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Abstract

We study the secretary problem in multi-agent en-
vironments. In the standard secretary problem, a
sequence of arbitrary awards arrive online, in a ran-
dom order, and a single decision maker makes an
immediate and irrevocable decision whether to ac-
cept each award upon its arrival. The requirement
to make immediate decisions arises in many cases
due to an implicit assumption regarding competi-
tion. Namely, if the decision maker does not take
the offered award immediately, it will be taken by
someone else. We introduce a novel multi-agent
secretary model, in which the competition is ex-
plicit. In our model, multiple agents compete over
the arriving awards, but the decisions need not
be immediate; instead, agents may select previous
awards as long as they are available (i.e., not taken
by another agent). If an award is selected by mul-
tiple agents, ties are broken either randomly or ac-
cording to a global ranking. This induces a multi-
agent game in which the time of selection is not
enforced by the rules of the games, rather it is an
important component of the agent’s strategy. We
study the structure and performance of equilibria in
this game. For random tie breaking, we character-
ize the equilibria of the game, and show that the
expected social welfare in equilibrium is nearly op-
timal, despite competition among the agents. For
ranked tie breaking, we give a full characterization
of equilibria in the 3-agent game, and show that as
the number of agents grows, the winning probabil-
ity of every agent under non-immediate selections
approaches her winning probability under immedi-
ate selections.

1 Introduction

In the classic secretary problem [Ferguson, 1989] a deci-
sion maker observes a sequence of n non-negative real-valued
awards v, . .., v,, which are unknown in advance, in a ran-
dom order. At time step ¢, the decision maker observes award
vy, and needs to make an immediate and irrevocable decision
whether or not to accept it. If she accepts v, the game termi-
nates with value v;; otherwise, the award v, is gone forever
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and the game continues to the next round. The objective of
the decision maker is to maximize the probability of choosing
the maximal award. A tight competitive ratio of 1/e is well
known for this problem (see, €.g., [Ferguson, 1989]).

This problem (and variants thereof) is an abstraction that
captures many real-life scenarios, such as an employer who
interviews potential workers overtime, renters looking for a
potential house, a person looking for a potential partner for
life, PhD students looking for an advisor, and so on. This
problem also has interesting implications to mechanism de-
sign, auctions and pricing, for both welfare and revenue max-
imization, in various markets such as online advertising mar-
kets (see e.g. [Babaioff et al., 2008; Babaioff et al., 2007,
Ezra et al., 2018; Freeman, 1983; Kesselheim et al., 2013;
Kleinberg, 2005]).

In this work, we study the secretary problem in a multi-
agent system by introducing a secretary model with multiple
agents who compete with each other.

1.1 Competing Agents

Competition among agents is a fundamental component in
many real-life scenarios. A recent line of work studies secre-
tary settings with multiple agents, where a set of employers
compete over a set of potential employees. The employees
enter the labor market sequentially, and the employers need
to decide whether to hire them or not. When a potential em-
ployee receives an offer, she accepts it; if she receives multi-
ple offers, she chooses one among them.

Immorlica et al. [2006] and Karlin and Lei [2015] con-
sider settings with multiple decision makers who compete
over awards that arrive online. In these studies, as in the
standard setting, decisions are immediate and irrevocable.
One of the justifications for the requirement in the standard
(single agent) secretary setting that decisions must be imme-
diate arises from an implicit assumption about competition.
Namely, if the decision maker does not take the current of-
fered award, then it may be taken by someone else and gone
forever. For example, an employer who does not make a job
offer to a potential employee following an interview will lose
her forever, as she will probably be hired by another firm.

In this paper, we introduce a multi-agent model in which
the competition among agents over the arriving awards is ex-
plicit. Since the competition is explicitly captured by the
multiplicity of agents, decisions need no longer be imme-
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diate. Instead, every previously arriving award can be se-
lected as long as it has not been taken by a different agent.
In our model, it is the explicit competition that may drive
agents to make fast selections, rather than the rules of the
game. That is, the time to select an award is part of an agent’s
strategy. This model captures many real-life scenarios, where
decisions need not be immediate; rather, the time in which
agents make selections is part of their strategy, given the com-
petition. For example, an apartment remains available in the
market until it is rented by another potential renter. Similarly,
a potential employee remains available until she accepts an
offer from another company. In all of these scenarios, a de-
cision need not be immediate, but delaying a decision might
result in losing the object if it is taken by another agent in the
meantime. This is the tension our model captures.

One issue that arises in this model is how to resolve ties
among agents. That is, who gets the award if several agents
select it. We consider two natural tie-breaking rules; namely,
random tie breaking (where ties are broken uniformly at
random) and ranked tie-breaking (where agents are a-priori
ranked by some global order, and ties are broken in favor of
higher ranked agents). Random tie breaking fits scenarios
with symmetric agents, whereas ranked tie breaking fits sce-
narios where some agents are preferred over others, according
to some global preference order. For example, it is reason-
able to assume that a higher-position/salary job is preferred
over lower-position/salary job, or that firms in some industry
are globally ordered from most to least desired. Random and
ranked tie-breaking rules were considered by Immorlica et al.
[2006] and Karlin and Lei [2015], respectively, in secretary
settings with immediate and irrevocable decisions.

Two natural objectives have been considered in settings
with competition. The first is maximizing the probability
of receiving the maximal award (see, e.g., [Immorlica et al.,
2006; Karlin and Lei, 2015]). The second is outperforming
the competitors (see, e.g., the dueling framework studied by
Immorlica et al. [2011]). We consider an extension of the
latter objective, where an agent wishes to maximize the prob-
ability to win the 15¢ place, then to win the 2"¢ place, and so
on.

Our goal is to study the structure and quality of equilibria
in these settings.

1.2 Our Results and Techniques

Random Tie-Breaking

For the random tie-breaking rule, we characterize the equi-
libria of the induced game, and show that the expected social
welfare in equilibrium is nearly optimal, despite competition
between the agents. This is cast in Theorems 3.1 and 3.2; a
simplified statement follows:

Theorem. (Theorems 3.1 and 3.2) In every k-agent game
with random tie-breaking, there exists a simple time-
threshold strategy that guarantees each agent a winning prob-
ability of % regardless of the strategies of the other agents.
The strategy profile where all agents play this strategy is a
subgame perfect equilibrium (SPE). Moreover, the expected
social welfare of this SPE is at least a % fraction of the
sum of the top k awards.
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In particular, we show that each of the k agents can guar-
antee herself a winning probability of % following a simple
time-threshold strategy that depends only on the current time,
the number of active agents (i.e., agents who have not yet re-
ceived an award), and whether the maximal award so far is
available. By symmetry, this is the maximal possible guaran-
tee. This guarantee is then used to fully characterize the set
of subgame perfect equilibria of the game.

We then establish that in equilibrium, the expected social
welfare is at least % fraction of the sum of the top k£ awards
which is the optimal welfare (i.e., we bound the price of com-
petition). We do so by using the following two observations:
First, we show that in equilibrium the expected number of
selected awards among the top k awards is high. Second,
we observe that the probability of an award to be selected in
equilibrium is monotone in its rank among the awards.

We complement this result with a matching upper bound
(up to a constant factor), which is derived by observing that
in equilibrium there is a constant probability that the first se-
lected award is not one of the top k£ awards.

Ranked Tie-Breaking

For the ranked tie-breaking rule, we show that for a suffi-
ciently large number of agents, the winning probabilities un-
der immediate- and non-immediate selections are roughly the
same.

Theorem. (Informal Theorem 4.2) Under the ranked tie-
breaking rule, for every rank i, as the number of agents
grows, the winning probabilities of the i*" ranked agent under
non-immediate selections approaches her winning probabil-
ity under immediate selections.

To prove this result, we use observations from [Matsui and
Ano, 2016; Karlin and Lei, 2015; Ezra et al., 2018] to show
that in the immediate decision model, the probability that the
maximal award is allocated goes to 1 as the number of agents
grows. Since an agent in the non-immediate decision model
can always mimic the strategy of an agent in the immedi-
ate decision model, her guarantee for her winning probabil-
ity (which equals to her probability of receiving the maximal
award) in the non-immediate model is at least her guarantee
of receiving the maximal award in the immediate decisions
game.

We therefore deduce that the winning probabilities in the
non-immediate model converge to those in the immediate
model. This claim essentially formalizes the intuition that as
competition grows, the urgency to select awards faster grows.

In addition, we fully characterize the equilibria of the
three-agent game.

Theorem. (Theorem 4.1) In every equilibrium of the 3-agent

game, agent 1 wins with probability 2_1;1134 ~ 0.41 while each

of agents 2, 3 wins with probability Tilzx ~ 0.295.

Notice that agent 1 (the highest-ranked agent) can always
guarantee herself a winning probability of at least e ! ~ 0.37
by acting according to the optimal strategy in the classical
secretary problem. The last theorem quantifies the benefit
that agent 1 derives due to her ability to postpone decisions
in a 3-agent setting. As implied by Theorem 4.2, this benefit
shrinks as the number of agents grows.
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1.3 Related Work

The classical secretary problem and variants thereof have at-
tracted broad interest and have resulted in a vast amount of
literature over the years. For a comprehensive survey, see,
e.g., [Freeman, 1983].

Competing Agents. The closest papers to our work are the
studies by Karlin and Lei [2015] and Immorlica et al. [2006],
who study secretary settings with competing agents, with the
ranked- and random tie breaking rules, respectively. The
main difference between their models and ours is that they
consider multi-agent settings where agents must make de-
cisions immediately, while in our model the competition is
endogenous; namely, past awards can be selected as long as
they are available. Karlin and Lei [2015] show that under the
ranked tie-breaking rule, the optimal strategy for each agent
is a time-threshold strategy, which is given in the form of a re-
cursive formula (albeit not in a closed form). Immorlica et al.
[2006] characterize the Nash equilibria under the random tie-
breaking rule. Another related work is the dueling framework
by Immorlica et al. [2011], who considered, among other set-
tings, a dueling scenario between two secretary algorithms,
whose objective is to outperform the opponent algorithm.

Matroid Secretaries. In this paper we derive insights from
studies on secretary variants in which a decision maker
can choose multiple awards, based on some feasibility con-
straints. Babaioff et al. [2007] introduced the matroid secre-
tary problem, where a decision maker selects multiple awards
under a matroid constraint. It has been shown that a constant
competitive ratio can be achieved for some matroid struc-
tures, but the optimal competitive ratio for arbitrary matroids
is still open. An interesting special case (which was also stud-
ied in earlier works such as [Kleinberg, 2005] and [Gilbert
and Mosteller, 1966]) is one where the decision maker may
choose up to k£ awards (also known as a k-uniform matroid
constraint). Previous works [Gilbert and Mosteller, 1966;
Sakaguchi, 1978; Matsui and Ano, 2016; Ezra et al., 2018]
studied secretary models in which a decision maker wishes
to maximize the probability of getting the highest award, but
may choose up to k awards. In Section 4 we draw interesting
connections between these models and the ours.

Non-Immediate or Revocable Decisions. Other relax-
ations of the requirement to select immediately have been
considered in the literature. Ho and Krishnan [2015] consider
a sliding-window variant, where decisions may be delayed for
a constant amount of time. A similar model is considered by
Kesselheim ez al. [2019], where decisions may be delayed for
a randomized (not known in advance) amount of time. Ezra
et al. [2018] study settings where the irrevocability assump-
tion is relaxed. Specifically, they consider a setting where the
decision maker can select up to ¢ elements immediately and
irrevocably, but her performance is measured by the top & el-
ements in the selected set. This work is complementary to
ours in the sense that it relaxes the irrevocability assumption,
while our work relaxes the immediacy assumption.

1.4 Paper’s Structure

Our model is presented in Section 2. In Sections 3 and 4 we
present our results with respect to the random- and ranked
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tie-breaking rules, respectively. We conclude this paper in
Section 5, where we discuss future directions. All missing
proofs are deferred to the full version [Ezra et al., 2020].

2 Model

We consider a variant of the classical secretary setting, where
a set of n arbitrary awards are revealed online in a uniformly
random order. Let v; denote the award revealed at time f.
Unlike the classical secretary problem that involves a single
decision maker, in our setting there are k£ agents who com-
pete over the awards. Upon the revelation of award v, every
agent who has not received an award yet may select one of
the awards vq, ..., v that is still available. An award that is
selected by a single agent is assigned to this agent. An award
that is selected by more than one agent is assigned to one
of these agents either randomly (hereafter, random tie break-
ing), or according to a predefined ranking (hereafter, ranked
tie breaking). Agents who received awards are no longer ac-
tive. Awards that were assigned are no longer available. Thus,
at time ¢, the set of available awards is the subset of awards
v1,...,v; that have not been assigned yet. The game con-
tinues as long as there are active agents. lL.e., after time n,
if active agents remain, the agents compete (without newly
arriving awards) on the remaining available awards until all
agents are allocated.

Given an instance of a game, the history at time ¢ in-
cludes all the relevant information revealed up to time ¢; i.e.,
v1,...,v;, and the assignments up to time ¢t — 1!. A strat-
egy of agent ¢, denoted by .5;, is a function from the set of all
possible histories to a selection decision (either selecting one
of the available awards, or passing). A strategy profile is de-
noted by S = (S1,...,S;). We also denote a strategy profile
by S = (S;,S_;), where S_; denotes the strategy profile of
all agents except agent i. Every strategy profile .S induces a
distribution over assignments of awards to agents. For ranked
tie breaking, the distribution is with respect to the random
order of award arrival, and possibly the randomness in the
agent strategies. For random tie breaking, the randomness is
also with respect to the randomness in the tie breaking.

We say that agent 7 wins the ;" place in the game if she
receives the j highest award among all allocated awards.
Letp = (p1,...,pr) be a k-dimensional vector, where p; is
the probability to win the ;% place. As natural in competi-
tion settings, every agent cares only about her relative per-
formance with respect to her competitors. Consequently, we
find the following objective function the most natural in this
setting: every agent wishes to maximize her probability to
win the first place; upon equality she wishes to maximize the
probability to win the second place, and so on. Thus, given
two vectors p, p € RF, p is preferred over p, denoted p < p,
if p is lexicographically greater than p. Similarly, p is weakly
preferred over p, denoted p < p, if p is lexicographically
greater or equal to p.

A strategy profile S induces a k-dimensional probability
vector p(S) for each agent i, where p’(S) is the probability

'Tn our setting, additional information, such as the history of se-
lections (in contrast to assignments) is irrelevant for future decisions.
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that agent i wins the j*" place under S. Agent i derives higher
(respectively, weakly higher) utility from strategy profile S
than strategy profile S, denoted S <; S (resp., S =; 5), if
p'(S) < p'(S) (resp., p'(S) =< p'(S)). Weuse S <; S and
S »; S interchangeably, and similarly for p and p.

Note that p (S) is the probability that agent i wins the first
place under strategy profile S. We sometimes refer to it as
agent ¢’s winning probability under S.

We consider the following equilibrium notions:

e A strategy profile S = (S, ..., Sk) is a Nash equilib-
rium (NE) if for every agent ¢ and every strategy S, it
holds that (Sl/, S_l) =i (Sl, S_l)

e A strategy profile S = (51, .., Sk) is a Subgame Per-
fect Equilibrium (SPE) if it is a NE for every subgame
of the game. I.e. for every initial history h, .S is a NE in
the game induced by history h.

Every SPE is a NE, but not vice versa.
We now illustrate our models in the following example:

Example 1. Consider a setting with 5 houses for rent and
3 potential renters. The houses “enter the market” (i.e., be-
come available) in a random order and remain available until
rented by some renter.

Random tie-breaking captures scenarios where the house
owners are indifferent between different renters. Upon the
entrance of the first house, the renters do not select it since
the probability that this house is the best one among all 5
houses is only % which is too low (the threshold here is 1/3,
see Theorem 3.1). Upon the entrance of the second house,
the better among the two houses is the best among all five
houses with probability % > % and so all three agents select
it. Assume that renter #1 was assigned the selected house
(by the random assignment process), and further assume that
the third house is the highest among the first three houses.
In this case, the two remaining renters will select this house
and it will be assigned to one of them at random. The one
remaining renter will select the maximal available house at
the end of the process. By symmetry, each one of the three
agents wins with probability %

Ranked tie breaking captures scenarios where the house
owners have identical preferences over renters (e.g., ranking
according to the credit history of the renters).

Upon the entrance of the first house, the renter ranked #3
selects it and guarantees herself a winning probability Of%
(one can show that the other renters can guarantee them-
selves a higher winning probability, and that if renter #3
does not select it, then her winning probability in SPE is up-
per bounded by % ). Suppose next that the second house is
worse than the first one. Then, it is not selected by any of
the remaining renters. Suppose further that the third house
is the best among the first three houses. Then, both remain-
ing renters select it, and it is being assigned to renter #1 (by
ranked tie-breaking). A full analysis of the SPE shows that

N e 31 17 12
the renters’ winning probabilities are 55, 55, and g5, respec-
tively.

3 Random Tie-Breaking

In this section, we study the setting of the random tie-
breaking rule. We characterize the SPEs and give simple time

178

threshold strategies with optimal utility guarantees. We show
that in the SPE where all agents play according to this optimal
guarantee strategy, at least % of the optimal social welfare
is achieved in expectation.

Consider the following strategy o; for agent i, where ¢; de-
notes the number of active agents at time ¢ (agent 7 included).

e If t > n, then select the maximal available award.

o If ﬁ < t < n, and the maximal award so far is available,

then select it.

Ift = g, {; = 2, and the maximal award so far is avail-
able, then select it.

e Else, pass (i.e., select no award).

We denote by S; the set of strategies in which agent i plays
according to o; up to the following cases:

e Ifl, =2, ¢t = 5 and both the highest and the second
highest awards so far are available, then the agent can
either pass or select the highest award so far.

e If /; = 1 and the highest award so far is available, then
the agent can either pass or select this award.

We next show that strategies in S; are the only strategies
that guarantee a utility of at least (..., 7). By symmetry,

there is no strategy o such that (%, e %) < p'(o,S_;) for
every S_;. Thus, the strategy profiles where each agent 4

plays according to a strategy in S;, are the only SPEs.

Theorem 3.1. For every agent i, o € S; and S_;, it holds
that (%, R %) =< pi(0,S_;). Forevery o’ ¢ S; there exists
S_; such that (%, ceey %) = pi(o’,S_;). Moreover, the strat-
egy profiles where each agent j plays according to a strategy
in S;, are the only SPEs.

Before proving Theorem 3.1, we show the following:

Observation 3.1. For every time t < n, selecting an element
that is not the maximal so far cannot guarantee a winning
probability of %

Thus, we can assume that agents do not select elements that
are not the maximal so far up to time ¢ = n. We now give
lower bounds on the probabilities of winning first and second
places in a strategy o € S; given a time ¢, and whether the
maximal and second maximal awards so far are available. For
every 1 < /¢ <k,let Af € [0,1]? be an ordered pair denoting
a lower bound on the probabilities of agent ¢ winning first and
second places under strategy profile (o, S_;), conditioned on
the event that at time ¢ (after observing the award v;, but be-
fore making selections in time t) agent ¢ is active, there are
{ active agents (including agent 7), and the maximal and sec-
ond maximal awards up to time ¢ are available. Similarly, let
Bf be a lower bound on the probabilities of agent i winning
first and second places under strategy profile (o, S_;), condi-
tioned on the event that at time ¢, agent 7 is active, there are ¢
active agents (¢ included), and the maximal award up to time
t is available, but the second maximal award is not available.

Let Cf be alower bound on the probabilities of agent i win-
ning first and second places under strategy profile (o,.5_;),
conditioned on the event that after the allocations of time t,
agent ¢ is active, there are ¢ active agents (including agent 7),
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and the maximal award up to time ¢ is not available, but the
second maximal award is available. Finally, let D{ be a lower
bound on the probabilities of agent ¢ winning first and sec-
ond places under strategy profile (¢, S_;), conditioned on the
event that after the allocations of time ¢, agent i is active, there
are ¢ active agents (i included), and none of the maximal and
the second maximal awards up to time ¢ are available.

In Lemma 3.1 we lower bound the above terms. The com-
plete proof of the lemma is deferred to the full version.

Lemma 3.1. For every t, and every k > ¢ > 1, it holds that:

¢ 11 74 n—t n’+t>—tn—n
©A; > (:7) ‘CZ(vaL(tni_m

¢ 1 (n—t)(n+t—1) ¢~ (n-t n—t
.Bt2<Z’W) o Dy (nzvne)

Proof sketch. We observe that the winning probability of an
agent depends on the time step ¢, the number of active agents
¢, and whether the maximal award so far is available or not.
If at time ¢ an agent receives the maximal award up to time
t, she wins with probability % (which is the probability that
this award is the global maximum). If another agent receives
the maximal award up to time ¢, then by symmetry, each re-
maining active agent can guarantee a winning probability of

n(nzi_fr)- Thus, selecting the maximal award so far is bet-
ter whenever % > &_tl) and passing is better whenever
% < In cases Where = both passing and

n(f—1  n(e 1 ’
selectln(g thz: maximal award so far gl\ge a \)Nlnnlng probability
of %, and the agents break this tie based on the probability of
winning the second place. For the four states of whether the
maximal and second maximal awards so far are available, we
establish lower bounds on the probabilities of winning first

and second places, by induction on ¢ and ¢. U
We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. It follows from the proof of

Lemma 3.1 that for every strategy that is not in §;, if
each agent j # i plays according to a strategy in S;, agent
#’s utility is smaller than (£, 1,0,...,0, %22). It also shows
that if agent 7 plays according to a strategy in §;, and there
exists an agent j that plays according to a strategy not in S,
utility is greater than (4, +, %:2,0,...,0).

Thus, the only SPEs are proﬁles in which each agent j
plays according to a strategy in S;, and by symmetry, the

utility of agent 7 is exactly (%, . %), as desired. O

In Theorem 3.1 we characterize the structure of all SPEs.
Immorlica et al. [2006] prove that in the immediate decisions
model, whenever % > %, and the current arriving award is
the maximal so far, all active agents select it. However, they
do not provide a full characterization of the cases where i <

. Indeed, in some cases agents do select the maximal award
so far at such times ¢. In contrast, we show that in the non-
immediate decisions model, the times where + b > 1 7, are the
only times where the agents make selections. l

We next study the social welfare (i.e., the sum of the awards
received by all agents) obtained in an SPE. Let y; denote the
i*" maximal value among vy, ..., v,. Then, the optimal so-

cial welfare is OPT = Zle Yi-

)
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The following theorem asserts that despite the competition,
the social welfare of the SPE where all agents play according
to o; is at least % of the optimal social welfare.

Theorem 3.2. The expected sum of the allocated awards in
the SPE profile S = (01, ... ,0%) is at least % - OPT.

We complement this result by showing an instance of
awards yl,. .yn where the social welfare in every SPE is

at most % 9(1) - OPT for every k > 1.

Example 2. Suppose y; = ... =y = land y; = 0 for
every j such that k < j < n. In every SPE, the first selection
is made at time no later than t = | 7] + 1. If none of the
top k awards appeared up to time t, at least one of the agents
gets an award of 0. The probability that none of Y1, - .- Yk
appeared by time t is approximately ( LYk = Q(1). Thus,

the expected social welfare is at most ko Q(l) - OPT.

4 Ranked Tie-Breaking

In this section, we study competition under the ranked tie-
breaking rule. We first claim that without loss of generality,
for every agent the winning probability equals to the probabil-
ity of receiving the highest award. To show this, we observe
that whenever exactly one agent is active, she may as well
wait until time ¢ = n and only then select the maximal award
without harming her utility. Thus, it can be assumed that the
maximal award is always allocated, and the winning agent
receives it. Thus, we may assume that the first-order objec-
tive of every agent is to maximize the probability of receiving
the maximal award, as in the standard secretary problem and
previous multi-agent extensions.

In Section 4.1 we present general observations regarding
equilibria in this setting. We then characterize the equilibrium
in the 3-agent game in Section 4.2. In Section 4.3 we show
that as the number of competing agents goes to infinity, the
agents’ probabilities of receiving the highest award (which
equal to the agents’ winning probabilities) converge to the
corresponding probabilities in the immediate decisions model
described by Karlin and Lei [2015].

4.1 General Observations

We first make observations about the structure of the subgame
perfect equilibria (SPE) of the game.

Proposition 4.1. A strategy profile S = (S1,...,5,) is an
SPE if for every agent i, S; is described by a set of time
thresholds Tf for every j, 0 such that 1 < j < £ < k. At
time t, agent 1 selects the highest award so far if it is avail-
able and t > T]-Z, where the current number of active agents

is ¢ and agent 1 is ranked 7' among them.*> In addition, if ¢
agents are active and t > n — {, then the lowest-ranked ac-
tive agent makes a selection, even if the highest award so far
is not available.

We proceed with several observations about the time
thresholds in the SPE of the game. Since any agent can al-
ways mimic the strategy of an agent ranked lower than her,

qft = Tf, then the agent is indifferent between selecting and
passing.
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in equilibrium a lower-ranked agent would be willing to re-
ceive any award that a higher-ranked agent would be willing
to receive. In the threshold terminology, it means that:

Observation 4.1. For any number of active agents ¥, for ev-
ery pair of ranks h,j such that h < j < {, without loss of
generality it holds that Tf < T,f.

The following observation gives bounds on the time thresh-
old of the lowest-ranked active agent relative to the second-
lowest ranked active agent.

Observation 4.2. For any number of active agents {, it holds
that Tf , >Tf >Tf | — 1.

Proof. By Observation 4.1 we have that Tﬁl > Tf. On
the other hand, the lowest-ranked active agent never makes a
selection before time min;_, Tf — 1, because she can only
benefit from waiting as long as no other active agent makes a
selection. The claim now follows since, by Observation 4.1,
minj7gg Tf = lefl' U

Recall that the winning probability of agent ¢ under strat-
egy profile S is denoted by p‘(S). Throughout this section,
we make two simplifications in notation. First, we omit S.
Second, we omit the subscript 1, since we consider only the
probability of winning the 1% place. Consequently, we de-
note the probability that agent ¢ wins the 1°¢ place in strategy
profile S by p;.

The following observation gives bounds on the winning
probability of the lowest-ranked agent relative to the second-
lowest agent.

Observation 4.3. It holds that p,_1 — + < pi < pi_1.

4.2 The 3-Agent Game

In a 2-agent game Observation 4.3 implies that % > p1—p2 >
0. That is, both agents win with probability roughly a half.
This symmetry breaks as more agents join the game and the
setting becomes interesting already in the case of 3 agents.
Notice that the highest-ranked agent can always guarantee
herself a probability of at least e=! ~ 0.37 to receive the
highest award by adopting the optimal strategy in the classi-
cal secretary problem. An interesting question is whether the
opportunity to make non-immediate decisions increases this
probability for the highest-ranked agent.
We show the following:

Theorem 4.1. In a setting with 3 agents, in any SPE, agent 1
wins with probability ~ 0.41, while each of agents 2,3 wins
with probability ~ 0.295.

4.3 Immediate vs. Non-Immediate Selections

In this section, we compare the immediate and non-
immediate models for games with a large number of agents.
Let p; ;, denote the probability that agent ¢ wins in a k-agent
game, with non-immediate selections, and let ¢; denote the
probability that agent ¢ receives the highest award in a game
with immediate selections. We note that under immediate se-
lections, ¢; is independent of the number of agents.

The main result here is that agents’ winning probabili-
ties in equilibrium under non-immediate selections approach
their winning probabilities under immediate selections, as the
number of agents grows.
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Theorem 4.2. For every i, limy_,o0 Pi k. = ¢

The full proof of Theorem 4.2 is deferred to the full ver-
sion. We give here the high-level idea of the proof. We use the
following theorem by Karlin and Lei [Karlin and Lei, 2015]
regarding the immediate decision model.

Theorem 4.3 (Karlin and Lei [2015]). For every n,k and
every i € [k], there is a unique T; (independent of k) such
that agent i plays a T;-threshold strategy in SPE; namely,
wait until time T;, then make a selection whenever a best-
so-far award appears. It holds that T;_1 > T;, and q; = %,
for all i. Moreover, threshold strategy T); guarantees agent i a
winning probability of q; regardless of other agent strategies.

We then show that in the non-immediate model, every
agent ¢ can mimic strategy 7; specified in Theorem 4.3 and
guarantee herself the same guarantee of g;, thus for all ¢, k,
it holds that p; > ¢; . Moreover, using results by [Matsui
and Ano, 2016] and [Gilbert and Mosteller, 1966], it follows
that limy o0 ), ¢ = 1. We show that this implies that
limy o0 ik < gi, since otherwise, there exists & such that

Ei Dik > L.

5 Discussion and Future Directions

We study secretary settings with competing decision makers.
While in previous secretary settings, including ones where
competition among multiple agents are considered, decisions
must be made immediately, we introduce a model where the
time of selection is part of the agent’s strategy, and thus the
competition is endogenous. In particular, decisions need not
be immediate, and agents may select previous awards as long
as they are available. These settings capture many real-world
settings, where agents compete over “awards” that may re-
main available until taken by a competitor.

This work suggests open problems and directions for future
research. For the ranked tie-breaking rule, we fully charac-
terize the equilibria of a 3-agent game, and derive the corre-
sponding utilities of the agents. Extending this characteriza-
tion to any number of agents is an interesting open problem.

Below we list some future directions that we find partic-
ularly natural: (1) Study competition in additional problems
related to optimal stopping theory, such as prophet and pan-
dora box settings. (2) Study competition in secretary settings
under additional tie-breaking rules, such as random tie break-
ing with non-uniform distribution, and tie-breaking rules that
allow to split awards among agents. (3) Study competition in
secretary settings under additional feasibility constraints. For
example, scenarios where agents can choose up to k awards,
or other matroid constraints. (4) Extend the current study to
additional objective functions.
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