ b ≤ a,
the function a+x

b+x is non-increasing for x ≥ 0, so a+c
b+c ≤

a
b .

On the other hand, if 0 ≤ a ≤ b with b 6= 0, the function a+x
b+x

is non-decreasing for x ≥ 0, so a+c
b+c ≤

a+1
b+1 . This shows that

5Brams and Kaplan [2004, p. 157] showed that for n = 3, an
agent can do worse when her picks move earlier in the picking se-
quence. However, their example does not correspond to a weight
increase with respect to a divisor method and moreover assumes that
agents are strategic rather than truthful.

Adams’, Jefferson’s, and Webster’s methods fulfill WWEF1.
For Hill’s method, when 1 ≤ b ≤ a, the desired condition√

a(a+1)√
b(b+1)

≤ a
b is equivalent to a+1

b+1 ≤
a
b , which holds by our

previous observation; an analogous statement can be made for
the case 0 ≤ a ≤ b with b 6= 0. Finally, for Dean’s method,
when 1 ≤ b ≤ a, the desired condition a(a+1)/(a+ 1

2 )

b(b+1)/(b+ 1
2 )
≤ a

b is

equivalent to a+1
b+1 ≤

a+ 1
2

b+ 1
2

, which holds by our previous ob-
servation; a similar statement can again be made for the case
0 ≤ a ≤ b with b 6= 0.

We now turn to WPROP1, where we illustrate a strong re-
lationship with a notion from the apportionment setting. A
picking sequence πn,m,w is said to satisfy lower quota if for

any i ∈ N , it holds that ti ≥
⌊

wi·m∑
i′∈N wi′

⌋
, where ti denotes

the number of picks in πn,m,w assigned to agent i.

Proposition 4.5. Let π be a picking sequence such that every
prefix of π satisfies lower quota. Then π satisfies WPROP1.

Since Jefferson’s method satisfies lower quota [Balinski
and Young, 2001, p. 130] and is resource-consistent, any
prefix of its associated picking sequence also satisfies lower
quota. By Proposition 4.5, the method satisfies WPROP1. We
prove that it is the only traditional divisor method to do so.

Theorem 4.6. Of the five traditional divisor methods, Jeffer-
son’s method is the only one satisfying WPROP1.

5 Quota Method
Although divisor methods are widely used in practice, they
do come with an axiomatic downside: no divisor method
satisfies an arguably natural axiom known as quota [Balin-
ski and Young, 2001, p. 130]. A picking sequence sat-
isfies the quota axiom if for every i ∈ N , it holds that⌊

wi·m∑
i′∈N wi′

⌋
≤ ti ≤

⌈
wi·m∑
i′∈N wi′

⌉
, where ti is the number

of picks assigned to agent i by the picking sequence—note
that the lower bound simply corresponds to the lower quota
notion introduced before Proposition 4.5. Motivated by this
observation, [Balinski and Young, 1975] proposed the quota
method which satisfies the quota axiom as well as resource-
consistency. Intuitively, this method can be seen as a con-
strained version of Jefferson’s method where we choose an
agent iminimizing (ti +1)/wi over a restricted subset of “el-
igible” agents. The picking sequence for the quota method is
determined iteratively. For each round k ∈ [m], let ti be the
number of times agent i has picked in rounds 1, . . . , k − 1.
An agent is eligible if she would not exceed her upper bound
in the quota axiom upon getting an additional pick in round
k. Equivalently, the set of eligible agents is U(w, t, k) ={
i ∈ N

∣∣∣ ti < wi·k∑
i′∈N wi′

}
, where t = (t1, . . . , tn). Among

all eligible agents, the next pick is assigned to an agent min-
imizing (ti + 1)/wi, breaking ties in a consistent manner.
The method trivially satisfies resource-consistency, which by
Theorem 3.4 implies the following:

Corollary 5.1. The quota method satisfies resource-
monotonicity.
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However, satisfying the quota axiom comes at a price:
in contrast to all divisor methods (Corollary 4.1), the quota
method fails population-monotonicity. Moreover, like the
five traditional divisor methods (Proposition 4.2), the quota
method fails weight-monotonicity for n = 3.

Proposition 5.2. The quota method does not satisfy
population-monotonicity. In addition, it does not satisfy
weight-monotonicity even when there are three agents.

As we observed in Section 4, all divisor methods are
weight-consistent for any number of agents by definition, and
therefore weight-monotone for two agents by Theorem 3.6.
In contrast, we show in the full version of our paper that the
quota method is not weight-consistent [Chakraborty et al.,
2021]. However, for two agents, we prove that the method
is weight-consistent and hence weight-monotone.

Theorem 5.3. The quota method satisfies weight-consistency
and weight-monotonicity when there are two agents.

Next, we address fairness criteria for the quota method.

Theorem 5.4. The quota method fails WEF1 but satisfies
WWEF1 and WPROP1.

6 Maximum (Weighted) Nash Welfare
Given any instance in the unweighted setting, the maximum
Nash welfare (MNW) solution chooses an allocation that max-
imizes the Nash welfare, i.e., the product of the agents’
utilities. MNW is known to satisfy strong fairness guar-
antees including EF1 [Caragiannis et al., 2019; Halpern et
al., 2020]. When weights are present, a natural generaliza-
tion called maximum weighted Nash welfare (MWNW), which
maximizes6 the weighted product

∏n
i=1 ui(Mi)

wi , satisfies
WWEF1 but not WEF1 [Chakraborty et al., 2020].

Segal-Halevi and Sziklai [2019] showed that for divisi-
ble items in the unweighted setting, MNW satisfies both
resource- and population-monotonicity. It is therefore rather
surprising that the same is not true for indivisible items.

Proposition 6.1. In the unweighted setting, MNW satisfies
neither resource-monotonicity nor population-monotonicity.

Proof. For resource-monotonicity, consider four items and
two agents, both with weight 1, with the following utilities:

Item 1 Item 2 Item 3 Item 4
Agent 1 3 2 2 2
Agent 2 2 2 1 1

With only the first three items available, the unique MNW
allocation gives items 1 and 3 to agent 1 and item 2 to agent 2,
resulting in a utility of 5 for agent 1. However, when we add

6Ties can be broken arbitrarily unless the maximum weighted
Nash welfare is 0 (which occurs, for example, when m < n). In this
exceptional case, we choose a maximum subset of agents who can be
given positive utilities simultaneously, breaking ties in a consistent
manner among all such subsets independently of the weights (e.g.,
lexicographically with respect to the agent indices). We then pick
an allocation maximizing the weighted Nash welfare of the agents
in this subset.

item 4, MNW uniquely allocates items 3 and 4 to agent 1
and items 1 and 2 to agent 2. So agent 1’s utility drops to 4,
violating resource-monotonicity.

The example for population-monotonicity uses three
agents and four items and can be found in the full version
of our paper [Chakraborty et al., 2021].

On the other hand, we prove that MWNW fulfills weight-
monotonicity, making it the only rule among the ones we con-
sider in this paper to do so.

Theorem 6.2. MWNW satisfies weight-monotonicity.

As mentioned, MWNW is known to satisfy WWEF1 but
not WEF1. To complete the picture, we show that it does not
satisfy WPROP1. This contrasts with the unweighted setting,
where MNW satisfies PROP1 (since EF1 implies PROP1).

Proposition 6.3. MWNW does not satisfy WPROP1.

7 Conclusion and Future Work
In this paper, we have thoroughly investigated picking se-
quences derived from common apportionment methods, in-
cluding the five traditional divisor methods and the quota
method, in relation to fairness and monotonicity properties.
Our results indicate that picking sequences based on divisor
methods provide strong guarantees in weighted fair division
scenarios such as allocating ministries to political parties,
with Adams’ and Jefferson’s methods standing out for ful-
filling WEF1 and WPROP1, respectively. Since Jefferson’s
method tends to favor large parties while Adams’ often ben-
efits smaller ones (see Section 1.2), an interesting question
is whether there are compelling fairness notions in addition
to WWEF1 that the other three traditional divisor methods,
which intuitively lie somewhere in the middle, satisfy.

A natural direction for future work is to construct rules
that exhibit a stronger axiomatic behavior than the ones con-
sidered in this paper, or to prove that such rules do not ex-
ist. Satisfying the three monotonicity properties simultane-
ously is trivial: one can always allocate all items to a fixed
agent, or ignore the weights and use the round-robin algo-
rithm with a fixed ordering. However, this will not result in
a fair allocation with respect to the weights. Does there ex-
ist a rule fulfilling the three monotonicity properties along
with, say, WWEF1? Other notions that one could consider
include strategyproofness and Pareto optimality—even in the
unweighted setting, we are not aware of any rule that simul-
taneously fulfills EF1, Pareto optimality, and resource- or
population-monotonicity. Our work leaves many intriguing
combinations of properties to investigate, which we hope will
lead to more interesting rules for fair resource allocation.
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