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Abstract
We study the fundamental problem of allocating in-
divisible goods to agents with additive preferences.
We consider eliciting from each agent only a rank-
ing of her k most preferred goods instead of her full
cardinal valuations. We characterize the value of k
needed to achieve envy-freeness up to one good and
approximate maximin share guarantee, two widely
studied fairness notions. We also analyze the mul-
tiplicative loss in social welfare incurred due to the
lack of full information with and without the fair-
ness requirements.

1 Introduction
The theory of fair division studies how goods (or bads) should
be fairly divided between individuals (a.k.a. agents) with dif-
ferent preferences over them. While the pioneering fair divi-
sion research in economics, starting with the work of Stein-
haus [1948], focused on divisible goods which can be split
between the agents, a significant body of recent research
within computer science has focused on allocation of indi-
visible goods [Bouveret et al., 2016].

Suppose we wish to partition a set of indivisible goods M
among a set of agents N . In doing so, we would like to take
the agents’ preferences into account; thus, the first step is to
decide how to represent these subjective opinions over the
possible bundle of goods the agent could receive. Some of
the early work on fair division uses complete ordinal rank-
ings: agents can have a nearly-arbitrary ordering over all 2|M |

subsets of the goods. Although of theoretical interest, as the
number of goods grows, this domain quickly becomes too
expressive and often leads to methods that are computation-
ally infeasible (see, e.g. [Herreiner and Puppe, 2002]). On
the other end, another common approach is to allow agents
to express ordinal preferences over the |M | singleton subsets
and extend these to ordinal preferences over all possible bun-
dles (see, e.g., [Brams and King, 2005; Brams et al., 2003;
Aziz et al., 2015]). However, this suffers from the opposite
problem and can often be too restrictive.

Recent work has thus focused on a different option, addi-
tive cardinal preferences. This preference domain is popu-
lar as it offers a sweet spot between simplicity and expres-
siveness. Here, each agent i places a non-negative value

vi(g) on each good g and her value for a bundle of goods
S ⊆ M is assumed to be the sum of her values for the indi-
vidual goods in S, i.e.,

∑
g∈S vi(g). Theoretically, this valu-

ation class gives way to algorithms achieving strong fairness
guarantees [Amanatidis et al., 2016; Caragiannis et al., 2019;
Chaudhury et al., 2020; Ghodsi et al., 2018; Garg and Taki,
2020]. Practically, additive valuations are much simpler to
elicit than fully combinatorial valuations, which has led to
their adoption by popular fair division tools such as Spliddit
and Adjusted Winner.1

However, expressing additive valuations still requires plac-
ing an exact numerical value on each good, which can some-
times be difficult or infeasible. An interesting tradeoff can
be achieved by eliciting ordinal preferences from the agents,
but viewing them as partial information regarding underly-
ing cardinal preferences. This idea originates from the re-
lated field of voting theory, where a growing body of work on
the distortion framework uses ordinal preferences of voters
over candidates as means to pick a candidate approximately
maximizing social welfare according to the underlying cardi-
nal preferences [Procaccia and Rosenschein, 2006; Boutilier
et al., 2015; Caragiannis et al., 2017; Mandal et al., 2019;
Mandal et al., 2020; Kempe, 2020; Amanatidis et al., 2020].

In this paper, we focus on eliciting from each agent a rank-
ing of her k most preferred goods (i.e., a prefix of her pref-
erence ranking over the goods). A system designer deliber-
ating on whether to use such partial information over tradi-
tional cardinal valuations may immediately be interested in
the price of the missing information. In line with the afore-
mentioned work, we analyze distortion in the context of fair
division, i.e., the worst-case (multiplicative) loss in social
welfare — the sum of the values that agents place on their
own bundles — incurred due to the missing information.

In addition, we are also interested in achieving qualita-
tive fairness guarantees; it is, after all, fair division. Two
popular guarantees for allocation of indivisible goods are
envy-freeness up to one good (EF1) [Lipton et al., 2004;
Budish, 2011] and approximate maximin share guarantee
(MMS) [Kurokawa et al., 2018], which we define in Sec-
tion 2. With access to agents’ full preference rankings over
the goods, it is known that EF1 can be achieved via the round
robin algorithm [Lipton et al., 2004; Caragiannis et al., 2019],

1www.spliddit.org, www.nyu.edu/projects/adjustedwinner/
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under which agents take turns picking goods in a cyclic fash-
ion. For MMS, Amanatidis et al. [2016] show that, using
just ordinal preferences over the goods, it is impossible to
guarantee better than a 1/Hn approximation of MMS, where
Hn = Θ(log n) is the nth harmonic number and n is the
number of agents; in contrast, given additive cardinal pref-
erences, even 3/4-MMS can be achieved [Ghodsi et al., 2018;
Garg and Taki, 2020]. What is the best MMS approximation
that can be achieved given agents’ preference rankings over
all the goods? More generally, if we are only given agents’
preference rankings over their k most preferred goods, for
what values of k can we achieve EF1 and approximate MMS?
What distortion do we incur if, in addition to the missing
cardinal information, we also impose these fairness require-
ments? We answer these questions in our work.

1.1 Our Contribution
A bit more formally, a deterministic (resp. randomized) ordi-
nal allocation rule takes as input the partial preference rank-
ings and returns an allocation (resp. a distribution over allo-
cations) of the goods to the agents. The distortion of the rule
is the ratio of the maximum social welfare of any allocation
to the (expected) social welfare of the allocation returned, in
the worst case over all problem instances in a family. As is
common in the literature on distortion, we assume normal-
ized valuations: the total value each agent places on all goods
is normalized to 1. We are interested in two questions. First,
how much information is needed to achieve certain fairness
guarantees? Second, what is the best distortion of any deter-
ministic or randomized ordinal allocation rule with or without
a fairness constraint?2

Our results answer these questions for all values of k, but
for simplicity, we summarize the results for when complete
rankings are given (k = m) in Figure 1. Without any fairness
constraint, the simple deterministic rule that simply allocates
all the goods to a single agent achieves distortion n. We show
that not even a randomized rule with access to complete rank-
ings can achieve distortion better than n.

Next, we consider two fairness requirements: envy-
freeness up to one good (EF1) and approximate maximin
share (MMS). EF1 is known to be achievable given com-
plete rankings (k = m). We characterize the exact value of
k needed to achieve EF1. For MMS, we derive almost tight
bounds the best possible approximation as a function of k.
For the case of complete rankings (k = m), our results show
that 1/(2Hn)-MMS is achievable, almost matching the asymp-
totic upper bound of 1/Hn due to Amanatidis et al. [2016].
Thus, we establish, for the first time, that the best approxi-
mation to MMS given ordinal preference information scales
logarithmically in the number of agents.

We also show that when ordinal allocation rules are re-
quired to guarantee EF1 or α-MMS for α > 0, determinis-
tic rules face Ω(n2) distortion while randomized rules face
Ω(n) distortion, and matching upper bounds can be derived
(in case of MMS, along with best-known α-MMS approxima-
tion). Our distortion upper bounds are achieved through effi-

2For a randomized rule, we require that the fairness constraint be
met by all allocations in the support of the distribution returned.

Fairness Det Rand
None n n
EF1 Θ(n2) Θ(n)

α-MMS Θ(n2) Θ(n)

Cardinal

Cardinal
+ P

Ordinal
+ P

Θ(
√

n)

Θ(n2)

Θ(n2)

Figure 1: The table on the left summarizes the optimal distortion
for deterministic and randomized rules with access to the complete
rankings (k = m). Note that α-MMS is achievable for α = 1/2Hn,
but not for α > 1/Hn. However, the distortion lower bounds hold
for any α > 0. The diagram on the right shows the worst-case ratio
of social welfare between pairs of settings from the following three:
cardinal valuations given, cardinal valuations given but property P
required, ordinal preferences given but property P required. The
diagram holds for bothP ∈ {EF1, α-MMS} and the top-right arrow,
the price of fairness P , is due to Barman et al. [2020].

cient algorithms. In the full version,3 we also show that var-
ious other fairness guarantees studied in the literature cannot
be achieved given just ordinal preference information, even
with complete rankings.

1.2 Related Work
There has been a substantial amount of work on using ordinal
preferences in fair allocation of indivisible goods. For exam-
ple, Aziz et al. [2015] consider the question of checking the
existence of allocations that possibly or necessarily satisfy
certain fairness guarantees such as envy-freeness given only
ordinal preferences of the agents over the goods. Bouveret
et al. [2010] study similar questions, but given partial ordinal
preferences of the agents over bundles of goods.

Some of the work does not assume any underlying cardi-
nal preferences; instead, it aims to obtain guarantees defined
directly in terms of the ordinal preferences. For example,
Baumeister et al. [2017] and Nguyen et al. [2017] use the so-
called scoring vectors to convert agents’ ordinal preferences
into numerical proxies for their utility and then consider max-
imizing various notions of social welfare or guaranteeing var-
ious fairness properties in terms of such utilities.

Another related line of work uses ordinal allocation rules
(such as picking sequence rules) in settings with cardinal val-
uations. For example, Aziz et al. [2016] focus on the com-
plexity of checking what social welfare such rules can pos-
sibly or necessarily achieve. Amanatidis et al. [2016] seek
to use picking sequence rules to obtain approximation of
the maximin fair share guarantee; indeed, as mentioned ear-
lier, we settle a question left open in their work. However,
their main focus is on ensuring truthfulness, i.e., preventing
agents from manipulating their preferences. Manipulations
under picking sequence rules have received significant atten-
tion [Aziz et al., 2017b; Aziz et al., 2017a].

2 Model
For j ∈ N, let [j] = {1, . . . , j}. Let N = [n] be a set of
agents and M = [m] be a set of goods. Each agent i is en-

3www.cs.toronto.edu/ nisarg/papers/distortion-fair-division.pdf
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dowed with a valuation function vi : 2M → R>0, which is
additive: vi(S) =

∑
g∈S vi({g}) for all i ∈ N,S ⊆ M ; and

unit-sum: vi(M) = 1 for all i ∈ N . To simplify notation, we
write vi(g) instead of vi({g}) for a good g ∈M . We refer to
v = (v1, . . . , vn) as the valuation profile.

For k ∈ [m], a top-k ranking σi of agent i is a rank-
ing of agent i’s k most valuable goods (ties broken arbitrar-
ily). We say that a good is ranked by an agent if it appears
in their top-k ranking and unranked otherwise. We refer to
σ = (σ1, . . . , σn) as the top-k preference profile (or, simply,
preference profile). Note that the value of k is the same for
all agents. When k = m, we refer to these as complete rank-
ings. We say that vi is consistent with σi, denoted vi . σi, if
vi(g) > vi(g

′) for all g, g′ ∈ M such that either g �σi g
′

if both g and g′ are ranked or g is ranked and g′ is unranked.
We say that v is consistent with σ, denoted v .σ, if vi .σi for
each i ∈ N .

We are interested in taking as input (N,M, k, σ), which
we refer to as an instance, and finding an allocation of the
goods to the agents. For a set of goods S ⊆M and ` ∈ N, let
Π`(S) denote the set of ordered partitions of S into ` bundles.
An allocation A = (A1, . . . , An) ∈ Πn(M) is a partition of
the goods into n bundles, where Ai is the bundle allocated to
agent i. Under this allocation, the utility to agent i is vi(Ai).
Given a valuation profile v, the social welfare of an allocation
A is sw(A, v) =

∑
i∈N vi(Ai); we simply write sw(A) when

the valuation profile v is clear from the context.
We will use I to denote a family of instances. We will use
IR to denote the family of instances in which relation R over
k, n, and m is satisfied. For example, Ik=m is the family of
instances with complete rankings and Ik>n−1 is the family
of instances with rankings of at least n− 1 goods.

A (randomized) ordinal allocation rule (hereinafter, sim-
ply a rule) f for a family of instances I takes an instance
(N,M, k, σ) from I — for simplicity, we refer to σ as the
sole input to f— and returns a distribution over the set of al-
locations Πn(M). We say that f is deterministic if it always
returns a distribution with singleton support. We will some-
times refer to a distribution over allocations as a randomized
allocation. The distortion of an ordinal allocation rule f with
respect to a family of instances I, denoted distI(f), is the
worst-case approximation ratio it provides to the social wel-
fare over all instances of I:

distI(f) = sup
(N,M,k,σ)∈I

sup
v:v.σ

maxA∈Πn(M) sw(A, v)

E[sw(f(σ), v)]
,

where the expectation is over possible randomization in f .
When I is clear from the context, we may drop it from the
notation. Note that if I1 ⊆ I2, then distI1(f) 6 distI2(f).
Following prior work and to help compare our distortion
bounds to the known price of fairness bounds (see Figure 1),
we provide distortion bounds parametrized by the number of
agents n. We are interested in the lowest distortion that deter-
ministic and randomized ordinal allocation rules can achieve.

A fairness property P maps every instance I =
(N,M, k, σ) to a (possibly empty) set of allocations P (I);
every allocation in P (I) is said to satisfy P in instance I .
Often, fairness properties are defined in terms of agent valu-
ations rather than rankings. In this case, an allocation is said

to satisfy P in instance I only if it is satisfied by P for all
valuations consistent with σ. We say that a rule f satisfies
property P if for all σ, every allocation in the support of f(σ)
satisfies P . We are also interested in determining whether
ordinal allocation rules can satisfy prominent fairness prop-
erties, and when they can, determining the lowest possible
distortion they can achieve subject to such properties.

Given an instance I = (N,M, k, σ) with valuations v, we
are interested in the following fairness properties.
Definition 1 (EF1). An allocation A is called envy-free up to
one good (EF1) if for every pair of agents i, j, either vi(Ai) >
vi(Aj) or there exists a good g ∈ Aj such that vi(Ai) >
vi(Aj \ {g}).
Definition 2 (Balancedness). An allocation A is called bal-
anced if |Ai|−|Aj |6 1 for all i, j ∈ N , i.e., if the agents
receive approximately an equal number of goods.
Definition 3 (MMS). The maximin share of agent i is

MMSi = max
A∈Πn(M)

min
Aj∈A

vi(Aj).

Given α ∈ [0, 1], an allocation A is called α-maximin share
fair (α-MMS) if vi(Ai) > α ·MMSi for all agents i ∈ N .
When α = 1, we simply say that A is an MMS allocation.

3 Distortion of Ordinal Allocation Rules
We begin by analyzing the lowest distortion that deterministic
and randomized ordinal allocation rules can achieve in the
absence of any fairness requirement. This precisely captures
value of cardinal preference information, or the loss incurred
in social welfare due to having only ordinal preferences.

Even without any preference information (k = 0), a triv-
ial deterministic rule that allocates all the goods to an arbi-
trary single agent achieves distortion n: indeed, the social
welfare of such an allocation is 1, while the maximum social
welfare cannot be larger than n since valuations are unit-sum
(vi(M) = 1 for all i ∈ M ). We show that not even random-
ized ordinal allocation rules with access to complete rankings
(k = m) can achieve lower distortion. The proof can be found
in the full version.
Theorem 1. There exists a deterministic ordinal allocation
rule with distortion n for the family Ik>0. On the other
hand, no randomized ordinal allocation rule achieves distor-
tion lower than n even for the restricted family of Ik=m.

3.1 Fairness Lower Bounds
In this section, we analyze the lowest distortion that ordinal
allocation rules can achieve when they are required to satisfy
some fairness constraints. This captures the combined price
of the lack of cardinal preference information and the impo-
sition of fairness constraints. Figure 1 contrasts this with the
sole price of the former analyzed in Section 3 and the sole
price of the latter from known results in the literature. Per-
haps not surprisingly, it turns out that the two together lead to
a much greater loss in social welfare than each individually.

Another consequence of our results is that while random-
ized ordinal rules are no more powerful than deterministic
ones in the absence of any fairness requirements (Theorem 1),
imposing fairness requirements makes their powers diverge.
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Keeping aside the question of distortion, we are also inter-
ested in determining which fairness properties ordinal alloca-
tion rules can satisfy. A negative answer can be interpreted as
a qualitative price of the lack of cardinal preferences.

We begin by establishing a lower bound on the distortion
of deterministic ordinal allocation rules that holds when any
fairness property from a broad class is imposed, even with
access to complete rankings; later, we argue that the fairness
properties of our interest belong to this class. Recall that we
require the allocation returned by the rule to satisfy the fair-
ness property, regardless of the unobserved cardinal valua-
tions (consistent with the observed ordinal preferences).

Theorem 2. Let P be a fairness property such that when the
number of goods equals the number of agents, for every pref-
erence profile σ, an allocation satisfies P for all valuations
consistent with σ if and only if each agent receives a single
good. Then, the distortion of every deterministic ordinal al-
location rule satisfying P is Ω(n2) for the family Ik=m.

Proof. Fix such a fairness property P , a number of agents
n, and a deterministic ordinal allocation rule f on Ik=m (i.e.,
only taking complete rankings) satisfying P . First, let us sup-
pose that n is even. We construct an instance with n goods,
that is, with m = n. We split the goods into three differ-
ent categories and construct a preference profile σ as follows.
The first category consists of a single good g∗ that is ranked
highest by all agents. The next category consists of n/2 goods
labeled g{1,2}, g{3,4}, . . . , g{n−1,n}. For each ` ∈ [n/2], good
g{2`−1,2`} is ranked second by both agents 2`−1 and 2`. The
final category consists of the remaining n/2 − 1 goods. The
construction above identifies the two most preferred goods
for all agents; their preference rankings from the third rank
onward can be arbitrary.

Let A be the allocation returned by f given σ. By the
assumption of the theorem statement, each agent must re-
ceive exactly one good in A. Without loss of generality, let
us assume that agent 1 receives g∗. In addition, for each
` ∈ {2, . . . , n/2}, at least one of agents 2` − 1 and 2` does
not receive good g{2`−1,2`}; without loss of generality, as-
sume that agent 2`− 1 does not receive it. Let us construct a
consistent valuation profile as follows:

• Agent 1 has value 1/n for each good.

• Agent 2 has value 1 for g∗ and 0 for all other goods.

• For ` ∈ {2, . . . , n/2}, agent 2` − 1 has value 1/2 for g∗,
1/2 for g{2`−1,2`}, and 0 for all other goods; and agent
2` has value 1 for g∗ and 0 for all other goods.

Under A, the only agent receiving positive utility is agent 1,
who receives utility 1/n. Therefore, the social welfare is 1/n.
In contrast, consider the allocation that gives g∗ to agent 2,
g{2`−1,2`} to agent 2` − 1 for each ` ∈ {2, . . . , n/2}, and the
remaining goods arbitrarily such that each agent receives a
single good. It is easy to check that its social welfare is at
least 1 + (n/2− 1) · 1/2 = n/4 + 1/2. Therefore, the distortion
of f is at least (n/4 + 1/2)/(1/n) ∈ Ω(n2).

If n is odd, we can construct the described instance with
n − 1 agents and n − 1 goods, add a good ranked last by all
agents, and add an agent whose preference ranking matches

that of one of the other agents. Using similar arguments as
above, regardless of the allocation A chosen by f , we can
construct a consistent valuation profile in which the social
welfare ofA is 1/n, while the optimal social welfare is at least
(n−1)/4 + 1/2, resulting in Ω(n2) distortion.

Notice that in the proof of Theorem 2, we contrast the so-
cial welfare achieved by the rule satisfying P against that of
an allocation that assigns each agent a single good, thus also
satisfying P . That is, the Ω(n2) lower bound continues to
hold even when comparing to the optimal social welfare sub-
ject to P . On the other hand, our matching upper bounds pre-
sented later hold even when comparing to the optimal social
welfare without any fairness constraints.

4 EF1
We now turn our attention to EF1. We begin by fully charac-
terizing the values of k, in relation to n and m, for which we
can achieve EF1. The rules we construct are based on pick-
ing sequence rules. A picking sequence is simply a sequence
of agents p1, . . . , p`, where ` 6 m. It is a deterministic rule
that works as follows: it first gives agent p1 their favorite
good, then gives agent p2 their favorite good among the ones
remaining, and so on, for ` steps. If ` < m, we design a
way — different for each case — for allocating the remaining
goods. A well-known picking sequence rule is round robin,
which has the cyclic picking sequence 1, . . . , n, 1, . . . , n, . . .
repeated for a total of m steps.
Theorem 3. With n agents and m goods, it is possible to
guarantee EF1 using top-k rankings if and only if

k >


m− n, if m mod n = 0;

m− 2, if m mod n = 1;

m− (m mod n), if m mod n > 1.

Proof. Fix arbitrary n, m, and k. We begin with the lower
bounds, showing that EF1 can only be achieved if k is suffi-
ciently large. All of our constructions have the same prefer-
ence profile: all agents agree on which goods are in the top
k, that is, they rank goods g1, . . . , gk in some order and do
not rank the remaining m − k goods. For a given allocation
A, let si = |Ai ∩ {g1, . . . , gk} | be the number of the top-k
goods received by agent i. Note that k >

∑
i∈N si. We use

the following lemma.

Lemma 1. If agents agree on which goods are in the top k
and an allocation A is EF1 for all consistent valuations, then
si > |Aj |−1 for all distinct agents i, j ∈ N .

Proof. Consider a consistent valuation profile in which agent
i has zero value for the goods Ai \ {g1, . . . , gk} but equal
value for all other goods (including all of the ones in Aj). If
si < |Aj |−1, EF1 would be violated for agent i.

Suppose there exists an allocation A guaranteed to be EF1.
We show that this implies k is sufficiently large as per the
theorem statement. Let q ∈ N and r ∈ [n − 1] be such that
m = qn + r. Since A is guaranteed to be EF1 given ordinal
preferences, it must be balanced, that is, |Aj |−|Ai|6 1 for all
agents i and j: using Lemma 1, we can see that |Ai|> si >
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|Aj |−1. In our case, this means that r agents have bundles
with size q + 1 and the remaining n − r have bundles with
size q. In the following, we use k >

∑
i∈N si.

• Suppose r = 0, so |Ai|= q for all agents i. By Lemma 1,
si > q − 1 all agents i, so k > (q − 1)n = m− n.

• Suppose r = 1. Therefore, one bundle, without loss of
generality A1, has size q+1, and all the others have size
q. We have that s1 > q − 1 and si > q for all i 6= 1 by
Lemma 1. This implies k > qn− 1 = m− 2.

• Suppose r > 1. As at least two agents have bundles of
size q + 1, by Lemma 1, si > q for all agents i. This
implies k > qn.

Next, we prove the upper bounds, showing that if k is
sufficiently large, EF1 can be guaranteed. To do this, we
make modifications to the aforementioned round robin rule,
which (with a picking sequence of length m) is known to
guarantee EF1. Note that to run this rule, only ordinal
information is needed but complete rankings (or at least
k > m − 1) are needed. To work with round robin, we
label the goods in the order they are chosen as follows
g1,1, g2,1, . . . , gn,1, g1,2, . . . , g`,t, where good gi,j is the jth

good picked by agent i. We refer to t, the largest number
of goods picked by any agent, as the number of “rounds”
and goods gi,t for i ∈ N as goods picked in the last round.
Note that not all agents will necessarily pick a good in the last
round. We make use of the following lemma. The proof can
be found in the full version.

Lemma 2. Suppose we run round robin to m steps with ac-
cess to complete rankings but reassign the goods received by
agents in the last round such that no agent receives more than
one good. Then the resulting allocation remains EF1.

All the rules we design will run round robin to at most
k steps and then assign the remaining goods in a way that
can be accomplished without access to the remaining ordi-
nal preferences. We will then argue that the remaining goods
were assigned in a way such that they only permuted the last
round of goods in a hypothetical allocation given by running
round robin to m steps with access to complete rankings. By
Lemma 2, this implies EF1.

First, suppose m mod n = 0 and k > m − n. The rule
works as follows: it runs round robin for m − n steps and
assigns the remaining n goods so that each agent receives ex-
actly one. This is EF1 by Lemma 2 as the resulting allocation
could also have been computed by running round robin using
complete rankings and reassigning the goods from the last
round in the way that was arbitrarily chosen.

Next, suppose m mod n = 1 and k > m − 2. The rule
works in a very similar way. It runs round robin for m − 2
steps and assigns the remaining two goods to the last agent in
the order (or if m = 1, just assigns the good to an arbitrary
agent). This is EF1 by Lemma 2 as the resulting allocation
could have been computed by running round robin and giving
the singular good of the final round to the nth agent in the
order.

Finally, suppose m mod n > 2 and k > m− (m mod n).
As before, we run round robin for m− (m mod n) steps and

assign the remaining m mod n goods such that each agent
receives at most one. This is again EF1 by Lemma 2.

Let IEF1 be the family of instances with k, n, and m val-
ues satisfying the relation specified in Theorem 3 (i.e. for
which it is possible to achieve EF1). Then, the best possible
distortion subject to the requirement of achieving EF1 is as
follows. The proof can be found in the full version.

Theorem 4. Among deterministic ordinal rules, all EF1 rules
have unbounded distortion on IEF1 ∩ Ik=0 and the lowest
possible distortion of an EF1 rule with respect to IEF1 ∩
Ik>1 is Θ(n2). Among randomized ordinal rules, the lowest
possible distortion of an EF1 rule on IEF1 is Θ(n).

5 MMS
We now turn to our most technical results, which are regard-
ing approximate maximin share (MMS) guarantee. Before
we consider distortion subject to approximate MMS, we need
to know what approximation to MMS is possible to achieve.
Given full cardinal information, it is known that exact MMS
cannot be achieved [Kurokawa et al., 2018], but 3/4-MMS
can [Ghodsi et al., 2018; Garg and Taki, 2020].

Given complete preference rankings (k = m), Amanatidis
et al. [2016] show that it is not possible to achieve α-MMS
for α > 1/Hn, where Hn = Θ(log n) is the nth Harmonic
number. On the opposite end, they only establish a weaker
Ω(1/

√
n) lower bound, leaving open the question of what the

best possible MMS approximation is given complete prefer-
ence rankings. We settle this question by showing that the
best possible MMS approximation for k = m is Θ(1/Hn)
(specifically, we derive a lower bound of 1/2Hn). We also ex-
tend the lower and upper bounds to the case of k < m.

Our algorithm is similar to the one provided by Amanatidis
et al. [2016] to achieve Ω(1/

√
n), but our improvement cru-

cially relies on Lemma 3, which requires an intricate proof
(given in ??) to achieve the desired bounds. Note that for
m 6 n, MMS can trivially be satisfied by giving each agent
at most one good; thus, we focus on m > n.

Theorem 5. When m > n, the following hold.

• If k < n− 1, we cannot achieve α-MMS for any α > 0.

• If k = n − 1, we can achieve 1

bm−n+2
2 c -MMS, but no

higher.

• If k > n, we can achieve α-MMS for α = k−n+1
m−n+1 ·

1
2Hn

,
but not for α > k

Hn(m−n)−(m−k) .

Proof. Most of the proof is located in ??. Here, we show
the most interesting case: the lower bound for k > n. We
borrow and build upon ideas from the proof of the Ω(1/

√
n)

lower bound due to Amanatidis et al. [2016].
We construct a picking sequence rule achieving the desired

MMS approximation. Fix an agent. For now, suppose we
are working with complete rankings, with k = m. Suppose
the first time this agent appears in the picking sequence is at
the `th position (we call this the agent’s 0th appearance) for
some ` 6 n, and then, the agent’s jth appearance occurs at
or before position (` + bj · 2Hn(n− `+ 1)c) in the picking
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sequence for every j (as long as this quantity does not exceed
m). Then, we claim that the agent must be guaranteed at least
1/(2Hn) fraction of her MMS value. To see this, note that the
agent picks a good at least as valuable as her `th most favorite
good in her 0th appearance, and then an additional good at
least as valuable as her (`+ bj · 2Hn(n− `+ 1)c)th favorite
good in her jth appearance for each j. Let S denote the to-
tal value the agent places on her ` − 1 most valuable goods.
Then, this picking sequence guarantees the agent utility at
least 1−S

2Hn(n−`+1) . On the other hand, note that the MMS
value of the agent is at most 1−S

n−`+1 ; this is because regardless
of how the agent partitions the goods into n bundles, ignoring
the (at most) `−1 bundles containing her `−1 most valuable
goods, even the average value across the remaining (at least
n − ` + 1) bundles is at most 1−S

n−`+1 . Hence, it follows that
the agent is guaranteed at least a 1/2Hn fraction of her MMS.

Now, instead of assuming we have complete rankings, sup-
pose we just have top-k for some k > n. In this case, sup-
pose we run the above picking sequence for just k steps.
Then, rather than being guaranteed 1−S

2Hn(n−`+1) , the agent
is only guaranteed k−`+1

m−`+1 ·
1−S

2Hn(n−`+1) . As their MMS
value remains the same and ` 6 n, this agent is guaranteed
k−n+1
m−n+1 ·

1
2Hn

-MMS as needed. The remaining m− k goods
can be allocated arbitrarily.

Our picking sequence gives a guarantee of this style to each
agent, albeit for different values of `. In particular, for each
agent i ∈ [n], the picking sequence provides this guarantee
with ` = i. The construction is very simple.

1. For 1 6 i 6 n and 0 6 j 6
⌊

m−i
2Hn(n−i+1)

⌋
, we cre-

ate the pair (i, i+bj · 2Hn(n− i+ 1)c), indicating that
agent i’s jth appearance must occur at or before the po-
sition indicated in the second component — we refer to
this as the deadline.

2. We sort the pairs with respect to their second coordinate.

3. The first coordinates with respect to the above sorting
are a prefix of the picking sequence.

4. If the length of the above sequence is m, we are done;
otherwise we arbitrarily assign the remaining picks.

5. If k < m, we truncate the sequence to length k.

The idea of Steps 2–4 is to produce a picking sequence
that meets all the deadlines by using earliest-deadline-first
scheduling. It is known that if all the deadlines can be met,
then this greedy scheduling procedure is guaranteed to return
a sequence meeting them. To show that all deadlines are met,
we want to show that there are at most d pairs introduced in
Step 1 with the second coordinate (deadline) at most d, for all
d 6 m. Note that in particular, this implies that there are at
mostm pairs in total, so Step 3 would not produce a sequence
of length more than m.

To prove this, let us first consider d 6 n. Observe that the
1st appearance deadline of any agent is at or after position n+
1: this is because i+b2Hn(n− i+ 1)c > 1+bn− i+ 1c =
n + 1 for all i ∈ [n]. This implies that the only pairs with
deadline at most n are the n pairs of the form (i, i) for i ∈ [n]

corresponding to the 0th appearances of all the agents, which
immediately implies the desired goal holds for all d 6 n.

Next, consider d > n + 1.The number of pairs for
agent i with the second coordinate at most d is at most
1 +

⌊
d−i

2Hn(n−i+1)

⌋
. Therefore, the number of total pairs

with second coordinate at most d is at most
∑n
i=1 1 +⌊

d−i
2Hn(n−i+1)

⌋
= n +

∑n
i=1

⌊
d−i

2Hn(n−i+1)

⌋
. Our goal is to

show that this value is at most d, which is equivalent to the
following lemma. The proof is deferred to ??.

Lemma 3. For all n ∈ N and for all d > n + 1,∑n
i=1

⌊
d−i

2Hn(n−i+1)

⌋
6 d− n.

This completes the proof of the theorem.

Strikingly, while Ω(n2) distortion is unbeatable subject to
α-MMS for any α > 0, for k > n, we can achieve a match-
ing O(n2) distortion even while simultaneously achieving
the best-known MMS approximations for all k, introduced
in Theorem 5. The proof is deferred to ??.

Theorem 6. The best possible distortion is as follows.

• On Ik=n−1, any deterministic ordinal rule satisfying α-
MMS for α > 0 must have unbounded distortion. How-
ever, there is a randomized ordinal rule achieving the
best-possible 1/

⌊
m−n+2

2

⌋
-MMS and distortion n.

• On Ik>n, any deterministic ordinal rule satisfying α-
MMS for α > 0 must have distortion Ω(n2), and there is
a deterministic ordinal rule achieving O(n2) distortion
with α-MMS for the best-known α = k−n+1

m−n+1 ·
1

2Hn
.

Further, there is a randomized ordinal rule that achieves
α-MMS for α = k−n+1

m−n+1 ·
1

2Hn
with distortion n.

6 Discussion
In this paper, we analyze which fairness properties can be
achieved and what loss in social welfare must be incurred
(distortion) when only ordinal preference information is pro-
vided in the form of top-k rankings.

This is inspired by a growing literature on distortion in
voting [Procaccia and Rosenschein, 2006]. A recent line of
work has focused on imposing additional structure on the
underlying cardinal preferences [Anshelevich et al., 2018;
Gkatzelis et al., 2020]. In fair division, one can also study
natural restrictions on the underlying cardinal preferences
such as a limit on the number of goods an agent can derive
positive utility from or on the maximum difference between
the values two agents can derive from the same good.

Another thread of research on distortion in voting has fo-
cused on the tradeoff between distortion and the amount of
preference information elicited [Mandal et al., 2019; Mandal
et al., 2020; Kempe, 2020; Amanatidis et al., 2020]. Our re-
sults already offer one such tradeoff by allowing the designer
to pick the value of k. An interesting direction for the future
would be to study such a tradeoff while allowing arbitrary —
not necessarily ordinal — elicitation and measuring the num-
ber of bits of information elicited.
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