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Abstract
Weighted voting games are applicable to a wide
variety of multi-agent settings. They enable the
formalization of power indices which quantify the
coalitional power of players. We take a novel ap-
proach to the study of the power of big vs. small
players in these games. We model small (big) play-
ers as having single (multiple) votes. The aggregate
relative power of big players is measured w.r.t. their
votes proportion. For this ratio, we show small con-
stant worst-case bounds for the Shapley-Shubik and
the Deegan-Packel indices. In sharp contrast, this
ratio is unbounded for the Banzhaf index. As an ap-
plication, we define a false-name strategic normal
form game where each big player may split its votes
between false identities, and study its various prop-
erties. Together our results provide foundations for
the implications of players’ size, modeled as their
ability to split, on their relative power.

1 Introduction
Weighted Voting Games (WVGs) are a class of cooperative
games that naturally appear in diverse settings, such as par-
liaments, councils and firm shareholders. In recent years, they
were found to naturally appear in multi-agent systems such as
VCG auctions [Bachrach et al., 2011] and other online eco-
nomic systems. WVGs are defined by a set of players, their
weights, and a threshold T . A set of players forming a coali-
tion must have an aggregate weight of at least T . It is natural
to ask: What is a player’s power to influence decisions, or, al-
ternatively, what is a player’s share of the benefit of forming
a coalition? This power measure does not necessarily comply
with the player’s proportional weight. For example, consider
a WVG with a large threshold T , a big player with weight
T − 1 and a small player with weight 1. Despite the large
discrepancy in their weights, a consensus is required for any
motion to pass, suggesting they have equal power. This view
of power considers a player’s pivotal role as “king-maker”–
“To the victors go the spoils”.

Due to this reason, cooperative game theory studies power
indices to capture the true effective power of players in
WVGs. This literature views the power index of a player
as a numeric predictor of utility. The most prominent power

indices include the Shapley-Shubik index [Shapley and Shu-
bik, 1954] which stems from the more general Shapley value
[Shapley, 1952], and the Banzhaf index [Banzhaf III, 1964].
Other power indices emphasize different aspects of the power
structure, such as the Deegan-Packel index [Deegan and
Packel, 1978], which we also study. Our work lies in the
intersection of three strands of WVG literature:

1.1 Big vs. Small Players and Group Power
We lay out a WVG model with big vs. small players and
study the power of big players compared to their vote propor-
tion, assuming that all player weights are natural numbers and
consider all players with weight larger than 1 as “big” and all
players with weight 1 “small”. The inequality in voting – “big
vs. small” – is a main drive for the study of power indices, go-
ing back to the formation of the US electoral college. Riker
[1986] points out that Luther Martin of Maryland, a staunch
anti-federalist and one of the US founding fathers, analyzed
the then forming electoral college in a manner similar to the
Banzhaf index. In the compilation by Storing [2008], p. 50,
Martin claims:

The number of delegates ought not to be in exact
proportion to the number of inhabitants, because
the influence and power of those states whose del-
egates are numerous, will be greater [even relative
to their proportion] when compared to the influence
and power of the other states...

The contrast between big vs. small players exists not only in
traditional voting settings but also in modern contexts. For
example, we see multiple situations in which several small
websites (where here “small” is in terms of their number of
users) aggregate their market power by forming a unified ser-
vice platform to compete with a big incumbent website. Sim-
ilarly we see aggregation of computational power (e.g., min-
ing pools in Bitcoin, consortia of cloud computing services).
The other direction of a big player splitting itself to multiple
small identities also exists, even when such a split is costly
in terms of advertising and maintaining the brand, e.g., flight
search engines and web hosting services.

Shapley and Shubik [1954] demonstrate that in the settings
of one big player and many small players, the power of the
big player can be higher than its proportional weight. They
do not answer (nor ask) the question of how large this ratio
can be. They also do not analyze the opposite direction, of
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whether this ratio is bounded below by some constant, possi-
bly smaller than 1. As we explain below, our results general-
ize and answer these questions. Beyond the case of one big
player and many small players, which we completely charac-
terize, our model and results extend in two aspects:

• Arbitrary number of big (and small) players - We obtain
results regarding the power vs. proportion of any spe-
cific one big player and regarding the aggregate power
of big players. As the distinction to big and small im-
mediately suggests, the relative power of these groups
now becomes the focus. Examples for such groups are
the top 1% wealthy people, the G7 countries, Bitcoin’s
large miners. These settings typically involve a few big
players and many small players. Milnor and Shapley
[1978] and Neyman [1981] take this to an extreme by
considering so-called “oceanic games” where there are
a few significant large players and a continuum of small
players. In contrast, our results are not asymptotic and
hold for any arbitrary number of big and small players.

• The Banzhaf and Deegan-Packel indices - Since differ-
ent power indices structuring naturally encapsulates dif-
ferent aspects of strategic power, it is important to com-
pare the results of different indices given our model, and
more so as the Banzhaf index gives qualitatively differ-
ent results than the other indices.

1.2 Power vs. Proportion
Our main theoretical results, given in Sections 3-5, character-
ize the ratio between the aggregate power of the big players
and their aggregate proportional weight for different power
indices. Most previous literature analyzes ways to adjust
voters’ voting weights in order to equate voting power to
actual weight. An early suggestion by [Penrose, 1946] is
that, in the UN, states should be assigned seats proportional
to the square root of their population, in order to achieve
proportional representation for each citizen, worldwide, re-
gardless of her state. [Słomczyński and Zyczkowski, 2006;
Słomczyński and Życzkowski, 2007] further suggest an im-
provement in the form of the double square root voting sys-
tem, where on top of assigning seats proportional to the
square root, the voting threshold (quota) of the representative
body itself is determined so to optimize proportionality.

More recently, attention was drawn to whether a good
choice of voting threshold (quota) can attain proportion-
ality [Zick et al., 2011; Zick, 2013; Oren et al., 2014;
Bachrach et al., 2016b; Bachrach et al., 2016a]. Theoreti-
cal guarantees, experimental results, and probabilistic mod-
els were suggested, for which this occurs. For example, these
works collectively establish that under some probabilistic as-
sumptions, setting the threshold T to be about 50% of the to-
tal sum of weights results in power being equal to proportion
with high probability. In contrast, our worst-case analysis of
this problem does not depend on probabilistic assumptions
that might not hold in reality, due to the independence as-
sumptions or specific properties of the distributions. We also
show examples where the threshold is very close to 50% and
the power is far from proportional. In addition, it may not be
possible to tune the threshold T because of exogenous dictates

(e.g., important parliament votes, where a two-thirds major-
ity is required) or because the model aims to capture some
underlying reality (e.g., over the Internet) that constrains T .

A third approach focuses on probabilistic modelling of the
WVG weights. For example, Jelnov and Tauman [2014] show
that if player weights are sampled uniformly from the unit
simplex, the expected Shapley-Shubik power of a player rel-
ative to its proportion goes to 1 with rapid convergence in
the number of players. Lindner and Machover [2004] study a
different model where the ratio of the Shapley-Shubik index
to proportional weight in infinite chains of game instances
asymptotically approaches 1. Chang et al. [2006] follow up
with an experimental analysis of a similar model thus further
verifying the previous conceptual conclusions.

1.3 False-name Manipulation in WVG
As an application of our main results for power vs. propor-
tion, we define in section 6 a false-name strategic normal-
form game where each big player may split its votes between
false identities. Aziz et al. [2011] are the first to study power
indices in the context of false-name manipulation, showing
upper and lower bounds on a player’s gain (or loss) from
splitting its votes into two parts, for the Shapley-Shubik and
Banzhaf indices. They also address a range of computational
issues, among them the decision problem of splitting into two
equal parts which is NP-hard for both indices. Faliszewski
and Hemaspaandra [2009] show that the decision problem of
benefiting from splitting into two equal parts to be in PP, and
Rey and Rothe [2014] show it is PP-complete for the Shapley-
Shubik index, PP-complete for the Banzhaf index with three
equal splits, and PP-hard for both indices with general splits.

Our results contribute to the above literature on false-name
splits by unifying it with the two previously mentioned as-
pects (‘big vs. small’ and ‘power vs. proportion’) and by gen-
eralizing on two additional fronts:

• General splits - We consider splits into multiple identi-
ties, rather than splits into two or three identities. La-
sisi and Allan [2017] initiated work on this more gen-
eral problem, where they show some upper and lower
bounds for the individual power gain from general splits
compared to the original power. These bounds assume
that only a single agent splits, where as the bounds we
provide hold under any combination of strategic manip-
ulations by the agents.

• Global bounds on manipulation - By our results for the
power vs. proportion we extract useful global bounds on
manipulation. Regularly power is compared before and
after splits. Since previous work shows the most basic
questions in regard to successful power manipulation to
be computationally hard, developing global performance
bounds is important.

2 Preliminaries
Weighted Voting Games (WVGs), starting with weighted ma-
jority games [Morgenstern and Von Neumann, 1953; Shapley,
1962], aim to capture a situation where several players need
to form a coalition. Each player has a weight, and a subset
of players can form a coalition if their sum of weights passes
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a certain threshold. In this paper, we make a distinction be-
tween “big” versus “small” players, where small players have
a weight of one. Formally,
Definition 1. (Adapted from Shapley [1962]) A weighted vot-
ing game is a tuple {A,m, T} with

A = {a1, ..., ar},M =

m︷ ︸︸ ︷
{1, ..., 1}, 1 ≤ T ≤ m+

r∑
j=1

aj ,

where a1, ..., ar,m, T ∈ N, there are r “big players”, m
“small players” of weight 1, and a coalition threshold T .1
We at times denote the small players as 11, ...1m. Note that
A is a multiset. When we write A \ {i}, for some weight i, at
most one occurrence of i is removed from A.

A basic question in WVGs is how to split the gains from
forming a coalition among its members. One possible notion
of fairness is to split gains in a way that is approximately
proportional to the weights of the coalition members.
Definition 2. The proportional value of a weighted voting

game is P (A,m, T ) =

r∑
j=1

aj

m+
r∑
j=1

aj

.

However reality tells us that many times the “power” of
players is different than their proportional weight. A well-
established literature on power indices formally studies this
by looking at our setting as a cooperative game. For the anal-
ysis we have the following value function v(S) which de-
scribes whether a subset of players S ⊆ A ∪ M is able to
form a coalition:

v(S) =

{
1

∑
s∈S

s ≥ T

0 otherwise.

We next compare the aggregate power of the big players, us-
ing several three well-known power indices, to their aggregate
proportional weight.

3 The Shapley-Shubik Power Index
Define the ordered tuple A + M = (a1, ..., ar, 11, ..., 1m).
Let Sm+r be the group of all permutations operating on m+
r objects. For some σ ∈ Sm+r, σ(A + M) is the ordered
tuple which results by applying the permutation σ to A+M .
We usually omit the term A + M when it is clear from the
context. Define σ|p, σ̄|p as the set of all players (strictly, non-
strictly) preceding player p in permutation σ(A + M). The
permutation pivotal player indicator function for a player p is

1p,σ = v(σ̄|p)− v(σ|p).
1There is some loss of generality by fixing the parameters ai, T

to be exact multiples of the weight of the small player. Our model
can be slightly generalized as follows: Let s be some minimal
weight corresponding to some operational or regulatory minimal
size of a venture, or to an electoral threshold for parliaments. Any
player with an integer weight s ≤ w < 2s is termed “small” as
small players are the ones that cannot split. The model as presented
corresponds to the case s = 1 for tractability and readability but we
believe that our results hold for the more general model as well.

In words, the indicator 1p,σ is equal to one if the players pre-
ceding p in the permutation σ(A+M) do not form a coalition
and adding p enables the coalition formation. In such a case,
we say that p is pivotal for σ. Note that 1p,σ ∈ {0, 1} and
that each permutation has exactly one pivotal player.
Definition 3. (Adapted from [Winter, 2002]) The Shapley-
Shubik power index of a weighted voting game (A,m,T) is

φp(A,m, T ) = Eσ∼UNI(Sm+r)[1p,σ],

for a player p (whether a big player ai or a small player 1i),
where UNI is the uniform distribution over a discrete set.
This definition is a special case of the Shapley value applied
to WVGs. Three well-known properties of this power index
are symmetry, efficiency, and non-negativity, which we utili-
tize in our proofs.
Definition 4. The Shapley-proportional ratios are the global
supremum (infiumum) over all weighted voting games

R̄φ= sup
A,m,T

r∑
j=1

φaj (A,m, T )

P (A,m, T )
,Rφ= inf

A,m,T

r∑
j=1

φaj (A,m, T )

P (A,m, T )
.

Note that Rφ ≥ 0 because of non-negativity.

Example 1 (R̄φ is at least 2). For some k ≥ 2, consider
A = {k},m = k − 1, T = k. Then φa1(A,m, T ) = 1, while
P (A,m, T ) = 1

2 + 1
4k−2 .

In fact, this asymptotic lower bound is tight:
Theorem 1. R̄φ = 2.

To prove Theorem 1, we first show in lemma 1 a recursive
relation for the Shapley-Shubik index. We are then able to
give an inductive proof of Theorem 1, to appear in the full
version of this paper.
Lemma 1. The following recursion holds for φ1

φ1(A,m, T ) =

1

m+ r
T = 1

1

m+ r

( ∑
1≤i≤r
ai<T

φ1(A\{ai},m, T − ai)+

(m−1)φ1(A,m−1, T − 1)

)
T > 1

The following example shows that Rφ = 0.
Example 2. For any k ≥ 2, choose A = {k},m = k, T =
2k. Then φa1(A,m, T ) = 1

k+1 while P (A,m, T ) = 1
2 .

In example 2, a big player has less power in terms of the
Shapley-Shubik index than its proportional weight. In the
next example the opposite holds:
Example 3. For a single player, it may hold that its individual
power to proportional weight ratio is unbounded: Consider
A = {2, k},m = 1, T = k + 3. Then φa1(A,m, T ) = 1

3

while a1

m+
r∑

j=1

aj

= 2
k+3 .

Nevertheless, there does exist an upper bound on the
Shapley-Shubik index of any individual big player:

Theorem 2. φai(A,m, T ) ≤ ai
m+ r

.
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4 The Banzhaf Index
We show a contrary result for the Banzhaf index [Banzhaf III,
1964], where an asymptotic example has an unbounded ratio
of aggregate big players’ power over their proportion.
Definition 5. (See [Dubey and Shapley, 1979]) Let P (S) be
the power set of S, and UNI be the uniform distribution over
a discrete set. The Absolute Banzhaf index of a WVG is:

β′ai(A,m, T ) = ES∼UNI(P (A\{ai}∪M) [v(S ∪ {ai})− v(S)]

β′1(A,m, T ) = ES∼UNI(P (A∪M\{1}) [v(S ∪ {1})− v(S)] .

The Normalized Banzhaf index is:

βai =
β′ai(A,m, T )

r∑
j=1

β′aj +mβ′1(A,m, T )

.

While the Shapley-Shubik index gives equal probabilities
to all permutations over players, the Banzhaf index gives
equal probabilities to all subsets of players. The normaliza-
tion is needed to achieve the efficiency property, where sum-
mation over the indices of all players sums up to exactly one.
The absolute Banzhaf indices may sum to less or more than
1. For an individual absolute Banzhaf index, by definition

β′ai(A,m, T ) ≤ 1 (1)

Definition 6. The Banzhaf-proportional ratios are the global
supremum over all WVGs

R̄β′ = sup
A,m,T

r∑
i=1

β′ai(A,m, T )

P (A,m, T )
,

A similar definition holds for R̄β .

While the power of the big players cannot be much larger
than their proportional weight according to the Shapley-
Shubik index, the Bhanzaf index gives a different result:
Theorem 3. R̄β′ , R̄β are unbounded.

The proof of Theorem 3, given in the full version of the
paper, shows that the ratio in the following example goes to
infinity with k.

Example 4. Consider A = {2k},m = k1.5, T = 2k+k1.5

2 .
Then for k = 1600, we have

P (A,m, T )=
3200

3200+16001.5
=

1

21
, β′a1(A,m, T )≈0.999999.

The intuition for the calculation is as follows. Since there
is only one big player, and all other players have a weight
of one, only the size of the subset of other players matters
for the index. Choosing a subset S of small identical players
with uniform probability is like letting each small player par-
ticipate in the chosen subset with probability 1

2 (a Bernoulli
trial). So, the size of the subset is sampled from the Binomial
distribution with parameters B(m, 12 ). Measure concentra-
tion properties of the symmetric binomial distribution around
its mean imply that with high probability the size of the sam-
pled set is close enough to m

2 so that the big player in the

example is pivotal. Details of this calculation can be directly
extracted from the argument in the proof of Theorem 3. The
normalized Banzhaf index is for these parameters is:

βa1(A,m, T )≈ 0.999999

0.999999+16001.5 · 3.52795 ∗ 10−33
≈1.

This yields 21 for both the ratio of absolute Banzhaf to
proportion and normalized Banzhaf to proportion.

Example 4 is in the spirit of Section b of [Penrose, 1946]
and the asymptotic results analysed in Section 7 of [Dubey
and Shapley, 1979]. As far as we know, the exact bound that
we derive along with its the formal analysis are new.

Theorem 7 of [Aziz et al., 2011] states that if a single
player splits her votes between exactly two identities, its
power as measured by the Banzhaf index cannot increase by
a factor larger than 2. In contrast, Theorem 3 above shows
that, with general splits, a player might end up decreasing its
power by an unbounded factor. This paints an overall non-
favorable picture for false-name manipulations as measured
by the Banzhaf index.

5 The Deegan-Packel Index
Definition 7. An all-pivotal set in a WVG is a set S such that
for any player s ∈ S, v(S) − v(S \ s) = 1. Let the set of
all-pivotal subsets be AP . The Deegan-Packel index is:

ρai(A,m, T ) = ES∼UNI(AP )

[
1ai∈S

|S|

]
,

where UNI is the uniform disribution over a discrete set.

Thus, the Deegan-Packel index is similar to the Banzhaf
index but takes into account only the all-pivotal subsets that
are, in a sense, the minimal coalitions. It also considers the
size of the coalition, so a participation in a large coalition
results in less “power” than being a part of a small coalition.
One can verify that this index is efficient, i.e., the sum of
indices of all players is always exactly one.

Definition 8. The Deegan-Packel-proportional ratio is the
global supremum over all WVGs

R̄ρ = sup
A,m,T

r∑
i=1

ρai(A,m, T )

P (A,m, T )
.

Example 5. R̄ρ ≥ 2: LetA = {k},m = k−1, T = k. Then
ρa1(A,m, T ) = 1, while P (A,m, T ) = k

2k−1 .

Theorem 4. R̄ρ ≤ 3.

The theorem follows from lemmas given in appendices E,F.
It exploits properties of the all-pivotal coalition in two thresh-
old regimes: If the threshold is large, we show that enough
small players must participate in an all-pivotal coalition, mak-
ing the relative power of the big players in such a coalition
small. If the threshold is small, we are able to use algebraic
manipulations over binomials to derive the bound.
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6 A Power Index False-name Game
In this section, we consider a framework general to all power
indices under the possibility of votes split by big players in
the voting game. Our discussion focuses on the Shapley-
Shubik power index, where we give a conjecture with em-
pirical results. We begin with a notation. Given a natural
number a, define the integer partitions of a as

Partitions(a) =
a⋃
i=1

{b1, ..., bi}
∣∣∣∣ i∑
j=1

bj = a, ∀ij=1bj ∈ N


In words, the partitions of a are all the different sets of natu-
ral numbers such that their sum is a. Note that we allow sev-
eral big players to split into multiple identities each, which
is stronger than many other incentive analyses of false-name
attack where only one strategic player is considered.

Definition 9 (The false-name weighted voting game for a
power index α ∈ {φ, β, ρ}). Let {A,m, T} be a WVG.
We define a non-cooperative game with |A| strategic play-
ers (which are the big players in the WVG). The strategy
space of each strategic player is Partitions(ai). Given
strategies si = {b1i , ..., b

ci
i } for 1 ≤ i ≤ r, let B =

{b11, ..., b
c1
1 , ..., b

1
r, ..., b

cr
r }. The payoff for player i is

uαi (s1, ..., sr) =

ci∑
j=1

αbji
(B,m, T ).

Let c =
r∑
i=1

ci stand for the total number of elements in B.

We wish to understand how the option to split (submit
false-name bids) changes the power of the strategic players.
The previous section sheds light on this question:

Theorem 5. When α = φ (the Shapley-Shubik index), then
for any tuple of strategies s1, ..., sr,

r∑
i=1

uφi (s1, ..., sr) ≤ 2P (A,m, T ).

In particular, this happens in any mixed or pure Nash or cor-
related equilibrium of the game.

A similar result holds for the Deegan-Packel power index.

Proof. By Theorem 1, consideringB as determined by the set
of strategies s1, ..., sr as the set of big players in the theorem
(and where the number of big players is c), we have

r∑
i=1

ci∑
j=1

φbji
(B,m, T ) ≤ 2

r∑
i=1

ci∑
j=1

bji

m+
r∑
i=1

ci∑
j=1

bji

= 2

r∑
j=1

aj

m+
r∑
j=1

aj

.

Thus, strategically splitting vote weights using false-name
manipulations cannot increase the overall power of the big
players to be more than double their proportional weight. On
the other hand, we conjecture that such strategic manipula-
tions cannot harm their overall Shapley-Shubik power:

Conjecture 1. For the Shapley-Shubik index φ with any
weighted voting game {A,m, T} and a choice of strate-
gies resulting in a corresponding weighted voting game
{B,m, T}, it holds that

r∑
i=1

φai(A,m, T ) ≤ 2
r∑
i=1

ci∑
j=1

φbji
(B,m, T ).

Remark 1.
• Section 6.2 supports the conjecture with empirical re-

sults obtained by an exhaustive search over small WVGs.
• Theorem 1 is a special case of the conjecture, where

each player i’s strategy choice is

ai︷ ︸︸ ︷
{1, ..., 1}.

• Theorem 6 of [Aziz et al., 2011] states that a single
player that splits her votes to exactly two identities can-
not decrease its Shapley-Shubik index by more than a
factor of n+1

2 . Our conjecture gives a much stronger
bound for the aggregate power of big players: the worst
decrease of aggregate power, caused by any combina-
tion of splits, is by a constant factor of 2.

Combining Theorem 5 and Conjecture 1 yields:
Corollary 1. For all strategies s1, ..., sr in the Shapley false-
name WVG {A,m, T}, if Conjecture 1 holds,

1

2

r∑
i=1

φai(A,m, T ) ≤
r∑
i=1

uφi (s1, ..., sr) ≤ 2P (A,m, T ).

To conclude, false-name attacks can unboundedly increase
the aggregate Shapley-Shubik power index of the big play-
ers, e.g., by splitting to singletons (Example 2). However,
no attack can increase the power to more than twice the
power resulting from the simple attack of splitting to single-
tons (Theorem 5). False-name attacks can also decrease the
Shapley-Shubik index (Example 1). However, we believe, as
expressed in Conjecture 1, that no false-name attack can de-
crease the aggregate Shapley-Shubik power to be less than
one-half of the original power.

6.1 The Worst-case Effects of False-name
Manipulation for a Single Player

While the total utility of the big players is conjectured to not
lose much by splits, a single player may multiplicatively lose
arbitrarily much in B compared to A. This is evident by Ex-
ample 3, but we give two additional examples that do not re-
quire all players to fully split. In the first example, the player
that chooses not to split loses by this choice. In the second
example, the player that chooses to split loses by this choice.

Example 6. Consider A = {k, k, k}, B =

{k,
k︷ ︸︸ ︷

1, ..., 1,

k︷ ︸︸ ︷
1, ..., 1},m = k, T = 4k. Then

φa1(A,m, T ) =
1

k + 3
φb11(B,m, T ) =

1

3k + 1
.

Thus, with k ≥ 6, the ratio is higher than 2. The exam-
ple can be generalized to exceed any bound r, with A =

r+1︷ ︸︸ ︷
{k, ..., k}, B={k,

r︷ ︸︸ ︷
k︷ ︸︸ ︷

1, ..., 1, ...,

k︷ ︸︸ ︷
1, ..., 1},m=k, T =(r + 2)k.
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Example 7. Consider A = {k, k}, B = {
k︷ ︸︸ ︷

1, ..., 1, k},m =
0, T =k+1. Then

φa1(A,m, T ) =
1

2
,

a1∑
j=1

φbj1
(B,m, T ) =

1

k + 1
.

The basic upper bound on the power of a single big player
that Theorem 2 yields continues to hold under the possibility
of splits, and it decreases as the number of splits increase:
Corollary 2. For a player i, and any strategy choice s1, ..., sr
of the players, it holds that:

uφi (s1, ..., sr) =

ci∑
j=1

φbji
(B,m, T )

THM 2
≤

ci∑
j=1

bji

m+
r∑

k=1

ck

≤
ci∑
j=1

bji
m+ r + (ci − 1)

=

ai

m + r + (ci − 1)
.

This further yields another result.
Corollary 3. For the settings where there is a single big
player a1 and m small players, and any threshold T , the big
player has a strategy that guarantees at least 1

2 the power of
its best possible strategy.

Proof. We start by showing that P (A,m, T ) ≥
1
2 sups1 u

φ
1 (s1), and then give a strategy s1 that attains

uφ1 (s1) = P (A,m, T ).
If a1 > m, P (A,m, T ) > 1

2 ≥
1
2 sups1 u

φ
1 (s1), by the

efficiency property of the Shapley-Shubik index.
Assume a1 ≤ m. The big player is the only strategic player

in the game. By Corollary 2, for any strategy s1,

uφ1 (s1) ≤ a1
m+ 1

≤ 2a1
m+ a1

= 2P (A,m, T ).

Thus, the proportional value for the big player is at least
half as good as the best possible strategy. By the symmetry

property of the Shapley-Shubik index, s1 =

a1︷ ︸︸ ︷
{1, ..., 1} (“full

split”) guarantees the proportional value.

6.2 Experimental Results
To support Conjecture 1, we ran an exhaustive validation over

all WVGs with m < 25,
r∑
j=1

aj < 25. A total of 5, 833, 920

WVGs were checked against all valid sub-partitions of them,
resulting in a total of 1, 246, 727, 916 valid pairs being com-
pared. The maximal ratio attained was 1.958333′. The mini-
mal ratio attained was 0.08. The exhaustive search consists of
two parts. First, using dynamic programming over a dual re-
cursion to that of Lemma 1 (see Appendix I in the full version
of the paper), we built a full recursion table of all Shapley-
Shubik indices for the WVGs in the range. Then, for each
WVG we considered all valid partition strategy sets B.

While the maximal ratio over all instances of the experi-
mental analysis was close to 2, in most instances the ratio was
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Figure 1: Ratio of big players’ power before and after splits

much closer to 1. Figure 1 shows a histogram of the number
of cases (on the y-axis) for different possible ratios between
0 and 2 (on the x-axis). As can be seen from the figure, the
ratio is concentrated around 1.

7 Discussion and Future Directions
Many questions remain open. We find Conjecture 1 hard to
prove even in limited settings. For example, consider the
WVG {B,m, T} where m < T <

∑|B|
i=1 bi, i.e., the overall

weights of the small players are less than the threshold, which
itself is less than the overall weights of the big players. In this
case it is possible to show that if we takeA = {

∑|B|
i=1 bi}, i.e.,

a single big player, then that player has a Shapley-Shubik in-
dex of 1 in the WVG {A,m, T}. The conjecture’s inequality
in that case then states that the sum of Shapley-Shubik indices
of the big players in B is larger or equal to 1

2 . This reads as
a very clean combinatorial problem: If we draw a permu-
tation at random over a multiset of integers m × {1} ∪ B,
with m < T <

∑|B|
i=1 bi, then the probability that the piv-

otal player (crossing the threshold T ) is “big” is higher than
the probability that it is “small”. This can be even simplified
further if we assume all big players are of identical size k.

Section 6 is developed in regards to the Shapley-Shubik
index. The negative nature of the results in section 4 make
a similar treatment of the Banzhaf index superfluous, but the
Deegan-Packel index might induce a similar conjecture and
experimental results. The model itself could be generalized
so that the threshold value T and big players’ valuesA are not
a multiple of the small players value, or into some other idea
of looser distinctions between big and small players. Tight
bounds can be derived for the Deegan-Packel index, and sim-
ilar results explored for other power indices in common use,
such as these by Johnston [1978], Holler and Packel [1983]
and Coleman [1971]. Generalizing our results to a larger class
of cooperative games is also interesting.
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