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Abstract
We study the Connected Fair Division problem
(CFD), which generalizes the fundamental problem
of fairly allocating resources to agents by requiring
that the items allocated to each agent form a con-
nected subgraph in a provided item graph G. We
expand on previous results by providing a com-
prehensive complexity-theoretic understanding of
CFD based on new algorithms and lower bounds
while taking into account several well-established
notions of fairness: proportionality, envy-freeness,
EF1 and EFX. In particular, we show that to achieve
tractability, one needs to restrict both the agents and
the item graph in a meaningful way. We design XP-
algorithms for the problem parameterized by (1)
clique-width of G plus the number of agents and
(2) treewidth of G plus the number of agent types,
along with corresponding lower bounds. Finally,
with respect to the restrictions considered here, we
show that to achieve fixed-parameter tractability
one needs to not only use a more restrictive parame-
terization of G, but also include the maximum item
valuation as an additional parameter.

1 Introduction
The task of allocating a set of indivisible resources among
participating agents under a suitably defined notion of “fair-
ness” represents a core research topic in the area of compu-
tational social choice [Bouveret and Lang, 2008; Bouveret
et al., 2016; Brams and Taylor, 1996]. The classical fair
resource allocation problem that arises from this task, FAIR
DIVISION, has been extensively studied in the literature, and
we now have a fairly good understanding of the problem’s
complexity under a variety of notions of fairness [Bouveret
and Lang, 2008; Budish, 2011; Caragiannis et al., 2019;
Plaut and Roughgarden, 2020]. However, in many settings
it is desirable to ensure that the allocation respects a certain
connectivity restriction on the items allocated to each individ-
ual agent—this is easy to substantiate when the items repre-
sent immovable assets (e.g., when allocating rooms in a new
building to university departments, or in case of corporate
split-ups), but can also arise when the items are intangible
(e.g., when allocating duties organized in a mind map).

Motivated by these considerations, in 2017 Bouveret et
al. (2017) developed a natural framework designed to cap-
ture this additional aspect of fair resource allocation: given
(1) a set of items represented as vertices of an input graph
G, (2) a set A of agents, and (3) a set U of valuation func-
tions specifying the utility of each item for each agent, deter-
mine if there exists an allocation of items to agents which is
(I) fair (under a suitable notion of fairness), and (II) main-
tains the connectivity of items assigned to each individual
agent. They called this the ϕ-CONNECTED FAIR DIVISION
PROBLEM (ϕ-CFD), where ϕ specifies the desired notion
of fairness. Their initial results inspired a body of follow-
up work on the model involving, e.g., the incorporation of
chores [Aziz et al., 2019], computing so-called maximin
share allocations [Greco and Scarcello, 2020], Pareto-optimal
allocations [Igarashi and Peters, 2019] and conditions guaran-
teeing the existence of fair allocations [Bilò et al., 2019].

In spite of these developments, our understanding of the
precise boundaries of computational tractability of ϕ-CFD
remains somewhat limited to date. On one hand, the prob-
lem is a generalization of the classical ϕ-FAIR DIVISION
problem [Bouveret and Lang, 2008; Bouveret et al., 2016],
since the problems coincide if G is restricted to the class of
complete graphs. But G will not be complete in the typi-
cal use case of the model—on the contrary, one may often
expect it to be rather sparse, and that is why already the orig-
inal work introducing the model [Bouveret et al., 2017] ini-
tiated the investigation of the problem under various restric-
tions of the structure of G. Unfortunately, the algorithmic
and lower-bound results provided in the original paper as well
as in follow-up works [Aziz et al., 2019; Bilò et al., 2019;
Igarashi and Peters, 2019] leave a wide gap between the
known boundaries of tractability and the easiest intractable
cases. This provides a rather unsatisfactory contrast between
ϕ-CFD and other variants of the resource allocation prob-
lem, for which we often already have complete complex-
ity landscapes [Bliem et al., 2016a; Bredereck et al., 2018;
Eiben et al., 2020].

1.1 Contribution
We perform a comprehensive and in-depth study of the
complexity of ϕ-CFD with the aim of identifying the pre-
cise cut-off between tractable and intractable classes of in-
stances. In line with previous work on complexity-theoretic
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aspects of computational social choice [Chen et al., 2017;
Chen et al., 2018; Eiben et al., 2018b] and especially fair
allocation [Bliem et al., 2016a; Eiben et al., 2020], we em-
ploy the parameterized complexity paradigm to obtain a more
fine-grained understanding of the (in-)tractability of ϕ-CFD
under various restrictions. We focus our analysis on combi-
nations of restrictions on two core components of ϕ-CFD:
the structure of the item graph (G) and the set of agents
(A). Moreover, all of our results are designed to take into ac-
count several perspectives on fairness: proportionality, envy-
freeness, and also two prominent relaxations of envy-freeness
called EF1 and EFX [Bilò et al., 2019; Budish, 2011;
Caragiannis et al., 2019; Plaut and Roughgarden, 2020].

We begin by observing that the problem remains hope-
lessly intractable even under extreme restrictions to all other
aspects of the input if the valuation function U is allowed
to use binary encodings (Proposition 1). That is why
we proceed—in line with several previous works in the
field [Eiben et al., 2020; Greco and Scarcello, 2020]—under
the reasonable assumption that U is encoded in unary.

But even under this assumption, we show that the prob-
lem remains surprisingly difficult when one does not apply at
least some restriction to the set A of agents. Indeed, while it
was already known that proportional CFD is polynomial-time
tractable on graphs which are stars [Bouveret et al., 2017], we
prove that for all other considered notions of fairness CFD
remains NP-hard even on stars (Theorem 2). Moreover, pro-
portional CFD remains NP-hard on paths [Bouveret et al.,
2017]. On the other hand, restricting the set of agents alone
does not lead to tractability either—even if we only consider
instances with just two agents (Proposition 3). So in order to
achieve tractability, one needs to assume restrictions on G as
well as on A; a single-dimensional approach is not viable.

With the above considerations in mind, we can now pro-
ceed to our main algorithmic contributions. First, if we pa-
rameterize by the number of agents, then we can solve ϕ-
CFD for all considered fairness notions on an extremely
broad range of graphs—not only on trees and more gener-
ally graphs of bounded treewidth, but also on dense graph
classes such as complete graphs, complete bipartite graphs,
cographs, distance-hereditary graphs, and many others. We
formalize this by showing that ϕ-CFD is XP-tractable 1 when
parameterized by |A| plus the clique-width ofG (Theorem 4).
Clique-width is among the most general structural parame-
ters of graphs and has found widespread algorithmic applica-
tions [Bliem et al., 2016b; Eiben et al., 2018a].

Second, we consider a less severe restriction on A: instead
of parameterizing by the number of agents, we parameterize
only by the number of agent types, which are maximal sets
of agents with identical preferences. Agent types have been
considered as a middle-ground between unrestricted agents
and a bounded number of agents in various contexts [Eiben
et al., 2020; Nguyen and Rothe, 2020], and also in the origi-
nal work that introduced ϕ-CFD [Bouveret et al., 2017]. As
our second algorithmic contribution, we show that ϕ-CFD
is XP-tractable when parameterized by the number of agent

1A problem is XP-tractable when parameterized by k if it can be
solved in polynomial time for every fixed, constant value of k.

types plus the treewidth of G (Theorem 6). We justify the
use of treewidth instead of clique-width when parameterizing
by the number of agent types by providing a corresponding
lower bound (Theorem 9). Furthermore, Theorem 6 directly
generalizes the results of Bouveret et al. (2017), who gave
XP-algorithms for proportional and envy-free CFD on paths
parameterized by the number of agent types.

Both Theorem 4 and Theorem 6 are obtained by dynamic
programming along the respective decompositions, an ap-
proach that is often used for these structural parameters.
While handling proportional and envy-free allocations in this
way is not too difficult, dealing with connectivity in the defi-
nitions of EF1 and EFX requires a more careful treatment. In
particular, our algorithms for these two variants require ideas
that are not needed for, e.g., solving maximin CFD parame-
terized by treewidth [Greco and Scarcello, 2020].

While both of these algorithmic results are “tight” in the
sense that it is not reasonable to hope for a relaxation of the
requirements on A and or G, the notion of tractability used
here—XP-tractability—is weaker than the one which is typ-
ically hoped for in the parameterized setting, notably fixed-
parameter tractability. As our next result (Theorem 7), we not
only rule out the fixed-parameter tractability of the problem
in both considered settings, but even for much more restricted
cases: in particular, even when parameterizing by the number
of agents plus the vertex cover number of G. This essentially
rules out the fixed-parameter tractability of the problem un-
der any even remotely reasonable restriction on A and G, for
unary valuation functions U ; surprisingly, the problem ex-
hibits the same complexity-theoretic behavior under extreme
restrictions (|A| plus vertex cover number) as when using pa-
rameterizations that are very relaxed (|A| plus clique-width,
or the number of agent types plus treewidth).

But is it really impossible to obtain non-degenerate fixed-
parameter algorithms for ϕ-CFD? The final part of our paper
focuses on this question and provides a more positive outlook
on the problem’s complexity. First of all, one may observe
that Theorem 4 provides fixed-parameter algorithms for envy-
free and proportional CFD in the case where |A| is bounded
by a fixed constant. But what happens if—instead of impos-
ing extreme restrictions on the number of agents—we also
parameterize by the maximum valuation in U? In Theorem 8
we establish the fixed-parameter tractability of ϕ-CFD pa-
rameterized by the maximum valuation in U , the number of
agent types, and the vertex cover number of G. As our last
contribution, Theorem 9, we show that this final algorithmic
result cannot be strengthened to more general graph parame-
ters such as treewidth (or even deletion distance to stars).

Overall, our results provide a comprehensive understand-
ing of the precise boundaries of tractability of ϕ-CFD, intro-
duce three novel algorithms for the problem, and show that
the problem exhibits a rather diverse complexity-theoretic be-
havior. An overview is provided in Figure 1.

2 Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i}. We refer to the
handbook by Diestel [2012] for standard graph terminology.
We also refer to the standard books for a basic overview of
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NP-hard
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NP-hard
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cliquewidth + No. of agents
Theorem 4

Number of agent types

treewidth + No. of types
XP parameterized by

Theorem 6

W[1]-hard parameterized by
deletion to stars + No. of agents + max valuation
Theorem 9

Figure 1: A mind-map of our results.

parameterized complexity theory [Cygan et al., 2015], and
assume that readers are aware of the complexity classes FPT,
XP and W[1]. Readers interested in the full details of The-
orem 6 are also expected to have a basic understanding of
treewidth and nice tree-decompositions [Cygan et al., 2015].

Clique-width. Let k be a positive integer. A k-graph is a
graph whose vertices are labeled by [k]. We denote by γ(v)
the label of the vertex v. We call the k-graph consisting of
exactly one vertex v (say, labeled by α) an initial k-graph
and denote it by α(v). The clique-width of a graph G is the
smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following
three operations.

1. Disjoint union (denoted ⊕).

2. Relabeling: changing all labels α to β (denoted pα→β).

3. Edge insertion: adding an edge between each vertex
labeled α and each vertex labeled β (α 6= β; de-
noted ηα,β).

A k-expression tree [Courcelle et al., 2000] is a rooted tree
representation of how the three operations are used to con-
struct a given graph; specifically, the k-expression tree repre-
sents each α(v) as a leaf, each ⊕ operator as an ⊕ node with
two children, and each pα→β or ηβ,α operator by a corre-
sponding node with a single child. It is known that an approx-
imately optimal k-expression tree can be computed in fixed-
parameter time [Oum and Seymour, 2006], and that every
graph class of bounded treewidth has bounded clique-width.

3 The Connected Fair Division Problem
An instance of the CONNECTED FAIR DIVISION problem
(CFD) [Bilò et al., 2019; Bouveret et al., 2017] consists of
an undirected graph G = (V,E), a set A of n agents, and
a valuation function ui : V → N for every agent i ∈ A.
In this setting, every vertex v ∈ V corresponds to an item.
We follow the standard assumption in the literature, and we
assume that the agents have additive valuations; hence for ev-
ery X ⊆ V and every i ∈ A we have ui(X) =

∑
v∈X ui(v).

Agents i and j have the same type if for every v ∈ V it holds

ui(v) = uj(v). We denote the set of all agent types by A.
The type of an agent i is then the agent type a ∈ A such that
i ∈ a. Hence for an agent type a ∈ A we denote by ua the
valuation function such that ua = ui for all i ∈ a.

An allocation of items is a tuple π = (πi)i∈A such that
(1) for all i ∈ A the set πi ⊆ V and the subgraph G[πi]
of G induced by πi is connected, (2)

⋃
i∈A πi = V , and (3)

for all i, j ∈ A such that i 6= j we have πi ∩ πj = ∅. We
also define a partial allocation for a subset A′ of A as a tuple
π = (πi)i∈A′ satisfying (3). We say that the bundle πi is
assigned to agent i. We will focus on fair allocations, under
several different fairness notions [Bouveret et al., 2017; Bilò
et al., 2019]. Given a bundle πi, let τi = {v ∈ πi | G[πi \
{v}] is connected }. An allocation π1, π2, . . . , πn is:

• proportional (PROP) if ui(πi) ≥ ui(V )
n , for every i ∈ A;

• envy-free (EF) if ui(πi) ≥ ui(πj), for every i, j ∈ A;
• envy-free up to one item (EF1) if ui(πi) ≥ ui(πj) −

maxv∈τj ui(v), for every i, j ∈ A;
• envy-free up to any item (EFX) if ui(πi) ≥ ui(πj) −

minv∈τj ui(v), for every i, j ∈ A;
For a fairness criterion ϕ ∈ F = {PROP,EF,EF1,EFX},

ϕ-CFD asks whether there exists an allocation satisfying ϕ.
We remark that here we consider the decision version of the
problem for formal reasons only; each of our algorithms can
also output a suitable allocation if one exists.

As our first course of action, we show that even extremely
restricted instances of ϕ-CFD remain intractable if the valu-
ation functions ui are encoded in binary.
Proposition 1. For all ϕ ∈ F , ϕ-CFD is NP-hard when val-
uation functions are encoded in binary even when restricted
to instances having treewidth at most 2 and where |A| = 2,
and u1 = u2.

In view of Proposition 1, from now on we assume every
valuation to be encoded in unary (which also implies that all
numbers are upper-bounded by the size of the instance).

4 The Futility of Singular Restrictions
Since our aim is to determine when exactly ϕ-CFD can be
solved efficiently, the most natural thing to do is consider
whether the problem becomes tractable if either the graph or
the set of agents is restricted. In this section, we show that
such a single-dimensional approach does not lead to tractabil-
ity even on highly restricted classes of instances. Note that
NP-hardness of EF-CFD on stars was already shown in [Bou-
veret et al., 2017] using a similar idea, albeit without the re-
striction on the valuations.
Theorem 2. For all ϕ ∈ F \ {PROP}, ϕ-CFD is NP-hard
even when restricted to instances in which G is a star, with
binary valuations.

Proof Sketch. For each of the three fairness notions, we give a
reduction from INDEPENDENT SET on 4-regular graphs. Let
(H, k) be a 4-regular instance of INDEPENDENT SET, where
H has n vertices and accordingly m = 2n edges, the vertices
of H are indexed as {v1, . . . , vn}, and the edges of H are
indexed as {e1, . . . , em}. We construct an instance of CFD
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as follows. Define G to be a star with m + k leaves. We
denote the center of the star as c, and call the first n leaves of
the star vertex leaves, X = {x1, . . . , xn}, and the remaining
leaves of the star dummy leaves, D = {d1, . . . , dm−n+k}.
Let A = [m + 1]. To complete the reduction, it suffices to
define the valuation functions; in this exposition we present
only the function for ϕ = EF. Let um+1(y) = 1 if y = c
and 0 otherwise, and for each other i ∈ [m] let ui(y) = 1 if
y ∈ D ∪ {vj | vj ∈ ei} and 0 otherwise.

Finally, we provide some intuition to help verify the re-
duction. Consider an independent set W of size k in H .
For an arbitrary rooted spanning tree of H , denote for each
v ∈ V (H) the unique edge e ∈ E(H) which corre-
sponds to an arc toward v in the rooted spanning tree by ev .
Let {f1, . . . , fm−n+1+k} be an enumeration of all edges in
E(H) \ {ev | v ∈ W}. This gives rise to a connected re-
source allocation π1, . . . , πm+1 for the constructed instance
by letting πm+1 = {c} ∪ {xi | vi ∈W}, and for i ∈ [m]

πi =

{
{xj} if ei = evj for vj ∈ V (H) \W
dj if ei = fj .

Our second hardness result is considerably easier, and is
obtained by a reduction from a problem called EQUITABLE
CONNECTED PARTITION (ECP) [Enciso et al., 2009].
Proposition 3. For every ϕ ∈ F , ϕ-CFD is NP-hard when
restricted to instances where |A| = 2, and u1 = u2 = 1.

5 Solving Instances with Few Agents
While Proposition 3 rules out the existence of efficient algo-
rithms for all instances with bounded n, here we show that
the situation changes as long as we parameterize by n plus
the clique-width of G, denoted cw(G).
Theorem 4. For every ϕ ∈ F , ϕ-CFD is in XP parameter-
ized by the clique-width and the number of agents.

Proof Sketch. It is known that an approximate k-expression
tree with at most k2|V (G)| nodes can be computed in fixed-
parameter time [Kanté and Rao, 2013; Oum and Seymour,
2006], so it suffices to decide ϕ-CFD when such a k-
expression tree T with k = f(cw(G)) for G is provided.

Let I = (G,A, (ui)i∈A) be an instance of ϕ-CFD for
ϕ ∈ F . Let t be a node of T , and recall that t is one of
the following four types of nodes: α(v), ⊕, ηα,β or pα→β .
Let Tt be the subtree of T rooted at t, and let Gt be the k-
graph, which is a subgraph of G, defined by the k-expression
tree Tt. For instance, if r is the root of T then Gr = G, and
for each leaf t in T it holds that Gt is a graph with a single
labeled vertex.

The high-level idea of the algorithm is to compute a set
of records for every node t ∈ V (T ) and to compute these
records in a leaf-to-root fashion. Each record will represent
one way an allocation of G can intersect with the vertices of
Gt, and the information contained in the records at the root
of T is sufficient to determine which of the allocations are
connected and satisfy the considered fairness notion.

Formally for each node t of T we define a record
((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A) consisting for each i ∈ A of the

following components.

(1) ρi ∈ 22
[k] × {0, 1}, such that for each partial

allocation π̃ corresponding to ((ρi)i∈A, (µ
i)i∈A, (ν

i)i∈A)
the set ρi[0] contains L ⊆ [k] if and only if Gt[π̃i]
contains a connected component labeled precisely by la-
bels in L. Formally, ρi[0] = {

⋃
w∈C{λ(w)} |

C is a connected component of π̃i}. The number ρi[1] = 1
if and only if π̃i is connected.

(2) µi ∈ Zn is a vector of n integers, in which
µij describes the additive valuation under uj of all items
assigned to i by any partial allocation corresponding to
((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A).

(3) νi is only included when ϕ ∈ {EF1,EFX}. It then for
each agent j 6= i describes the valuation under uj of an item
v which would be omitted from the bundle of agent i in or-
der to determine whether j envies i in any partial allocation π̃
corresponding to ((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A). This is neces-

sary to ensure that connectedness is maintained when remov-
ing v from the bundle of i in the root of T . For this purpose
νi : A × 22

[k] × {0, 1} → Z is a partial function for which
νi(j,K, x) describes the valuation under uj of an item v ∈ π̃i
that j would remove from π̃i such that K = {

⋃
w∈C{λ(w)} |

C is a connected component of π̃i \{v}} and π̃i \{v} is con-
nected if and only if x = 1, where π̃ is any partial allocation π̃
corresponding to ((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A). For a technical

reason, if π̃i = {v}, then νi(j, {∅}, 1) = uj(v).
Note that the number of records at each node is easily

bounded by 2(2
k+1)n · |I|n(1+n22

k+1) for ϕ ∈ {EF1,EFX}
and even 2(2

k+1)n · |I|n for ϕ ∈ {PROP,EF}, which is XP
parameterized by cw(G) and n. To unify the dealing with
EF1 and EFX, we let obj = min if ϕ = EFX and obj = max
if ϕ = EF1. We say a record ((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A) is

valid whenever there is an allocation π of V (Gt) to A such
that for every i ∈ A, all of the following hold.

(R1) ρi[0] = {
⋃
w∈C{λ(w)} | C is a connected component

of πi} and ρi[1] = 1 if and only if πi is connected.
(R2) For all j ∈ [n], µij =

∑
v∈πi

uj(v).

(R3) For all j ∈ A and allK ⊆ 2[k], it holds that νi(j,K, 0) =
obj({uj(v) | v ∈ πi ∧ K = {

⋃
w∈C{λ(w)} | C 6=

πi \ {v} is a connected component of πi \ {v}}}). Fur-
thermore, for all j ∈ A and all Λ ⊆ 2[k], it holds that
νi(j, {Λ}, 1) = obj({uj(v) | v ∈ πi ∧ (πi \ {v}
is a connected) ∧ Λ =

⋃
w∈πi\{v}{λ(w)}}) and

νi(j,K, 1) = undefined otherwise.
For a node t ∈ V (T ) we denote by R(t) the set of all valid
records for t. With this setup there is a ϕ-CFD for (G =
(V,G), A, (ui)i∈A) if and only if at the root r of T , R(r)
contains a valid record ((ρi)i∈A, (µ

i)i∈A, (ν
i)i∈A) such that

all of the following hold.

(R*1) For all i ∈ A and for all j ∈ A: (a) µii ≥
∑

v∈V ui(v)

n
if we are considering the fairness notion ϕ = PROP; (b)
µii ≥ µji if we are considering the fairness notion ϕ =

EF; (c) µii ≥ µ
j
i − obj({νj(i, {Λ}, 1) | Λ ⊆ 2[k]}) if we

are considering a fairness notion ϕ ∈ {EF1, EFX}.
This condition ensures that the allocation satisfies the
desired fairness notion.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

142



(R*2) For all i ∈ A, ρi = ({Λ}, 1) for some Λ ∈ 2[k]. This
condition ensures that the allocation is connected.

Both of these conditions can be checked in O∗(2k)-time for
each record. Thus, to complete the proof it suffices to show
how to compute the set of valid records R(t) at each node t
of T , given the sets of valid records of the children of t in T .

This can be done by giving a construction for each
case of t.

Using this we can compute the set of all valid recordsR(t)
for every node t of T using a leaves-to-root dynamic program,

achieving a final runtime of |I|O(n22
k
) for EF1 and EFX and

of 2O(2kn) · |I|O(n) for envy-free and proportional CFD.

Corollary 5. If |A| is bounded by a constant, envy-free and
proportional CFD is FPT parameterized by clique-width.

6 Instances with Few Agent Types
Given the state of the art, the obvious question that arises
from Theorem 4 is whether we can relax the parameteriza-
tion by n to a less restrictive parameterization, notably to the
number of agent types. We show later in Theorem 9 that this
is not possible, i.e., for each ϕ ∈ F , ϕ-CFD is NP-hard even
for one agent type and clique-width three.

On the other hand, as the main result for this section,
we show that offsetting the “less restrictive” agent type pa-
rameter by a “more restrictive” graph parameter—notably
treewidth—gives rise to an XP-algorithm for the problem.
Theorem 6. For each ϕ ∈ F , ϕ-CFD is in XP when param-
eterized by the treewidth and the number of agent types.

Proof Sketch. We show the theorem using a bottom-up dy-
namic programming algorithm along a tree decomposition
(T, χ) of the graph G. As usual the main challenge lies in
the definition of the records that we keep for each node t of
T , where each record models an equivalence class of partial
solutions for the sub-instance induced by the items inGt, i.e.,
the graphG induced by all items contained in bags in the sub-
tree rooted at t. To illustrate the main ideas behind the def-
inition of our records, consider a solution, i.e., an allocation
π = (πi)i∈A for the whole instance I = (G,A, (ui)i∈A) of
ϕ-CFD for ϕ ∈ F . Then, our records need to keep informa-
tion about all bundles that contain at least some items from
Gt. There are two main types of those bundles: (1) bundles
that do not contain any items from the current bag χ(t), and
(2) bundles that do contain some item from χ(t). Note that
the former bundles must be completely contained in Gt (be-
cause the tree decomposition does not allow any edges from
Gt−χ(t) toG−Gt), while the latter bundles can still contain
items from G−Gt and therefore do not even need to be con-
nected inside Gt. Now, let At be the set of all agents being
assigned a bundle of type (2), let AFt be the set of all agents
being assigned a bundle of type (1), and let AIt be the set of
all other agents, i.e., all agents whose bundles do not intersect
with Gt. For the agents in AFt , remember the following.

• The number of agents in AFt of type a for every a ∈
A. This is important to ensure that we do not falsely
assume more agents of a certain type than are present in
the instance.

• We need to ensure that no agent in AFt envies an agent
in At ∪ AIt , i.e., any agent that will be assigned items
at a later stage of the algorithm. For this it suffices to
remember the minimum value w.r.t. ua of any bundle
assigned to an agent in AFt of type a for every a ∈ A.
Note that this is only necessary if ϕ ∈ {EF,EF1,EFX}
and can be skipped if ϕ = PROP.

• We need to ensure that no agent in At ∪ AIt envies an
agent in AFt . Depending on ϕ ∈ {EF,EF1,EFX}, it
will be sufficient to remember the following for every
agent type a ∈ A: (1) the maximum value w.r.t. ua of
any bundle assigned to an agent in AFt (if ϕ = EF), and
(2) the maximum value w.r.t. ua of any bundle assigned
to an agent in i ∈ AFt after removing an item in π′i of
maximum/minimum value w.r.t. ua (if ϕ is EF1/EFX).

While the above information for the agents in AFt is still
fairly straightforward, the real challenge arises for the agents
in At, since we additionally have to take into account the
connectivity of their bundles and in the case of EF1 and
EFX even the connectivity of their bundles after removing
an item. Consider an agent i ∈ At. Then, Gt[πi] is not
necessarily connected (it might only become connected be-
cause of the items in πi \ Gt), which means that we have
to remember not only which items of πi are in χ(t) but also
the partition of those items into components of Gt[πi]. In
the case of ϕ /∈ {EF1,EFX}, this together with the value
of the partial bundle πi ∩ Gt w.r.t. ua for every agent type
a ∈ A would actually be sufficient information. However, if
ϕ ∈ {EF1,EFX} this does not suffice since in order to en-
sure that no agent in AFt ∪ AIt will envy i, we also need to
know the minimum/maximum value of any item that could
potentially be removed from the bundle πi. Since whether
or not an item in πi ∩ Gt can be removed can really only
be determined once we know the whole bundle πi, we need
to store the minimum/maximum value of any item whose re-
moval results in a certain refinement of the current partition of
πi∩χ(t) into components ofGt[πi]. In other words, for every
“refinement” of the current partition of πi ∩χ(t) into compo-
nents of Gt[πi], we store the minimum/maximum value of
any item r whose removal results in this refinement (defined
by Gt[πi \ {r}]).

7 Towards Fixed-Parameter Tractability
From the perspective of parameterized complexity, the most
obvious question that arises from Theorem 4 and 6 is whether
one can obtain fixed-parameter algorithms under these pa-
rameterizations. We firmly answer this question by provid-
ing an involved reduction that establishes the W[1]-hardness
of ϕ-CFD even under significantly stronger restrictions than
those required by either of the two algorithms.
Theorem 7. For each ϕ ∈ F , ϕ-CFD is W[1]-hard parame-
terized by the vertex cover number and the number of agents,
even when all agents have identical valuations.

Proof Sketch. We provide reductions from the W[1]-hard
UNARY BIN PACKING problem [Jansen et al., 2013]: given a
set of items with unary values and a set of k bins, determine if
it is possible to allocate items to bins so that each bin receives
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the same total value, which we callB. On a high-level, the re-
duction constructs an instance of ϕ-CFD consisting of k (or,
for technical reasons that arise in the case of EF1, 2k) agents
and a complete bipartite graph with k bin-vertices on one side
each representing one bin, and item-vertices on the other side
each representing one item. We then attach one (or, in the
case of EF1, two) leaves to the bin-vertices and set the valua-
tions in a way which ensures that every fair allocation in the
constructed CFD instance will force k agents to each receive
one bin-vertex along with items whose values sum up pre-
cisely to B. This yields a correspondence between solutions
to the ϕ-CFD instance and solutions to the original UNARY
BIN PACKING instance, completing the reduction.

But given Theorem 7, is it really impossible to obtain fixed-
parameter algorithms for ϕ-CFD? Corollary 5 noted that if
the number of agents is bounded by a constant, proportional
as well as envy-free CFD becomes fixed-parameter tractable
parameterized by clique-width alone. However, if we do not
wish to restrict the agents or their types in this manner, the
problem can be shown to be fixed-parameter tractable if we
additionally restrict the number of valuations of a vertex, i.e.,
val = |{ui(v)|i ∈ [n], v ∈ V }|.
Theorem 8. For each ϕ ∈ F , ϕ-CFD is fixed-parameter
tractable when parameterized by the vertex cover number, the
number of agent types, and val.

Proof Sketch. Let (G = (V,E), A, (ui)i∈A) be an instance
of ϕ-CFD. We compute a minimum size vertex cover S of G
in time O(2vcn(G) · |V |) [Cygan et al., 2015].

SinceNG(v) ⊆ S for each v ∈ V (G)\S, there are at most
2|S|val equivalent items where for v, w ∈ V (G) \ S, v ∼ w
if and only if NG(v) = NG(w) and for all a ∈ A every agent
a ∈ a values v and w equally. An equivalence class under
this relation is completely determined by its neighborhood in
G and its valuations for each agent type. Now, the algorithm
proceeds in two steps. In the first step we branch on a possible
structure of the sought solution, as will be described below.

For each leaf of the branching tree, we then construct an in-
stance of ILP with a number of variables bounded in our pa-
rameters. Such an instance of ILP can then be solved in FPT
time parameterized by the number of variables by Lenstra’s
well-known algorithm [Lenstra Jr., 1983].

In the branching step we first branch on which vertices of S
are allocated to which agent (up to identical agent types), and
denote the set of agents that receive at least one item of S as
AS . Moreover, for each S′ ⊆ S and each possible valuation
q for agent types in val| A |, we branch on whether an agent
in A \ AS is allocated an item in the equivalence class deter-
mined by S′ and q. For each a ∈ AS we branch on whether
a receives zero, one, or more items in the equivalence class
determined by S′ and q. For each agent type we also branch
on whether any agent of that type receives no items.

At this point, it is not difficult to ensure that each pursued
branch remains connected. To complete the allocation, we
use the aforementioned ILP formulation to ensure (1) the ex-
act number of items of each equivalence class assigned to
each agent a ∈ AS , when a is branched to receive at least
two such items and (2) the exact number of agents in A \AS

of each agent type that receive an item in a specific equiva-
lence class, if it is branched that there is at least one agent of
the agent type receiving an item in that equivalence class.

As our last result, we show that even using val as an ad-
ditional parameter does not allow us to lift fixed-parameter
tractability to structural parameters such as treewidth.

Theorem 9. For each ϕ ∈ F , ϕ-CFD is W[1]-hard when
parameterized by the deletion distance to stars and the num-
ber of agents even when val = 1. Moreover, ϕ-CFD is NP
-hard even when val = 1 and the clique-width is at most 3.

Proof Sketch. We prove our result via a reduction from
UNARY BIN PACKING (UBP). Let (I, (si)i∈I , k, B) be an
instance of UNARY BIN PACKING such that

∑
i∈I si = k ·B.

We construct an instance (G = (V,E), A, (ui)i∈A) of CFD
such that for all i ∈ A and all v ∈ V it holds ui(v) = 1
and let u = ui for all i ∈ A. We let |A| = k. For
each bin j ∈ [k], we create a bin vertex bj . For each item
i ∈ I , we create si many vertices: one ”center” vertex ci
and si − 1 many ”pendant” vertices p1i , p

2
i , . . . , p

si−1
i and

we denote Si = {ci, p1i , . . . , p
si−1
i }. The center vertex ci

is adjacent to all pendant vertices p1i , . . . , p
si−1
i and all bin

vertices b1, . . . , bk. Note that each connected component of
G− {bj | j ∈ [k]} is a star of size si for some i ∈ I .

Given a solution (I1, I2, . . . , Ik) for UBP, we let πi =
{bi} ∪

⋃
j∈Ii Sj it is easy to see that u(πi) = 1 + B and the

allocation is fair. On the other hand, given a fair allocation
π, we can observe that, since |V | = k · (B + 1), π has to be
also PROP. To finish the proof, we show that every agent has
to get exactly one bin vertex and if an agent gets the center
vertex ci, then she gets all vertices in the star Si.

8 Concluding Remarks
Interestingly, it turns out that the complexity-theoretic behav-
ior of CFD seems to exhibit very little variation between the
different considered notions of fairness. It is also surpris-
ing that while fairly unrestrictive parameterizations suffice
to guarantee XP-tractability (as showcased by Theorems 4
and 6), disproportionately stronger restrictions are required to
achieve fixed-parameter tractability (see Theorems 7 and 8).
We remark that all of our algorithms can also be straightfor-
wardly extended to handle chores (i.e., negative evaluations).

While our results provide a detailed understanding of the
complexity of CFD for several of the most prominent no-
tions of fairness studied in the literature, there remain open
questions that deserve further attention. One such question is
that it is currently not known whether EF1 allocations always
exist on path graphs [Bilò et al., 2019].
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