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Abstract

This paper is part of an ongoing endeavor to bring
the theory of fair division closer to practice by han-
dling requirements from real-life applications. We
focus on two requirements originating from the di-
vision of land estates: (1) each agent should re-
ceive a plot of a usable geometric shape, and (2)
plots of different agents must be physically sep-
arated. With these requirements, the classic fair-
ness notion of proportionality is impractical, since
it may be impossible to attain any multiplicative
approximation of it. In contrast, the ordinal max-
imin share approximation, introduced by Budish
in 2011, provides meaningful fairness guarantees.
We prove upper and lower bounds on achievable
maximin share guarantees when the usable shapes
are squares, fat rectangles, or arbitrary axes-aligned
rectangles, and explore the algorithmic and query
complexity of finding fair partitions in this setting.

1 Introduction
The problem of fairly allocating a divisible resource has a
long history, dating back to the seminal article of Polish
mathematician Hugo Steinhaus [1948]. In its basic formula-
tion, the resource, which is metaphorically viewed as a cake,
comes in the form of an interval. The aim is to find a division
satisfying some fairness criteria, e.g., proportionality, which
means that if there are n agents, the value that each of them
receives should be at least 1/n of the entire cake. Not only
does a proportional allocation always exist, but it can also be
found efficiently [Dubins and Spanier, 1961].

While the interval cake is simple and consequently use-
ful as a starting point, it is often insufficient for modeling
real-world applications, especially when combined with the
common requirement that each agent should receive a con-
nected piece of the cake.1 In particular, when allocating real
estate, geometric considerations play a crucial role: it is hard
to build a house or raise cattle on a thin or highly zigzagged

1As Stromquist [1980] memorably wrote, without such con-
nectivity requirements, there is a danger that agents will receive a
“countable union of crumbs”.

piece of land even if its total area is large. Such considera-
tions have motivated researchers to study fairness in land di-
vision, which also serves to model the allocation of other two-
dimensional objects such as advertising spaces [Berliant et
al., 1992; Ichiishi and Idzik, 1999; Berliant and Dunz, 2004;
Dall’Aglio and Maccheroni, 2009; Iyer and Huhns, 2009;
Devulapalli, 2014; Segal-Halevi et al., 2017; Segal-Halevi
et al., 2020]. These studies have uncovered important dif-
ferences between land division and interval division: for in-
stance, when agents must be allocated square pieces, Segal-
Halevi et al. [2017] show that we cannot guarantee the agents
more than 1/(2n) of their entire value in the worst case, even
when the agents have identical valuations over the land.

A related issue, which frequently arises in practice, is that
agents’ pieces may have to be separated from one another: we
may need to leave a space between adjacent pieces of land,
e.g., to prevent dispute between owners, provide access to the
plots, avoid cross-fertilization of different crops, or ensure
safe social distancing among vendors in a market. The formal
study of fair division with separation constraints was initiated
by Elkind et al. [2021c], who focus on the one-dimensional
setting. The goal of our work is to extend this analysis to
two dimensions, i.e., to analyze fair division of land under
separation constraints.

1.1 Our Contribution
We assume that each agent must obtain a contiguous piece
of land, and the shares that any two agents receive must be
separated by a distance of at least s, where s is a given pa-
rameter that is independent of the land value. In the pres-
ence of separation constraints, no multiplicative approxima-
tion of proportionality can be guaranteed, even in one di-
mension: when all of the agents’ values are concentrated
within distance s, only one agent can receive a positive
utility. Elkind et al. [2021c] therefore consider the well-
known criterion of maximin share fairness [Budish, 2011;
Kurokawa et al., 2018]—the value that each agent receives
must be at least her 1-out-of-n maximin share, i.e., the best
share that she can guarantee for herself by dividing the re-
source into n bundles and accepting the worst one. Elkind
et al. [2021c] show that this criterion can be satisfied for an
interval cake, while an ordinal approximation of it can be at-
tained for a one-dimensional circular cake.

We establish that maximin share fairness and relaxations
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thereof can also provide worst-case guarantees in land allo-
cation with separation. Moreover, since full proportionality
cannot always be attained in this setting even in the case of
no separation (s = 0), our results have interesting implica-
tions for that case as well.

Our first result is negative: we prove that, when s > 0, it
is impossible to guarantee to each agent a positive fraction
of her 1-out-of-n maximin share. Therefore, in the rest of
the paper, we focus on an ordinal notion of approximation.
Specifically, we ask for the smallest value of k ≥ n such that
we can guarantee each agent her 1-out-of-k maximin share.

We assume that both the land to be divided and each agent’s
piece are axes-aligned rectangles. If we additionally require
that all rectangles (both in agents’ maximin partitions and in
the final allocation) are r-fat, i.e., the ratio of the length of
the longer side to the length of the shorter side is bounded by
a constant r ≥ 1, then it suffices to set k = (2dre + 2)n −
(3dre + 2); in particular, if all land pieces are required to be
squares (r = 1), we obtain k = 4n − 5. Without the fatness
assumption, the problem is more difficult, and the technique
we use for fat rectangles no longer works. However, we still
obtain a finite approximation: we show that it suffices to set
k = 2n+2, and provide stronger bounds for small values of n.
In particular, for n = 2 we can set k = 3, which is optimal.

Our positive results are constructive, in the sense that,
given each agent’s 1-out-of-k maximin partition (i.e., a par-
tition into k pieces where the value of each piece is at least
the agent’s maximin share), we can divide the land among
the agents so that each agent gets her 1-out-of-k share, using
a natural adaptation of the standard Robertson–Webb model
[Robertson and Webb, 1998]. However, it is not clear how a
1-out-of-k maximin partition can be efficiently computed or
even approximated. To circumvent this difficulty, we focus
on a special class of land partitions known as guillotine par-
titions; intuitively, these are partitions that can be obtained
by a sequence of edge-to-edge cuts. We show that we can
efficiently compute an approximately optimal guillotine par-
tition, and that the loss caused by using guillotine partitions
can be bounded. Combining these results with our ordinal ap-
proximation algorithms, we obtain approximation algorithms
for computing a maximin allocation.

1.2 Related Work
In considering fair division with separation, we build on
the work of Elkind et al. [2021c], who investigate the one-
dimensional variant of this problem. Fair land division with
constraints on the shape of usable pieces has been previ-
ously studied [Segal-Halevi et al., 2017; Segal-Halevi et al.,
2020]. We follow these works in considering fat rectangles
and guillotine cuts; however, the fairness notions consid-
ered in these papers are (partial) proportionality and envy-
freeness, whereas our work concerns maximin fairness.

Our analysis is also somewhat similar in spirit to several re-
cent works on dividing a cake represented by a general graph,
which generalizes both the interval and the cycle (a.k.a. pie)
setting. Several fairness notions have been studied in this set-
ting: partial proportionality [Bei and Suksompong, 2021],
envy-freeness [Igarashi and Zwicker, 2021], and maximin
share fairness [Elkind et al., 2021a]. In all of these works, the

cake is still one-dimensional—it is a union of a finite num-
ber of intervals. As we show in this work, a two-dimensional
cake is fundamentally different.

2 Preliminaries
The land is given by a closed, bounded, and connected sub-
set L of the two-dimensional Euclidean plane R2. The land
is to be divided among a set of agents N = [n], where
[k] := {1, 2, . . . , k} for any positive integer k. There is a
prespecified family U of usable pieces. Each agent has an in-
tegrable density function fi : L→ R≥0; agent i’s value for a
piece of land Z is given by vi(Z) :=

∫∫
Z
fi(x, y)dxdy.

Let s ≥ 0 be the separation parameter. An allocation of
the land is given by a vector A = (A1, . . . , An), where each
Ai is a single (connected) piece of land allocated to agent i.
We require allocations to be s-separated, i.e., any two pieces
Ai andAj are separated by distance at least s, where distance
is measured according to the `∞ norm:

d(Ai, Aj) = inf
(x,y)∈Ai,(x′,y′)∈Aj

max{|x− x′|, |y − y′|}.

Partitions and s-separated partitions are defined similarly,
except that instead of a vector A = (A1, . . . , An), we have
a set P = {P1, . . . , Pn}. Denote by Γn(s) the set of all s-
separated partitions. An instance consists of the land, agents,
density functions, and the separation parameter.

Definition 2.1. The 1-out-of-k maximin share of agent i is
defined as MMSk,s

i := supP∈Γk(s) minj∈[k] vi(Pj). We omit
s if it is clear from the context, and write MMSk

i instead of
MMSk,s

i . We refer to MMSn
i as i’s maximin share.

As with cake cutting [Elkind et al., 2021c], the supremum
in Definition 2.1 can be replaced by a maximum. This re-
quires defining a metric on the usable pieces and showing
that U is compact in that metric space—see Appendix C in
the work of Segal-Halevi et al. [2017]. An s-separated parti-
tion for which this maximum is attained is called a maximin
partition of agent i.

All omitted proofs can be found in the full version of our
paper [Elkind et al., 2021b].

3 A General Impossibility Result
We first show that, in contrast to one-dimensional cake cut-
ting with separation [Elkind et al., 2021c], for land division
there may be no allocation that guarantees to all agents their
maximin share or even any multiplicative approximation of it.
This negative result does not depend on the geometric shape
of the land or the pieces.2

Proposition 3.1. For every family U of usable pieces, integer
n ≥ 2, separation parameter s > 0, and real number r > 0,
there exists a land division instance with n agents in which no
s-separated allocation gives every agent i a value of at least
r ·MMSn,s

i .

Proof sketch. We construct n sets S1, . . . , Sn consisting of n
points each such that the distance between any two points in

2We are grateful to Alex Ravsky for the proof idea.
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the same set is greater than 1, but if we pick one representa-
tive point from each set, then some two representatives are at
distance less than 1 apart. We then construct agents’ density
functions so that each agent only values a small ‘pool’ of land
around each of the points in their set, assigning a value of 1
to each such pool. By scaling this construction by approxi-
mately a factor of s, we can ensure that each agent’s maximin
share is 1, but there are at most n − 1 agents who can obtain
a positive utility in an s-separated partition.

4 Ordinal Approximation
Since no multiplicative approximation of the maximin share
can be guaranteed, we instead consider an ordinal notion of
approximation. That is, we ask if each agent can be guaran-
teed her 1-out-of-k maximin share for some k > n.

While the negative result of Section 3 does not depend on
geometric assumptions, our positive results concern pieces
that have a ‘nice’ geometric shape. Specifically, we first
consider the scenario where U consists of ‘fat’ axes-aligned
rectangles, i.e., rectangles whose length-to-width ratio is
bounded by a constant (e.g., if this constant is 1, the set U
consists of axes-aligned squares). We then consider the more
general setting where U consists of all axes-aligned rectan-
gles. Placing such constraints on the shape of each piece
is useful in land allocation settings, particularly in urban re-
gions. Note that when we restrict the shape of the usable
pieces to be a (fat) rectangle, in our definition of the maximin
share we also only consider s-separated partitions in which
each piece is a (fat) rectangle.

4.1 Squares and Fat Rectangles
For a real number r ≥ 1, a rectangle is called r-fat if the ratio
of its longer side to its shorter side is at most r [Agarwal et al.,
1995; Katz, 1997]. In particular, a 1-fat rectangle is a square.
Given a rectangle R, we denote the lengths of its long and
short side by long(R) and short(R), respectively; we refer to
short(R) as the width of R. In what follows, we say that two
pieces of land overlap if their intersection has a positive area,
and that they are disjoint if their intersection has a zero area.

In order to obtain maximin share guarantees, the high-level
idea is to find a sufficiently large k such that if we consider the
agents’ 1-out-of-k maximin partitions, then it is possible to
select a representative piece from each partition in such a way
that these representatives are s-separated. This will ensure
that, by allocating to each agent her representative, we obtain
an allocation that is s-separated and in which agent i receives
value at least MMSk,s

i . The following theorem shows that
k = (2dre+ 2)n− (3dre+ 2) suffices; for a square (r = 1),
this yields k = 4n − 5. Note that our result does not place
any assumptions on the shape of the land.

Theorem 4.1. Let r ≥ 1 be a real number. For every land
division instance with n agents and separation parameter s
where U is the set of axes-aligned r-fat rectangles, there ex-
ists an allocation in which every agent i receives value at
least MMSk,s

i , where k := (2dre+ 2)n− (3dre+ 2).

Proof. We first consider the following geometric problem:

There are n ≥ 2 sets, each of which contains N ≥
n axes-aligned r-fat rectangles. The rectangles in
each set are pairwise disjoint. We want to choose
a single representative rectangle from each set so
that the representatives are pairwise disjoint. What
is the smallest integer N = NFAT(r, n) for which
this is always possible?

We first prove that NFAT(r, 2) ≤ dre+ 2. 3 Given dre+ 2
red and dre + 2 blue r-fat rectangles, we have to show that
at least one red and one blue rectangle do not overlap each
other. The proof of this statement is left to the full version of
our paper [Elkind et al., 2021b].

Next, we prove that NFAT(r, n + 1) ≤ NFAT(r, n) +
2dre + 2. We claim that in any arrangement of axes-aligned
r-fat rectangles, there exists a rectangle that overlaps at most
2dre + 2 pairwise disjoint rectangles. To prove this claim,
let Qmin be a minimum-width rectangle, and denote its width
by w. Mark all four corners of Qmin. Moreover, on both of
its longer sides, mark dre − 1 additional points so that the
distance between any two consecutive marks is at most w.
The total number of marks is 2dre+ 2. Any rectangle Q that
overlaps Qmin must contain at least one of its marks. Hence,
if there are more than 2dre+ 2 rectangles overlapping Qmin,
some two of them will overlap. This establishes the claim.

Combining this with the base case n = 2, we conclude
that, for all n ≥ 2 and r ≥ 1:

NFAT(r, n) ≤ (2dre+ 2)(n− 2) + (dre+ 2)

= (2dre+ 2)n− (3dre+ 2).

For the special case of a square we get N(1, n) ≤ 4n− 5.

Figure 1: The dark rectangles are s-separated if and only if the light
rectangles wrapping them with a rectangle ring of width s/2 are
disjoint.

We can now return to our original problem. Given the sep-
aration parameter s, for every rectangle Q with side lengths
u and v, define WRAP(Q, s) to be the rectangle with side
lengths u+s and v+s and the same center asQ (i.e., wrapQ
with a ‘rectangle ring’ of width s/2); note that WRAP(Q, s)

3 This inequality is tight, that is, NFAT(r, 2) = dre + 2 for any
r ≥ 1. This can proved by exhibiting two sets of r-fat rectangles,
each of which contains dre + 1 pairwise-disjoint rectangles, such
that no two representatives are disjoint. Consider the following two
sets of rectangles. The vertical set contains the rectangles [i, i+1]×
[1 − ε, dre + ε] for i ∈ {0, . . . , dre}. The horizontal set contains
the rectangles [1− ε, dre+ ε]× [i, i+1] for i ∈ {0, . . . , dre}. For
all rectangles, the ratio between the two side lengths is dre+2ε−1;
for sufficiently small ε, it is less than r, so all rectangles are r-fat.
It can be verified that each horizontal rectangle overlaps all vertical
rectangles.
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is r-fat whenever Q is. Then, two rectangles Q1 and Q2 are
s-separated if and only if WRAP(Q1, s) and WRAP(Q2, s) do
not overlap (see Figure 1).

Now, given an n-agent instance, we ask each agent to pro-
duce a 1-out-of-k maximin partition: this is a set of k axes-
aligned rectangles that are s-separated. Then, we replace each
rectangle Q with WRAP(Q, s), so each agent now has a set
of k non-overlapping rectangles. Since k ≥ NFAT(r, n),
there is a set of representative rectangles, one per agent,
that are pairwise disjoint. Suppose that these rectangles
are WRAP(Q1, s),WRAP(Q2, s), . . . ,WRAP(Qn, s), where
WRAP(Qi, s) belongs to agent i’s set. We allocate the rect-
angle Qi to agent i. The rectangles Qi are s-separated, and
every agent i receives value at least MMSk,s

i , as desired.

Constructions similar to those in Proposition 3.1 show that
NFAT(r, n) ≥ n + 1 for all r. Thus the bound 4n − 5 for
squares is optimal for n = 2, but may be suboptimal for n ≥
3. Closing the gap between the lower bound n + 1 and the
upper bound 4n− 5 seems to require new geometric insights.

4.2 Arbitrary Rectangles
Next, we allow the pieces to be arbitrary axes-aligned rect-
angles, and assume that the land itself is also an axes-aligned
rectangle. Without loss of generality, we suppose further that
the land is a square (otherwise, for positive results, a rectan-
gular land can be completed to a square by attaching to it a
rectangle that all agents value at 0). We scale the axes so that
the land is the unit square [0, 1]× [0, 1].

The arbitrary rectangle case differs from the fat rectangle
case in two respects. First, without the separation require-
ment, the arbitrary rectangle case is much easier: the land
can be projected onto a one-dimensional interval, for which
full proportionality, and hence MMSn

i , can be achieved [Du-
bins and Spanier, 1961]. In contrast, with the separation re-
quirement, the arbitrary rectangle case is much harder: the
representative-selection technique of Theorem 4.1 (which has
also been used implicitly, in a simpler form, for cake and pie
division by Elkind et al. [2021c]), does not yield a meaning-
ful bound for arbitrary rectangles. An example similar to the
one in Footnote 3 shows that, even for an arbitrarily large k,
there exist two size-k sets of pairwise-disjoint rectangles such
that no two representatives are disjoint.

A priori, for n ≥ 2, it is not clear that there is a finite
NRECT(n) such that an MMSNRECT(n) allocation among n
agents always exists. Below we prove that NRECT(n) is in-
deed finite for any n ≥ 2, and derive improved upper bounds
on NRECT(n) for small values of n. Towards this goal, we
develop some new tools.

In what follows, for each agent we fix a 1-out-of-k max-
imin partition—see Figure 2 for some examples of such par-
titions. For all i ∈ N , we assume without loss of generality
that MMSk

i = 1, and that i’s value is 0 outside the k rectan-
gles in her maximin partition (the latter value being positive
can only make it easier to satisfy the agent). Hence each agent
has a value of k for the land and should get an axes-aligned
rectangle worth at least 1.

We refer to the k rectangles in the agent’s fixed maximin
partition as MMS-rectangles; every rectangular piece of land

that is worth at least 1 to the agent is called a value-1 rect-
angle. Due to our normalization, every MMS-rectangle is a
value-1 rectangle, but the converse is not necessarily true.
Definition 4.2. Consider an agent with a fixed 1-out-of-k
maximin partition, and integers p, q ≥ 1. A vertical p:q-
rectangle cut is a rectangular strip of height 1 and width s
that has at least p whole MMS-rectangles on its left and at
least q whole MMS-rectangles on its right. A vertical p-
rectangle stack is a sequence of p rectangles of value 1 such
that each consecutive pair is separated by a vertical distance
of at least s.

Horizontal rectangle cuts and stacks are defined similarly.
In Figure 2(a), the left vertical cut (the thick red line) is

a 1:2-rectangle cut and the right one is a 2:1-rectangle cut.
In Figure 2(c), there is a vertical 3-rectangle stack. In Fig-
ure 2(d), the vertical cut is a 2:1-rectangle cut, and there is a
vertical 2-rectangle stack.

The following lemma shows the existence of either a rect-
angle cut or a rectangle stack with appropriate parameters.
Lemma 4.3. Fix an agent and a 1-out-of-k maximin partition
of this agent. For any integers 1 ≤ p, q ≤ k with p + q ≤
k + 1, the agent has a vertical p:q-rectangle cut or a vertical
(k − p− q + 2)-rectangle stack.

Proof. Starting from the left end of the cake, move a vertical
knife of width s to the right. Stop the knife at the first point
where there are at least p whole MMS-rectangles to its left—
the knife may need to move outside the cake in order for this
to happen, as in Figure 2(c) for any p. Consider two cases.

Case 1: There are at least q whole MMS-rectangles to the
right of the knife. Then, the knife indicates a vertical p:q-
rectangle cut. This is the case when p = q = 1 in Figures
2(a), (b), and (d).

Case 2: There are at most q − 1 whole MMS-rectangles
to the right of the knife. Then, by moving the knife slightly
to the left, we obtain a cut for which there are at most p − 1
MMS-rectangles entirely to its left, and at most q − 1 MMS-
rectangles entirely to its right. Therefore, at least k−p−q+2
MMS-rectangles must intersect the knife itself. Since the
knife width is s, these rectangles must lie in order vertically,
with a vertical distance of at least s between consecutive rect-
angles. Hence, they form a vertical (k− p− q+ 2)-rectangle
stack. This is the case when p = q = 1 in Figure 2(c).

In the remainder of this section, given y, y′ ∈ [0, 1] with
y ≤ y′, we write R(y, y′) := [0, 1]× [y, y′].

We now prove a positive result for two agents matching the
lower bound implied by Proposition 3.1.
Theorem 4.4. For any land division instance with a rect-
angular land and n = 2 agents, there exists an allocation
in which each agent i receives an axes-aligned rectangle of
value at least MMS3

i .

Proof. Call the agents Alice and Bob. Take a 1-out-of-3 max-
imin partition of each agent, and consider two cases.

Case 1: Both agents have a vertical 1:1-rectangle cut. As-
sume without loss of generality that Alice’s cut lies further to
the left; give the rectangle to its left to Alice and the one to its
right to Bob. Then each agent receives an MMS-rectangle.
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(a) (b) (c) (d)

Figure 2: Four partitions of a rectangular land into three axes-aligned rectangles. Each of these partitions can be a 1-out-of-3 maximin
partition of an agent. The partition lines (the thick red lines) have thickness s.

Case 2: At least one agent, say Alice, has no vertical 1:1-
rectangle cut. By Lemma 4.3, she has a vertical 3-rectangle
stack, as in Figure 2(c). For the i-th rectangle in this stack
(counting from the bottom), denote the y-coordinates of its
top and bottom sides by ti and bi, respectively. Note that
t1 + s ≤ b2 and t2 + s ≤ b3.

If Bob’s value for R(0, t2) is at least 1, then give R(0, t2)
to Bob andR(b3, 1) to Alice. Otherwise, Bob valuesR(0, t2)
less than 1, so his value for R(b2, 1) is more than 2. Give
R(b2, 1) to Bob and R(0, t1) to Alice. In both cases Alice’s
value is 1 and the pieces are s-separated.

For n ≥ 3 agents, the analysis becomes more compli-
cated. As in classic cake-cutting algorithms (e.g., [Dubins
and Spanier, 1961]), we would like to proceed recursively:
give one agent a rectangle worth at least 1, and divide the rest
of the land among the remaining n − 1 agents. In particular,
for n = 3, after allocating a piece to one agent, we would
need to show that, for each of the remaining two agents, the
rest of the land is worth at least 3, so that we can apply The-
orem 4.4. In fact, to apply Theorem 4.4, we need an even
stronger condition: each agent should have three s-separated
rectangles of value 1. However, the recursion step might yield
a remainder land made of many pieces of such rectangles,
each of which is worth less than 1. We therefore need to
adapt our definitions and lemmas accordingly.

Definition 4.5. A vertical p:q-value cut of an agent is a rect-
angular strip of width s such that the agent values the land on
its left at least p and the land on its right at least q.

For any integers p, q, every p:q-rectangle cut is also a p:q-
value cut, but the converse is not necessarily true.

For the following lemma, it is important that the agent’s
value function is normalized as explained earlier, i.e., the
value of each MMS-rectangle is 1 and the value outside the
MMS-rectangles is 0. A land-subset is a subset of the land af-
ter some pieces have possibly been allocated to other agents.

Lemma 4.6. Consider an agent with a fixed 1-out-of-k max-
imin partition of the land, who takes part in a division of a
rectangular land-subset. Let V ≤ k be the agent’s value for
the land-subset. For any integers p, q ≥ 1 with p + q ≤ V ,
the agent has either a vertical p:q-value cut or a vertical
d(bV c − p− q)/2e-rectangle stack.

The following lemma establishes a weaker bound than
Theorem 4.4 does; however, it applies to an arbitrary land-
subset, and hence (unlike Theorem 4.4) can be used as part

of a recursive argument. Its proof is essentially identical to
the proof of Theorem 4.4: the only difference is that we first
look for a vertical 1:1-value cut, and if we fail to find one,
we invoke Lemma 4.6 to establish the existence of a vertical
3-rectangle stack.
Lemma 4.7. Consider a rectangular land-subset and n = 2
agents who value it at least 7 each. There is an allocation in
which each agent receives an axes-aligned rectangle of value
at least 1.

Proof. We consider two cases.
Case 1: Both agents have a vertical 1:1-value cut. Take the

cut to the left, give the rectangle to its left to the cutter, and
the rectangle to its right to the other agent.

Case 2: At least one agent, say Alice, has no vertical 1:1-
value cut. By Lemma 4.6, she has a vertical 3-rectangle stack,
so we can proceed as in Case 2 of Theorem 4.4.

Let Vreq(n) be the smallest value of V such that if each of
n agents values the land-subset at V or higher, then there is
an allocation of this land-subset in which each agent’s value
for her share is at least 1. Obviously Vreq(1) = 1, and by
Lemma 4.7 we know that Vreq(2) ≤ 7. We can now provide a
finite (exponential) MMS approximation for every positive n.
Theorem 4.8. For any n ≥ 1, given any land division in-
stance with a rectangular land and n agents, there exists an
allocation in which each agent i receives an axes-aligned
rectangle with value at least MMSk

i , where k = 2n+2.

By adjusting the argument in the proof of Theorem 4.8, we
can obtain stronger bounds for n = 3 and n = 4; in particular,
we can guarantee each agent i a piece of value at least MMS14

i

and MMS24
i , respectively. The details can be found in the full

version of our paper [Elkind et al., 2021b].

5 Computing Maximin Allocations
The results in Section 4 are stated in terms of approximation
guarantees. To convert them into algorithms, we need to for-
mally define our computational model. To do so, we propose
a natural modification of the classic Robertson–Webb model
[Robertson and Webb, 1998] for the two-dimensional setting.

Consider an axes-aligned rectangle L = [a0, a1]× [b0, b1],
which may be part of a larger land-subset. We adapt the CUT
and EVAL queries of the Robertson–Webb model to allow
for horizontal and vertical cuts as follows. The CUTi(|, L, δ)
query returns a value a such that agent i values the rectangle
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[a0, a] × [b0, b1] at δ, and the CUTi(−, L, δ) query returns a
value b such that agent i values the rectangle [a0, a1]× [b0, b]
at δ; we assume that this query returns a1 (respectively, b1)
if the agent values the entire rectangle less than δ. Simi-
larly, the EVALi(|, L, a) query with a0 ≤ a ≤ a1 returns the
value that i assigns to the rectangle [a0, a]× [b0, b1], whereas
EVALi(−, L, b) query with b0 ≤ b ≤ b1 returns the value that
i assigns to the rectangle [a0, a1]× [b0, b].

We can now revisit the proofs of Theorems 4.4 and 4.8
and check if they can be converted into algorithms that use
CUT and EVAL queries. One can see that these proofs are
constructive and their basic steps can be expressed in terms
of these queries: a p:q-value cut can be implemented by two
CUT queries, and agents’ values for rectangles of the form
R(x, y) can be determined using EVAL queries.

However, these algorithms use the agents’ 1-out-of-k max-
imin partitions as their starting points, and it is not clear if
such partitions are efficiently computable. Indeed, even in the
1-dimensional case, there is no algorithm that always com-
putes a maximin partition of an agent using finitely many
queries, and the best known solution is a (1 − ε) approxi-
mation in time O(n log(1/ε)) [Elkind et al., 2021c]. For the
2-dimensional case, even a (1−ε) approximation seems chal-
lenging.

To circumvent this difficulty, we focus on maximin par-
titions with a special structure, namely, guillotine partitions
[Gonzalez et al., 1994; Ackerman et al., 2006; Messaoud
et al., 2008; Horev et al., 2009; Asinowski et al., 2014;
Russo et al., 2020]. This class of partitions is defined re-
cursively, as follows.

Definition 5.1. Consider a land-subsetL = [a0, a1]×[b0, b1],
a set of rectangles P = {P1, . . . , Pt}, where Pi ⊆ L for each
i ∈ [t], and a separation parameter s. We say that P forms an
s-separated guillotine partition of L if one of the following
three conditions holds:

• t = 1 and P1 ⊆ L;

• there exists an a with a0 < a < a1− s and a partition of
P into two disjoint collections of rectangles P1 and P2

such that P1 forms an s-separated guillotine partition of
[a0, a] × [b0, b1] and P2 forms an s-separated guillotine
partition of [a+ s, a1]× [b0, b1];

• there exists a b with b0 < b < b1 − s and a partition of
P into two disjoint collections of rectangles P1 and P2

such that P1 forms an s-separated guillotine partition of
[a0, a1] × [b0, b] and P2 forms an s-separated guillotine
partition of [a0, a1]× [b+ s, b1].

Intuitively, an s-separated guillotine partition is obtained
by a sequence of cuts, where each cut splits a rectangle into
two s-separated rectangles. All partitions in Figure 2 are guil-
lotine partitions, while Figure 3 provides an example of an
s-separated partition that is not a guillotine partition.

The following theorem shows that we can compute a nearly
optimal s-separated guillotine maximin partition efficiently.
Our algorithm proceeds by discretizing the land and finding
an optimal s-separated guillotine partition that is consistent
with this discretization; such a partition can be computed by
dynamic programming.

Figure 3: Example of an s-separated partition that is not a guillotine
partition. The small space between each pair of ‘adjacent’ rectangles
has length s.

Theorem 5.2. Consider a rectangular land-subset L, an
agent i who values L at 1, and a separation parameter s > 0.
Suppose that there exists an s-separated guillotine partition
of L into k parts such that i’s value for each part is at least V .
Then, given ε > 0, s, and k, we can compute an s-separated
guillotine partition of L into k parts such that i’s value for
each part is at least V − ε, in time polynomial in k and 1/ε.

How much value do we lose by considering guillotine par-
titions instead of general ones? Figure 3 illustrates that this
loss is non-trivial. The following theorem provides a crude
(but positive) lower bound on the approximation ratio.

Theorem 5.3. Let Ξ-MMSk,s
i denote the maximin share of

agent i with respect to s-separated guillotine partitions into
k parts. Then, it holds that Ξ-MMSk,s

i ≥ MMS4k2,s
i .

Combining Theorems 5.2 and 5.3 with 4.8 gives
Corollary 5.4. For each ε > 0, we can compute in time poly-
nomial in k and 1/ε an allocation in which each agent i
receives a rectangular piece of land with value at least
MMSk,s

i − ε, where k ≤ 4 · (22n+2)2 = 24n+6.

6 Conclusion and Future Work
This paper continues the quest of bringing the theory of fair
division closer to practice by investigating fair land alloca-
tion under separation constraints. Even though the classic
fairness notion of proportionality is unsuitable for this set-
ting, we establish meaningful bounds on achievable maximin
share guarantees for a variety of shapes and develop a num-
ber of new techniques in the process. In particular, for r-
fat rectangles we derive a polynomial bound on the achiev-
able approximation for any number of agents, while for ar-
bitrary rectangular pieces we obtain a finite but exponential
bound. Improving the latter bound to polynomial is a chal-
lenging question which likely requires novel geometric in-
sights. Other avenues for future work include testing our al-
gorithms on real land division data [Shtechman et al., 2020]
and exploring the possibilities of efficient computation with
non-guillotine or other types of cuts.
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