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Abstract
We study the recently introduced cake-cutting set-
ting in which the cake is represented by an undi-
rected graph. This generalizes the canonical inter-
val cake and allows for modeling the division of
road networks. We show that when the graph is a
forest, an allocation satisfying the well-known cri-
terion of maximin share fairness always exists. Our
result holds even when separation constraints are
imposed; however, in the latter case no multiplica-
tive approximation of proportionality can be guar-
anteed. Furthermore, while maximin share fair-
ness is not always achievable for general graphs,
we prove that ordinal relaxations can be attained.

1 Introduction
Cake cutting is an old and famous problem in resource allo-
cation, with the cake serving as a metaphor for a heteroge-
neous divisible resource that is supposed to be fairly divided
among interested agents. While the problem has long enjoyed
substantial attention from mathematicians and economists,
it has also attracted ongoing interest from computer scien-
tists, not least those working in artificial intelligence [Balka-
nski et al., 2014; Li et al., 2015; Brânzei et al., 2016;
Alijani et al., 2017; Menon and Larson, 2017; Bei et al.,
2018; Arunachaleswaran et al., 2019; Goldberg et al., 2020;
Hosseini et al., 2020]. Indeed, as Procaccia [2013] aptly put
it, cake cutting is more than just child’s play.

The cake in cake cutting is typically assumed to be a one-
dimensional interval. Even though the linear representation
is appropriate for modeling the division of time (for instance,
usage of a jointly-owned facility), or space in a hallway, it
is too simplistic to capture more complex resources such
as road networks. This consideration has led Bei and Suk-
sompong [2021] to introduce a more general graphical cake
model, in which the resource comes in the form of a con-
nected undirected graph. In parallel, Segal-Halevi [2021] ad-
dressed the case of graphs given by a disjoint union of inter-
vals. In contrast to the single interval cake, for general graphs
it is not always possible to find a connected proportional allo-
cation, that is, an allocation that gives every agent a connected
subset of the cake worth at least 1/n of the agent’s value for
the entire cake, where n denotes the number of agents among

whom the cake is divided. Nevertheless, Bei and Suksom-
pong showed that more than half of this guarantee can be re-
covered: for any connected graph, it is possible to ensure that
every agent obtains at least 1/(2n− 1) of her total value, and
this factor is tight in general (but can be improved for certain
graphs). For the union-of-intervals case, Segal-Halevi estab-
lished an approximation factor of 1/(m + n − 1), where m
denotes the number of intervals.

In this paper, we study graphical cake cutting with respect
to another prominent fairness notion, maximin share fairness
[Budish, 2011]. An allocation satisfies this notion if it assigns
to every agent a bundle worth at least her maximin share, i.e.,
the largest value that she can get if she is allowed to partition
the cake into n connected parts and take the least valuable
part. Maximin share fairness is a robust notion, which can
naturally take into account the features and constraints arising
in various settings. Indeed, this robustness enables us to de-
rive positive results in three settings where approximate pro-
portionality fails. First, we allow the graph to be arbitrary—
it may be disconnected, and each of its connected compo-
nents may have an arbitrary topology. Second, we allow
agents to have general monotone valuations—unlike most of
the cake cutting literature, we do not assume that valuations
must be additive. With disconnected graphs or non-additive
valuations, providing an approximate proportionality guaran-
tee solely in terms of n is impossible. Third, we also consider
a recently introduced setting of Elkind et al. [2021c] in which
the shares of different agents should be sufficiently separated
from one another; this allows us to model space between seg-
ments of roads with different owners, for example transition
or buffer zones. In the presence of separation constraints, ob-
taining any multiplicative approximation of proportionality is
again infeasible, as the value of all agents may be entirely
concentrated in the same tiny portion. This observation moti-
vated Elkind et al. to use the maximin share benchmark when
separation is imposed. They showed that with separation, a
maximin allocation always exists for a path graph, but not for
a cycle graph.

1.1 Our Contributions
We begin in Section 3 by addressing the basic case where no
separation constraints are imposed. In this case, for propor-
tionality approximations it can be crucial whether pieces of
different agents are allowed to share a finite number of points
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[Bei and Suksompong, 2021]. We show that this modeling
choice is also crucial with respect to maximin share fairness.
In particular, if points can be shared, then a maximin allo-
cation may not exist even when the graph is a star, whereas
if sharing is not allowed, the existence of such an allocation
can be guaranteed if the graph is acyclic (i.e., a disjoint union
of trees, also known as a forest). Our results complement
those of Bei and Suksompong, who observed that approx-
imate proportionality cannot be ensured even for trees un-
der the no-sharing assumption. Moreover, our guarantees de-
grade gracefully for graphical cakes with cycles: we attain a
1-out-of-(n+ r) maximin allocation, where r is the feedback
vertex set number of the cake (that is, the smallest number of
vertices whose removal would make the cake acyclic).

In Section 4, we consider the more general case where the
pieces of any two agents must be separated by distance at
least a given (positive) parameter. Our main technical result
shows that a maximin allocation exists whenever the graph is
acyclic—this significantly generalizes the existence result of
Elkind et al. [2021c] for paths and complements their non-
existence result for cycles. As with paths, our proof uses the
following high-level idea: Given the maximin partitions of
the agents, we find a part in one agent’s partition such that
allocating the part to that agent rules out at most one part in
each remaining agent’s partition; this allows us to recurse on
the remaining agents and cake. While in the case of paths the
desired part can be found by simply scanning the path from
left to right, in an arbitrary forest there is no ‘left’ or ‘right’,
so new techniques are needed. We develop auxiliary lemmas
related to real trees—metric spaces defined by tree graphs—
which may be of independent interest. As in the case of no
separation, we obtain a 1-out-of-(n + r) maximin allocation
for general graphs.

For the case of positive separation, we show that, in gen-
eral, the factor n + r cannot be improved: for every r ≥ 0,
if n is sufficiently large, there exists a graph with feedback
vertex set number r and a set of n agents with no 1-out-of-
(n + r − 1) maximin allocation. However, better guarantees
can be attained for smaller n and specific classes of graphs.

1.2 Additional Related Work
As mentioned earlier, cake cutting is a popular topic among
researchers of several disciplines—see the classic books of
Brams and Taylor [1996] and Robertson and Webb [1998], as
well as a more recent survey by Procaccia [2016] offering a
computer scientist’s perspective.

For a discussion of the work relevant to graphical fair divi-
sion and separation constraints, see the related work sections
in the papers of Bei and Suksompong [2021] and Elkind et
al. [2021c]; we highlight here some important aspects of our
study. First, we assume that each agent must receive a con-
nected piece of cake. This assumption is often made in or-
der to ensure that agents do not end up with a collection of
crumbs—indeed, a bundle made up of tiny stretches of road
in different parts of the network is unlikely to be of much
use. Second, the connectivity requirement is imposed not
only on the allocation, but also in the definition of the max-
imin share. This is consistent with previous work on maximin
share fairness in constrained settings [Bouveret et al., 2017;

Biswas and Barman, 2018; Lonc and Truszczynski, 2020;
Bei et al., 2021; Elkind et al., 2021c]. Bouveret et al. [2017]
proved that for indivisible items lying on a tree, a maximin al-
location exists. However, as we discuss in Section 5, the “last
diminisher” approach that they used for this proof does not
work in our setting with separation. Recently, Igarashi and
Zwicker [2021] studied envy-freeness in graphical cake cut-
ting under the assumption that agents cannot share individual
points, while Elkind et al. [2021b] investigated land division
with separation constraints.

In the papers above, as in our paper, the resource to be
divided forms a graph. A complementary line of work stud-
ies fair division scenarios in which the agents’ relationship
is captured by a graph [Abebe et al., 2017; Bei et al., 2017;
Aziz et al., 2018].

2 Preliminaries
There is a set of agents N = [n], where [k] := {1, 2, . . . , k}
for any positive integer k. The cake is represented by a finite
undirected graph G = (V,E), which may be connected or
not. Each agent has a nonnegative, monotone, and continuous
valuation function vi, which is not necessarily additive. In
particular, continuity implies that the vertices in V have zero
value. This model captures the classic cake cutting setting
as well as the circular cake (a.k.a. pie) studied by Elkind et
al. [2021c]: an interval cake corresponds to taking G to be a
path graph, while a pie is equivalent to a cycle graph. A piece
of cake is a finite union of intervals from one of more edges
in E. The piece is said to be connected if for any points x, y
in it, one can get from x to y along the graph G while staying
within this piece of cake. We assume that each agent must
receive a connected piece of cake.

There is a separation parameter s ≥ 0. When s > 0, the
edge lengths play an important role. We measure distance
along the edges of G. For any two points x, y ∈ G, we denote
by DISTG(x, y) the length of a shortest path from x to y along
the edges of G; if x and y belong to different connected com-
ponents of G, we set DISTG(x, y) = ∞. For two pieces of
cake X,Y ⊆ G, we denote by DISTG(X,Y ) the shortest dis-
tance between a point in X and a point in Y along the edges
of G, i.e., DISTG(X,Y ) = infx∈X,y∈Y DISTG(x, y); if Y

consists of a single point y, we simply write DISTG(X, y).
A partition of the cake is a set P = {P1, . . . , Pn}, where

each Pi is a connected piece of cake, and the pieces are pair-
wise disjoint: Pi ∩ Pj = ∅ for all i 6= j. When s = 0, we
will consider, in addition to the disjoint-pieces setting, an al-
ternative setting in which Pi ∩ Pj may contain finitely many
points. An allocation is defined similarly, except that we have
a vector A = (A1, . . . , An) instead of a set, where piece Ai

is allocated to agent i. A partition P is said to be s-separated
if DISTG(Pi, Pj) ≥ s for all i 6= j; an analogous defini-
tion holds for an allocation. We assume that partitions and
allocations are required to be s-separated. Observe that for
s > 0, in any s-separated partition or allocation, some of the
cake necessarily remains unallocated. Moreover, since any
two pieces are separated by a positive distance, we assume
without loss of generality in this case that the pieces contain
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closed intervals only. Denote by Γn,s the set consisting of all
s-separated partitions.

The main fairness notion of our paper is the following:
Definition 2.1. The maximin share of agent i, denoted by
MMSn,s

i , is defined as supP∈Γn,s
minj∈[n] vi(Pj).

We omit the superscript s when it is clear from the con-
text. Similarly to the interval cake [Elkind et al., 2021c], the
supremum in Definition 2.1 can be replaced with a maximum.
In other words, there is always a maximizing partition, which
we refer to as a maximin partition. An allocation in which
every agent receives at least her maximin share is said to be a
maximin allocation.

All omitted proofs can be found in the full version of our
paper [Elkind et al., 2021a].

3 No Separation
In this section, we address the basic case where there is no
separation constraint imposed on the allocation, i.e., s = 0.
When s > 0, the pieces of any two agents cannot be adjacent
to each other, so we can assume without loss of generality
that all pieces consist of closed intervals only and the pieces
have empty intersections. For s = 0, however, this is not true:
there are essential differences between the empty-intersection
setting and the finite-intersection setting, in which pieces may
overlap in finitely many points. This observation was made
by Bei and Suksompong [2021] with respect to approximate
proportionality for the case of a star graph. Specifically, in
the empty-intersection setting, n − 1 agents do not receive
the center of the star and therefore can receive cake from at
most one edge; as a consequence, one obtains strong negative
results. On the other hand, in the finite-intersection setting,
non-trivial welfare guarantees can be obtained.

As we will see, the distinction between empty intersection
and finite intersection is crucial with respect to maximin share
fairness too. Note that we use the same constraints when se-
lecting an allocation and when computing the benchmark:
e.g., in the finite-intersection setting, when computing the
agents’ maximin shares, we optimize over all partitions where
parts may intersect in a finite number of points. Thus, allow-
ing intersections results in a more demanding benchmark.

First, we show that in the finite-intersection setting, a max-
imin allocation may not exist.
Proposition 3.1. Assume that the allocated pieces are al-
lowed to intersect in a finite number of points. There exists
an instance with n = 3 agents and a star cake in which no
maximin allocation exists.

Proof. The proof follows the celebrated Theorem 2.1 of
Kurokawa et al. [2018], which shows that a maximin allo-
cation of indivisible objects may not exist for n = 3 agents.

In their instance, there are 12 objects, indexed by j ∈ [3]
and k ∈ [4]. Each agent i ∈ [3] values each object (j, k) by:

vi(j, k) = 1000000 + 1000 · Tj,k + E
(i)
j,k,

where T,E(1), E(2), E(3) are carefully chosen 3×4 matrices
with all values smaller than 100. Kurokawa et al. proved that
every agent can partition the objects into 3 subsets of 4 objects

each, in such a way that the sum of values in each subset is
exactly 4055000; this value is therefore the maximin share of
all agents. These authors then showed that no allocation gives
every agent at least this value.

In our instance, there is a star graph with 12 edges con-
nected to a single center vertex c. The edges are indexed by
pairs (j, k) with j ∈ [3], k ∈ [4]. Agent i ∈ [3] has value
vi(j, k) for the edge (j, k), and this value is spread uniformly
across the edge. Since the pieces may intersect in a finite
number of points, the maximin share of each agent in our in-
stance is also 4055000, and corresponds to partitioning the
set of edges into 3 subsets of 4 edges each, intersecting in c.

If an agent’s piece is contained in a single edge, then her
value is clearly less than 2000000. Hence, in a maximin allo-
cation, no edge is shared among two or more agents. We may
therefore assume without loss of generality that each agent
receives a piece containing two or more whole edges. But the
same argument as that of Kurokawa et al. [2018] shows that
no such allocation can be a maximin allocation.

Next, we show that in the empty-intersection setting, a
maximin allocation always exists when the cake is a forest.

Theorem 3.2. Let G be a forest and s = 0. Assume that all
allocated pieces must be completely disjoint. For agents with
arbitrary monotone valuations, a maximin allocation exists.

Intuitively, given the n maximin partitions of the agents,
we want to choose a part in one agent’s partition that overlaps
at most one part in each remaining agent’s partition—this will
allow us to recurse on the remaining agents and their leftover
partitions. To this end, we introduce the following definition.
Given a graph G and a family X = (X1, . . . , Xk) of con-
nected pieces of G, we say that a piece Xj is 0-good if for
all j1, j2 ∈ [k] the following holds: If Xj1 ∩ Xj 6= ∅ and
Xj2 ∩Xj 6= ∅, then Xj1 ∩Xj2 6= ∅.
Lemma 3.3. Let G be a tree and let X = (X1, . . . , Xk) be a
family of connected subsets of G, for some k ∈ N. For some
j∗ ∈ [k], the piece Xj∗ is 0-good.

In order to prove this lemma, we must handle both open
and closed pieces.1 Indeed, for n = 3 and a star graph with
three edges of equal value, a maximin partition contains two
open pieces and one closed piece.2

Proof of Lemma 3.3. Let m be the number of edges in G.
The proof is by induction on m.

For the base case m = 1, G is an interval; assume without
loss of generality that it is the interval [0, 1]. Each Xj is also
an interval which may be open, half-open, or closed. For
each j ∈ [k], let `j and rj be the left and right endpoint of
Xj , respectively. Choose j∗ ∈ [k] such that rj∗ is smallest;
if there is a tie, break it in favor of a piece that is right-open,
i.e., does not contain rj∗ . If Xj∗ contains its right endpoint

1We are grateful to Alex Ravsky for the proof idea.
2The finite-intersection analogue of Lemma 3.3 does not hold.

For example, if G is a star graph with center c and edges e1, e2, e3,
e4, and X = (e1∪c∪e2, e3∪c∪e4, e1∪c∪e3, e2∪c∪e4), there is
no Xj with the property that if Xj1 ∩Xj is infinite and Xj2 ∩Xj is
infinite, then Xj1 ∩Xj2 is infinite. This explains why Theorem 3.2
does not extend to the finite-intersection case.
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(i.e., it is right-closed), then any piece Xj intersecting Xj∗

must have `j ≤ rj∗ and must contain the point rj∗ . On the
other hand, if Xj∗ does not contain its right endpoint (i.e., it
is right-open), then any piece Xj intersecting Xj∗ must have
`j < rj∗ and must contain an interval (rj∗ − ε, rj∗) for some
sufficiently small ε > 0. In both cases, any two such pieces
Xj intersect, so Xj∗ is 0-good. This concludes the analysis
for base case.

For the inductive step, let m ≥ 2, assume that the statement
holds for graphs with at most m − 1 edges, and consider a
graph G with m edges. Since G is a tree, it contains an edge
e with endpoints u and w such that w is a leaf of G. Let G−
be the graph G without the vertex w and the internal points of
edge e; note that u is a vertex of G−. We consider two cases.

Case 1: At least one piece of X is contained in e (so it is
an interval). We can then view e as the interval [0, 1] (with
w = 0, u = 1), and use the same approach as for m = 1,
i.e., pick the interval Xj∗ with the smallest right endpoint,
breaking ties in favor of right-open intervals. Then Xj∗ is
0-good by the same argument as in the base case m = 1.

Case 2: No piece of X is fully contained in e. This means
that all pieces of X intersect G−. Let X′ := (X ′1, . . . , X

′
k),

where X ′j := Xj ∩ G− for each j ∈ [k]. By the inductive
assumption applied to G−, at least one piece in X′, say X ′j∗ ,
is 0-good with respect to X′. It suffices to show that Xj∗ is
also 0-good with respect to X.

We claim that if Xj∗ intersects some other piece Xj , then
X ′j∗ also intersects X ′j . To see this, consider a point z ∈
Xj∗ ∩ Xj . If z ∈ G−, then X ′j∗ intersects X ′j and we are
done. If z ∈ e, then both Xj∗ and Xj intersect e. On the other
hand, we assume that all pieces of X intersect G−. Thus,
both Xj∗ and Xj contain the point u, which is the unique
point connecting e and G−. Hence u ∈ X ′j∗ ∩ X ′j , so again
X ′j∗ intersects X ′j . This establishes the claim.

We now show that Xj∗ is 0-good with respect to X. Sup-
pose that Xj∗ intersects two other pieces in X, say Xj1 and
Xj2 . By the claim in the previous paragraph, X ′j∗ intersects
both X ′j1 and X ′j2 . Since X ′j∗ is 0-good with respect to X′, it
must be that X ′j1 intersects X ′j2 . In particular, Xj1 intersects
Xj2 . Hence, Xj∗ is 0-good with respect to X.

With Lemma 3.3 in hand, we can now show that, in the
empty-intersection setting, a maximin allocation exists when-
ever the cake is a forest.

Proof of Theorem 3.2. For each agent, consider her maximin
partition. Every part of the partition is contained in some tree
of the forest. Let T ⊆ G be a tree that contains at least one
part from the maximin partition of at least one agent.

For every agent i ∈ N , let ki be the number of parts of
i’s maximin partition that are contained in T , and denote the
parts by Ti,1, . . . , Ti,ki . By Lemma 3.3, there exists some
i ∈ N and j ∈ [ki] such that Ti,j is 0-good. Allocate the
part Ti,j to agent i, and divide the remaining cake recursively
among the remaining agents.

The remaining cake is still a forest. By definition of a 0-
good subset, for every other agent, at most one part of her
maximin partition overlaps the allocated piece Ti,j . Hence,
for each of the n−1 remaining agents, at least n−1 parts from

her maximin partition remain intact. Therefore the recursive
call indeed returns a maximin allocation.

As we have seen, the seemingly minor distinction of
whether individual points can be shared among allocated
pieces makes a decisive difference in relation to maximin
share fairness. Which assumption is more realistic depends
on the use case, for example whether road intersections can
only be owned by one agent or shared by multiple agents.
Bei and Suksompong [2021] showed that nontrivial egalitar-
ian welfare can be obtained only when sharing is allowed.
Thus, our results complement theirs: we establish that, even
when sharing is infeasible, a reasonable fairness guarantee
can still be provided in terms of the maximin share.

We now proceed to general graphs. We consider an ordi-
nal relaxation called 1-out-of-k maximin share, denoted by
MMSk,s

i , or simply MMSk
i when s is clear from the context.

The idea is that instead of taking partitions into n parts as
in the canonical maximin share, we allow partitions into k
parts, where k > n is a given parameter. For each graph G,
let FVSNUM(G) be the feedback vertex set number of G, that
is, the minimum number of vertices whose removal makes the
graph acyclic.3

Theorem 3.4. Let s = 0, and assume that all allocated
pieces must be completely disjoint. For any graph G and any
n agents with arbitrary monotone valuations, there exists an
allocation of G in which each agent i receives a connected
piece with value at least MMSn+FVSNUM(G)

i .

Proof. Let r := FVSNUM(G). Pick a subset of r vertices
such that after deleting these vertices the remaining graph is
a forest, and delete them (while keeping their adjacent edges
intact as open intervals). For each agent, consider her 1-out-
of-(n+r) maximin partition. Since all pieces of each partition
are pairwise disjoint, each vertex deletion harms at most one
part in each partition. Thus, once the graph becomes a forest,
for every agent, at least n parts remain. By Theorem 3.2,
there is an allocation in which every agent i gets at least one
of her n parts, and therefore value at least MMSn+r

i .

For every graph G, let MMSRANK(G) be the smallest in-
teger r ≥ 0 such that for any integer n ≥ 1 and any n
agents with arbitrary monotone valuations, there exists an
allocation of G in which each agent i receives a connected
piece with value at least MMSn+r

i . Theorem 3.4 shows that
MMSRANK(G) ≤ FVSNUM(G); we do not know if this in-
equality is tight.

When agents’ valuations are additive, Theorem 3.4 is not
tight for some graphs. In particular, for the cycle graph C we
have FVSNUM(C) = 1, but MMSn

i can be guaranteed to all
agents (by transforming C into an interval, for which a pro-
portional allocation exists). Defining MMSRANKADD(G)
analogously to MMSRANK(G), but for additive valuations
only, we thus obtain MMSRANKADD(C) = 0.

3Computing FVSNUM(G) is NP-hard [Karp, 1972], but here we
only use it for existence proofs. Note that FVSNUM(G) is upper-
bounded by the circuit rank of G, that is, the minimum number of
edges whose removal makes the graph acyclic. The circuit rank of a
graph G = (V,E) with c connected components is |E| − |V |+ c.
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4 Positive Separation
In this section, we consider the case where a separation con-
straint is imposed, that is, s > 0.

4.1 Cutting Forests
First, we assume that G is a forest. We start with several
lemmas about the DISTG metric when G is a tree.4

By definition of a tree, for any two points x, y ∈ G, there is
a unique (simple) path between x and y. Denote this unique
path by PATHG(x, y) or x → y, and observe that the length
of this path is DISTG(x, y). We say that two subsets of G are
essentially-disjoint if they intersect in at most a single point.
Lemma 4.1. Let G be a tree, X ⊆ G a closed connected
subset, and r ∈ G \ X a point. There exists a unique point
x∗ ∈ X (a function of X and r) with the following properties:

(a) The path from any point in X to r passes through x∗.
That is, for any y ∈ X it holds that x∗ ∈ PATHG(y, r).

(b) x∗ is closer to r than any other point in X is. That is,
DISTG(x∗, r) < DISTG(y, r) for all y ∈ X \ {x∗}.

(c) For any y ∈ X it holds that DISTG(y, r) =
DISTG(y, x∗) + DISTG(x∗, r).

Denote the unique point x∗ guaranteed by Lemma 4.1 by
NEAREST(X, r). 5 The lemma can be generalized as follows:
Lemma 4.2. Let G be a tree and X,R ⊆ G be closed con-
nected subsets with X ∩ R = ∅. There exists a unique point
x∗ ∈ X (a function of X and R) satisfying the following
properties:

(a) The path from any point in X to any point in R passes
through x∗.

(b) For every point r ∈ R, x∗ is closer to r than any other
point in X is.

For non-intersecting subsets X,R ⊆ G, denote the unique
point x∗ guaranteed by Lemma 4.2 by NEAREST(X,R).
Note that NEAREST(X,R) 6= NEAREST(R,X): the former
is in X while the latter is in R. We now define “s-good”
pieces similarly to 0-good pieces in Lemma 3.3. Given a
graph G and a family X = (X1, . . . , Xk) of closed connected
pieces of G, a piece Xj is called s-good provided that for all
j1, j2 ∈ [k] the following holds: If DISTG(Xj1 , Xj) < s and
DISTG(Xj2 , Xj) < s, then DISTG(Xj1 , Xj2) < s.
Lemma 4.3. Let G be a tree and X = (X1, . . . , Xk) a family
of closed connected subsets of G, for some integer k ≥ 1. If
s > 0, then for some j∗ ∈ [k], the piece Xj∗ is s-good.

Proof. Fix an arbitrary point r ∈ G as the tree root. For every
j ∈ [k], let xj := NEAREST(Xj , r) and dj := DISTG(xj , r).
Let j∗ ∈ arg maxj∈[k] dj , so that Xj∗ is a piece in X farthest
from r; abusing notation slightly, we refer to this piece as X0

4In this case, the metric space DISTG is known as a real tree or
an R-tree [Bestvina, 2001].

5NEAREST(X, r) is closely related to the concept of median in
a tree. Given three points x, y, z of a tree graph, there is a unique
point in PATHG(x, y) ∩ PATHG(y, z) ∩ PATHG(z, x); this point is
called the median of x, y, z. More generally, any graph with this
uniqueness property is called a median graph; such graphs have been
studied in voting theory [Nehring and Puppe, 2007].

and let x0 := xj∗ . We claim that X0 is s-good. To prove this,
we need several auxiliary claims concerning X0; see the full
version of our paper [Elkind et al., 2021a] for the proofs.

Claim 1. For each j ∈ [k], if X0 intersects Xj , then x0 ∈ Xj .

Claim 2. For each j ∈ [k], if X0 does not intersect Xj , then
x0 = NEAREST(X0, Xj).

For every j ∈ [k] such that X0 and Xj are disjoint, let
yj := NEAREST(Xj , X0) = NEAREST(Xj , x0) and zj :=

NEAREST(PATHG(x0, yj), r), i.e., zj is the point at which
the path from x0 to r meets the path from yj to r. Our next
auxiliary claim is:

Claim 3. For each j ∈ [k] such that X0 does not intersect Xj ,
DISTG(yj , zj) ≤ DISTG(x0, zj).

By Claims 1 and 2 and the definition of yj , we get the
following useful formula for the distance between X0 and
Xj , for every j ∈ [k]:

DISTG(X0, Xj) = DISTG(x0, Xj) = DISTG(x0, yj), (1)

where the second equality holds if X0 and Xj are disjoint. In
other words, to measure the distance between the sets X0 and
Xj , we can consider the distance between the single point
x0 ∈ X0 (the point closest to r) and Xj . If X0 ∩Xj = ∅, so
that yj is defined, then we can consider the distance between
x0 and the single point yj ∈ Xj (the point closest to X0).

We are finally ready to prove that X0 is s-good. Con-
sider two arbitrary pieces of X, say X1 and X2, such that
DISTG(X1, X0) < s and DISTG(X2, X0) < s. We have to
prove that DISTG(X1, X2) < s.

If X0 ∩X1 6= ∅, then x0 ∈ X1 by Claim 1, so

DISTG(X1, X2) ≤ DISTG(x0, X2) = DISTG(X0, X2) < s,

where the equality holds by (1). An analogous claim holds
if X0 ∩ X2 6= ∅. If X1 ∩ X2 6= ∅, then obviously
DISTG(X1, X2) = 0 < s. So from now on suppose that
X0 ∩ X1 = X0 ∩ X2 = X1 ∩ X2 = ∅. Then y1 and
y2 are defined, and by (1) we have DISTG(y1, x0) < s and
DISTG(y2, x0) < s.

By definition of z1 and z2, the path x0 → r must
pass through both z1 and z2. Without loss of generality,
suppose that z1 comes no later than z2 on this path, so
DISTG(x0, z1) ≤ DISTG(x0, z2), as in the illustration below:

x0

y1

z1

y2

z2 r

Consider the path y1 → z1 → z2 → y2. The length of this
path is at most

DISTG(y1, z1) + DISTG(z1, z2) + DISTG(z2, y2)

≤ DISTG(x0, z1) + DISTG(z1, z2) + DISTG(z2, y2)

= DISTG(x0, y2) = DISTG(X0, X2) < s;

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

165



the first inequality holds by Claim 3 and the last equality
by (1). We have demonstrated a path of length shorter than
s from a point y1 ∈ X1 to a point y2 ∈ X2; this proves that
DISTG(X1, X2) < s. It follows that X0 is s-good.

With Lemma 4.3 in hand, we can now establish the ex-
istence of a maximin allocation for forests by using similar
arguments as in Theorem 3.2. In particular, when we allo-
cate an s-good part Ti,j to agent i, we remove all portions
of the tree that are within distance s of Ti,j , and divide the
remaining cake recursively among the remaining agents.

Theorem 4.4. Let G be a forest and s > 0. For agents with
arbitrary monotone valuations, a maximin allocation exists.

4.2 Cutting General Graphs
We now proceed to general graphs. Even when the graph is
a simple cycle, Elkind et al. [2021c] showed that a maximin
allocation does not necessarily exist; however, the 1-out-of-
(n + 1) maximin share can be guaranteed. We present here
a more general theorem analogous to Theorem 3.4. How-
ever, our theorem requires the assumption that the length of
each edge is at least s. We remark that the separation param-
eter s is generally small in our motivating applications such
as transition or buffer zones, so this assumption is realistic.
Nevertheless, it is an interesting question whether the result
continues to hold without this assumption.

Theorem 4.5. Let s > 0. Let G be a graph in which the
length of each edge is at least s. For any n agents with arbi-
trary monotone valuations, there exists an s-separated allo-
cation in which each agent i receives a connected piece with
value at least MMSn+FVSNUM(G)

i .

Proof. Let r := FVSNUM(G). Let u1, . . . , ur be a set of ver-
tices such that, when they are deleted from G, the remaining
graph is a forest. For each j ∈ [r], remove an open interval
of length s/2 from each edge adjacent to uj . Consider the
1-out-of-(n + r) maximin partition of each agent. For each
j ∈ [r], the diameter of the set removed due to the vertex uj

is less than s. Hence, each removed set overlaps at most one
part of each agent’s partition. Therefore, once the graph be-
comes a forest, for every agent, at least n parts remain. By
the argument in the proof of Theorem 4.4, there exists an s-
separated allocation in which every agent i gets at least one
of the remaining parts of her s-separated maximin partition,
and therefore value at least MMSn+r

i . Then, reconstruct the
original graph by putting back the removed intervals of length
s/2. The allocation remains s-separated.

As in the case s = 0, we do not know whether the factor
n + FVSNUM(G) is tight in general. Below, we present a
class of graphs for which we can obtain a tight bound. In par-
ticular, we consider the family of graphs such that the feed-
back vertex set number of each connected component is at
most 1 (that is, every connected component is either a tree,
or can be made acyclic by removing a single vertex). Set
N := min(n + FVSNUM(G), 2n− 1).

Theorem 4.6. The following statements hold for any real
number s > 0 and integer n ≥ 1:

(a) Let G be a vertex-disjoint union of graphs with FVS
number ≤ 1, such that the length of each edge is at least s.
For any n agents with monotone valuations, there is an allo-
cation in which each agent i receives value at least MMSN

i .
(b) For any integer r ≥ 1, there exists a graph G with

FVSNUM(G) = r (specifically, a union of r cycles and zero
or more trees), and n agents with additive valuations, such
that no allocation gives each agent i at least MMSN−1

i .
Theorem 4.6 shows that Theorem 4.5 is tight for unions of

trees and cycles when the number of cycles is less than n.
However, exact bounds for other graphs are not known.

5 Discussion
In this work, we have studied the division of a graphical cake
using the maximin share notion, both with and without sep-
aration constraints. Our most technically challenging result
shows that a maximin allocation exists for positive separa-
tion whenever the graph is acyclic. A tempting approach to
simplify this proof is by using the “last diminisher” method,
wherein each agent can trim a proposed piece as long as the
value of the piece that remains after trimming is at least the
agent’s maximin share. Indeed, this method was used by Bou-
veret et al. [2017] to establish the existence result for trees in
the context of indivisible goods, and the algorithm of Elkind
et al. [2021c] for interval cakes can also be seen as a version
of last diminisher. We remark here that the approach does not
work in our setting with separation. Indeed, consider the sub-
tree in Figure 1, where two of Alice’s parts in her maximin
partition are bold, while one of Bob’s parts is dashed. The
last diminisher method may allocate Bob’s part to him; how-
ever, when we take the separation requirement into account,
we cannot allocate either of Alice’s parts in its entirety. Note
that the dashed piece is not s-good. This example precisely
demonstrates why, in the proof of Theorem 4.4, we need to
reason carefully about real trees in order to guarantee the ex-
istence of an s-good piece.

s/2 s/2

Figure 1: An example subtree in which the last diminisher method
fails to produce a maximin allocation.

Throughout the paper, we have formulated a number of
open questions that stem naturally from our work. More gen-
erally, our work builds upon an active line of research that in-
corporates realistic constraints in fair division problems. We
believe that identifying and studying such considerations will
lead to technically intriguing questions as well as practically
useful fairness guarantees.
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