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Abstract
The wisdom of the crowd has long become the de
facto approach for eliciting information from indi-
viduals or experts in order to predict the ground
truth. However, classical democratic approaches
for aggregating individual votes only work when
the opinion of the majority of the crowd is relatively
accurate. A clever recent approach, surprisingly
popular voting, elicits additional information from
the individuals, namely their prediction of other in-
dividuals’ votes, and provably recovers the ground
truth even when experts are in minority. This ap-
proach works well when the goal is to pick the cor-
rect option from a small list, but when the goal is
to recover a true ranking of the alternatives, a di-
rect application of the approach requires eliciting
too much information. We explore practical tech-
niques for extending the surprisingly popular algo-
rithm to ranked voting by partial votes and predic-
tions and designing robust aggregation rules. We
experimentally demonstrate that even a little pre-
diction information helps surprisingly popular vot-
ing outperform classical approaches.

1 Introduction
The wisdom of the crowd has been the default choice for un-
covering the ground truth. Suppose we wish to determine the
true answer to the question: “Is Philadelphia the capital of
Pennsylvania?” Condorcet’s Jury Theorem suggests that if
we elicit votes from a large crowd, the majority answer will
be correct with high probability even if, on average, the crowd
is only slightly more accurate than a random selection. How-
ever, in some domains the crowd can be highly inaccurate and
experts may be in minority. For example, when the very ques-
tion listed above is posed to real crowds, the majority answer
is often (the incorrect) ‘yes’ [De Boer and Bernstein, 2017].

To circumvent this difficulty and uncover the ground truth
even when the majority is wrong, Prelec et al. [2017] intro-
duce the surprisingly popular (SP) algorithm. This algorithm
asks each individual not only what she thinks the answer is
(the vote), but also what fraction of the other participants she
thinks will say yes/no (the prediction). Then, instead of sim-
ply selecting the majority (i.e. popular) answer, the algorithm

selects the answer that is surprisingly popular, i.e., whose
actual frequency in the votes is greater than its average pre-
dicted frequency. They show that as the crowd gets larger
in the limit, this approach will provably recover the correct
answer with probability 1, even if the crowd is less accurate
than a random selection on average.

The intuition behind their algorithm, borrowed from their
work, is as follows. Suppose there are two hypothetical
worlds, one where Philadelphia is the capital and one where
it is not. In the former world, a greater fraction (say 90%)
would say ‘yes’ than the fraction (say 60%) that would say
‘yes’ in the latter. However, the 60% of the people who be-
lieve the correct world is the former would predict the fre-
quency of ‘yes’ to be 90%, whereas the remaining 40% would
predict it to be 60%. This would make the average predicted
frequency of ‘yes’ to be somewhere between 60% and 90%,
higher than its actual frequency of 60%. In other words, the
majority but incorrect answer ‘yes’ would be surprisingly un-
popular while ‘no’ would be surprisingly popular and correct.

Several works have demonstrated the effectiveness of this
approach in a wide range of domains [Prelec et al., 2017;
Lee et al., 2018; Wang et al., 2019; Palley and Soll, 2019;
Rutchick et al., 2020; Mandal et al., 2020a]. Prediction ques-
tions have also been used to boost the accuracy of surveys on
social networks [Galesic et al., 2018]. Prelec et al. [2017]
show how to apply their approach to questions with non-
binary votes and non-binary ground truth. When the true
answer lurks among r options, their approach requires each
individual to predict the exact frequency of each of r op-
tions among other individuals’ votes. We are interested in
ranked voting, i.e., when the ground truth is a ranking of m
alternatives. Note that in this case, the approach of Prelec
et al. [2017], which we refer to as surprisingly popular (SP)
voting, would require eliciting predictions in the form of a
distribution over r = m! options, which is clearly infeasi-
ble for even moderate values of m. Thus, the main research
questions we address are:

How do we extend surprisingly popular voting to
effectively recover a ground truth ranking of alter-
natives? If we elicit partial vote and prediction,
how do we aggregate them and what information-
accuracy tradeoff does this offer?
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1.1 Our Contributions
We focus on eliciting only ordinal vote and prediction infor-
mation. For the vote, we ask individuals to provide their opin-
ion of either just the top alternative of the ground truth rank-
ing (Top) or the full ground truth ranking (Rank). For the pre-
diction, informally, we ask individuals to predict either just
a single alternative (Top) or a ranking of alternatives (Rank)
based on the other individuals’ votes. The exact prediction
elicited under various conditions is described in Section 3. In
addition to these four elicitation formats, we use as bench-
mark two classical elicitation formats in which Top and Rank
votes are elicited but no prediction is elicited. Because the
SP algorithm of Prelec et al. [2017] does not work on par-
tial votes and predictions, we first design a novel aggregation
method for such partial information.

Next, we conduct an empirical study with 720 partici-
pants from Amazon’s Mechanical Turk platform. We ask
the participants questions on geography, movies, and artwork
which admit a ground truth ranking of four alternatives and
elicit their responses in the aforementioned six elicitation for-
mats. We compare the different elicitation formats using four
metrics: difficulty (measured through response time as well
as perceived difficulty), expressiveness, error in recovering
the ground truth top alternative, and error in recovering the
ground truth ranking.

Our results show that even when the vote and prediction in-
formation are individually no better than random guesses, by
combining the two pieces of information SP voting performs
significantly better. Further, it outperforms a whole slew of
conventional voting rules which ignore prediction informa-
tion and only aggregate the votes. We also observe that when
it is necessary to choose between eliciting more complex vote
information and eliciting more complex prediction informa-
tion, the latter may be the right choice.

1.2 Related Work
Our work builds on the SP voting approach of Prelec et
al. [2017]. This approach in turn builds on its precursor,
the Bayesian truth serum (BTS) [Prelec, 2004], which also
uses participants’ predictions, but for a different objective: to
decide payoffs to the participants which incentivize them to
honestly report their votes and predictions.

Prediction markets [Arrow et al., 2008; Chen and Pen-
nock, 2010], quadratic voting [Lalley and Weyl, 2018], and
peer prediction [Miller et al., 2005] are alternative approaches
to recovering the ground truth, which, like SP voting, al-
low a minority of experts to override the majority opinion.
Instead of eliciting participants’ predictions of other partici-
pants’ votes, prediction markets and quadratic voting ask par-
ticipants to place a bet on their vote while peer prediction
methods require them to participate in multiple tasks.

These recent approaches stand in contrast to a large body
of work on epistemic social choice [Pivato, 2019] and noisy
voting [Caragiannis et al., 2016], which build on the sem-
inal work of de Condorcet [1785], Galton [1907], and
Young [1988]. Some of this literature focuses on statistical
models of errors in participants’ votes such as the Mallows
model, the Bradley-Terry model, the Thurstone-Mosteller

model, and the Plackett-Luce model. However, all these mod-
els assume that a participant is ever-so-slightly more likely to
report the correct option than an incorrect option. Hence, ap-
proaches based on these models can fail to recover the ground
truth when the majority of the crowd is misinformed.

Finally, our work is reminiscent of a recent flurry of work
on the elicitation-distortion tradeoff in computational so-
cial choice [Mandal et al., 2019; Abramowitz et al., 2019;
Mandal et al., 2020b; Kempe, 2020; Amanatidis et al., 2020].
In this line of work, there is no ground truth; instead, partic-
ipants have subjective preferences and the goal is to identify
the decision that maximizes the social welfare. Rather than
directly eliciting participants’ utility functions, various elici-
tation formats are used to elicit partial preferences to analyze
the tradeoff between the amount of information elicited and
the approximation to social welfare (called distortion). Our
work replaces the distortion with its counterpart, that is, the
accuracy of recovering an underlying ground truth.

2 Model
Let A be a set of m alternatives and L(A) be the set of rank-
ings over A. For a ranking σ ∈ L(A) and x ∈ {1, . . . ,m},
let σ(x) be the alternative in the xth highest position in σ.

SP voting uses a Bayesian model; in the following, we
present a special case of the model for ranked voting. There
exists a ground truth ranking π∗ ∈ L(A) drawn from a prior
P . There are n voters; each voter i observes a noisy rank-
ing σi ∈ L(A) drawn from a signal distribution Prs(·|π∗).
The voters know both the prior P and the signal distribution
Prs(·|π∗); however, the principal is unaware of both. Follow-
ing Prelec et al. [2017], we assume that P(π),Prs(σ|π) > 0
for all rankings σ, π ∈ L(A) to avoid degeneracy.

Conventional voting would ask each voter i to simply re-
port her observed noisy ranking σi and use a voting rule such
as the Kemeny rule or Borda count to aggregate the reported
rankings. SP voting additionally asks each voter i to make
inferences about the reports of other voters. Given her ob-
served noisy ranking σi and the prior P , voter i can compute
a posterior distribution over the ground truth, given by

Prg(π
∗|σi) =

Prs(σi|π∗) · P(π∗)∑
π′∈L(A) Prs(σi|π′) · P(π′)

.

In turn, the voter can also infer a distribution over the noisy
ranking σj observed by another voter j:

Pro(σj |σi) =
∑
π∗∈L(A) Prs(σj |π∗) · Prg(π∗|σi).

SP voting asks each voter i to report not only her observed
noisy ranking σi (the vote), but also her inferred distribution
Pro(·|σi) over other voters’ noisy rankings (the prediction).
Given these reports, for a ranking π ∈ L(A), let f(π) =∑n
i=1 1[σi = π] denote the number of voters who vote π and

g(·|π) denote the average of reported predictions Pro(·|σi)
across all voters i with σi = π. Then, the SP algorithm of
Prelec et al. [2017] computes the prediction-normalized vote
count for each possible ground truth π as

V (π) = f(π) ·
∑
π′∈L(A)

g(π′|π)
g(π|π′)

. (1)
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The following result due to Prelec et al. [2017], rephrased
in our context, guarantees that the ground truth ranking will
have the highest prediction-normalized vote count under the
assumption that the highest posterior probability for ground
truth ranking π will be assigned by a voter who observes
noisy ranking π.

Theorem 1 ([Prelec et al., 2017]). Suppose the prior P
and the signal distribution Prs are such that Prg(π|π) >
Prg(π|π′) for all distinct rankings π, π′ ∈ L(A). Then, we
have that Pr[π∗ ∈ argmaxπ∈L(A)V (π)]→ 1 as n→∞.

3 Elicitation Formats & Aggregation Rules
Note that the prediction requested from voter i, Pro(·|σi), is a
distribution over m! rankings. Eliciting this would undoubt-
edly place significant cognitive burden on the voter. Thus, our
goal is to elicit partial vote and prediction information from
the voters. Since eliciting numerical information is known
to be difficult [Camerer, 2011], we focus on eliciting ordi-
nal information for prediction. We develop aggregation rules
for recovering the ground truth from ordinal information and
empirically evaluate the effectiveness of SP voting.

3.1 Elicitation Formats
We focus on two types of vote reports, and for each of them,
two types of prediction reports. Below we provide formal
explanations of these formats in the context of our model.
In the next section, we provide example phrasings that were
used to pose the various questions to the participants in our
empirical study. Let ri and qi respectively denote the vote
and prediction reports submitted by voter i.

• Top vote: Voter i reports the top alternative in her ob-
served noisy ranking, i.e., ri = σi(1).

– Top prediction: Voter i estimates the most fre-
quent alternative among the other votes, i.e. qi =
argmaxa∈A

∑
σ∈L(A):σ(1)=a Pro(σ|σi).

– Rank prediction: Voter i estimates the rank-
ing of the alternatives by their frequency
among the other votes, i.e., qi ∈ L(A)
such that

∑
σ∈L(A):σ(1)=qi(x)

Pro(σ|σi) ≥∑
σ∈L(A):σ(1)=qi(y)

Pro(σ|σi) for all x > y.

• Rank vote: Voter i reports her entire observed noisy
ranking, i.e., ri = σi.

– Top prediction: Voter i estimates the alternative
that appears most frequently in the top position
of the other votes. Formally, this is equivalent
to the top prediction in case of a top vote: qi =
argmaxa∈A

∑
σ∈L(A):σ(1)=a Pro(σ|σi).

– Rank prediction: Voter i estimates the most fre-
quent ranking among the other votes, i.e., qi ∈
argmaxσ∈L(A) Pro(σ|σi). Note that this is differ-
ent from the rank prediction in case of a top vote.

This gives rise to four elicitation formats, which we refer
to as Top-Top, Top-Rank, Rank-Top, and Rank-Rank with
the first component denoting the vote format and the second

denoting the prediction format. As a benchmark, we use Top-
None and Rank-None, where top and rank votes are elicited,
respectively, but no prediction information is elicited.

3.2 Aggregation Rules
There are two difficulties in applying the SP algorithm of Pr-
elec et al. [2017] — maximizing V (π) given in Equation (1)
— in our setting.

First, the effectiveness of the approach depends on how ac-
curately functions f and g from Equation (1) match their ex-
pected values, which in turn depends on how large the number
of voters is compared to the number of options among which
the ground truth lurks. In our case, since the ground truth is
one of m! rankings, the approach would be ineffective unless
each question is answered by a number of voters much larger
than m!. Instead, we determine the ground truth comparison
of each of

(
m
2

)
pairs of alternatives independently by apply-

ing the algorithm from Equation (1) on the relevant pairwise
comparison data extracted from the reports of the voters.

Second, even for comparing a pair of alternatives, Equa-
tion (1) requires cardinal prediction information whereas our
input is ordinal. We propose a simple parametric model in
which, for each elicitation format, we use two parameters,
α ∈ (0.5, 1) and β ∈ (0, 0.5), to convert ordinal pairwise
predictions into cardinal pairwise predictions to be utilized
by the SP algorithm. In Section 4, we describe how we train
these parameter values. The formal algorithm and its detailed
description are provided in the full version.1

Note that applying our algorithm for comparing each pair
of alternatives independently results in a tournament, which
we use for two prediction tasks: predicting the top alternative
in the ground truth ranking and predicting the entire ground
truth ranking. For the former task, we select the alternative
that defeats the maximum number of other alternatives in the
resulting tournament, breaking ties uniformly at random, and
consider the frequency of predicting the correct top alterna-
tive. For the latter task, we compute the Kendall Tau distance
of the tournament from the ground truth ranking.

Finally, note that there are no prediction reports for Top-
None and Rank-None and we consider a natural extension of
SP voting. In particular, for Top-None, SP voting returns an
acyclic tournament comparing alternatives by their plurality
scores, and for Rank-None, it returns the (potentially cyclic)
majority preference tournament. We then select an alterna-
tive/ranking as described earlier.

4 Experiment Design
To test the effectiveness of SP voting for recovering ranked
ground truth with only ordinal elicitation, we conducted an
empirical study by recruiting 720 participants (turkers) from
Amazon Mechanical Turk (MTurk), a popular crowdsourcing
marketplace. An average turker spent about 15 minutes to
complete the survey. The survey was designed as follows.

Datasets. To generate questions with an underlying ground
truth comparison of alternatives, we used three datasets from
three distinct domains:

1https://arxiv.org/abs/2105.09386
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1. The geography dataset2 contains 230 countries with
their 2019 population estimates according to the United
Nations.

2. The movies dataset3 contains 15,743 movies with their
lifetime box-office gross earnings.

3. The paintings dataset4 contains 80 paintings with their
latest auction prices.

Questions. In each domain, the numerical values associ-
ated with the alternatives allow a ground truth comparison
among the alternatives. For each domain, we considered the
top 50 alternatives with the highest values. From these, we
generated 20 questions, each comparing four alternatives se-
lected such that two consecutive alternatives in the ground
truth ranking were exactly 6 ranks apart in the global rank-
ing of all 50 alternatives. Collectively, we had 60 questions
across all three domains. For each of the 60 questions and
each of the 6 elicitation formats described in Section 3, we
elicited 20 responses, generating a total of 7, 200 responses.
Turker Assignment. Figure 1 shows the workflow faced
by a turker. Each of the 720 turkers responded to 10 ques-
tions split evenly among two randomly assigned elicitation
formats. , The turkers were divided roughly equally between
the 30 ordered pairs of elicitation formats called treatments.
Further, as mentioned above, each question under each elici-
tation format was assigned to the same number of turkers.

Preview &
Consent

Tutorial
(Elicitation
Format 1)

5 Questions
(Elicitation
Format 1)

Review
(Elicitation
Format 1)

Tutorial
(Elicitation
Format 2)

5 Questions
(Elicitation
Format 2)

Review
(Elicitation
Format 2)

QuizSubmit

Figure 1: The workflow of a turker.

Tutorials. As shown in Figure 1, each set of five ques-
tions in a fixed elicitation format was preceded by a tutorial.
The tutorial was designed specifically for the elicitation for-
mat and tested turkers’ understanding of the vote and pre-
diction formats. It contained a sample question along with
pre-specified beliefs over the correct answer as well as over
the other responses. Turkers had to successfully pass the tu-
torial by converting the given beliefs into the requested vote
and prediction format in order to proceed to the questions.
Reviews. Each set of five questions was also succeeded by
a review, which asked the turkers to rate the difficulty (from
Very Easy to Very Difficult) and expressiveness (Very Little
to Very Significant) of the elicitation format of the preceding
questions. While we controlled the difficulty level of vari-
ous questions from a given domain, as we show in Section 5
the three domains themselves differed significantly in their
difficulty. In anticipation of this and to ensure that the turk-
ers’ implicit comparison between their two assigned elicita-
tion formats is not influenced by the domains, the study was

2Retrieved from worldpopulationreview.com
3Retrived from boxofficemojo.com/chart/top lifetime gross
4Generously provided by the authors of Prelec et al. [2017].

designed such that the sequence of domains encountered by
a turker in the first five questions precisely matched that in
the next five questions. See the full version for details such
as the consent form, the tutorial for each domain, the review,
and other details.
Response Qualifications. To ensure high-quality re-
sponses, in addition to providing training in the form of tu-
torials, we restricted participation in our study to turkers who
had (a) at least 90% approval rate on previous tasks, (b) at
least 100 completed tasks, and (c) the region set to US East
(us-east-1) on MTurk. Additionally, at the end of the survey,
the turkers were required to answer a quiz, which repeated
the four alternatives from the last question they answered and
asked them to identify the alternative they chose or ranked
first in their vote. The turkers were incentivized to answer the
quiz correctly (see below). In our case, over 82% of turkers
passed the quiz.
Payments. The payment was divided into two parts. A base
payment of 50¢ was provided conditioned on completing the
entire survey including all tutorials, questions, and reviews. A
bonus payment of 50¢ was provided conditioned on correctly
answering the quiz question.
Elicitation Formats. In Section 3, we discussed six elicita-
tion formats and described what vote and prediction a given
voter i should submit as a function of her observed noisy
ranking σi, the prior P , and the signal distribution Prs. In
our empirical study, we design natural and intuitive phrasing
to elicit the corresponding responses from the turkers. The
full version of the paper contains sample phrasings for all six
elicitation formats and screenshots from our user interface.
Here we give one example for the Top-Rank elicitation for-
mat. Consider a question which asks to compare four coun-
tries (United Kingdom, Vietnam, Russia, and Kenya) by their
population. Under the Top-Rank elicitation format, the vote
and prediction questions would be as follows:

• Part A (vote): Which country do you think is the most
populated among the following?

• Part B (prediction): Imagine that other participants
will also answer Part A. How do you think the follow-
ing countries will be ordered from the most common re-
sponse (top) to the least common (bottom)?

Training. Recall that in our aggregation method, for each
elicitation format, we use two parameters, α ∈ (0.5, 1) and
β ∈ (0, 0.5), to convert ordinal predictions into cardinal pre-
dictions that can be then used in the SP algorithm. To learn
effective values of these parameters, we split the dataset into
a training and a test set. For each elicitation format, we se-
lected 5 questions from each of three domains, reserving the
remaining 15 questions from each domain for the test set. Us-
ing these 15 questions, we performed a grid search over α
ranging from 0.55 to 0.95 in increments of 0.025 and β rang-
ing from 0.05 to 0.45 in increments of 0.025 and selected the
values with the lowest mean squared error.

5 Results
In this section, we present our results averaged across all three
domains. In the full version, we present more detailed results
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Figure 2: Average time spent. Figure 3: Perceived difficulty. Figure 4: Perceived expressiveness.

averaged across each domain separately. All confidence in-
tervals shown are 95% intervals. We compare the elicitation
formats using four key metrics: difficulty (i.e. cognitive bur-
den), expressiveness, error in predicting the ground truth top
alternative, and error in predicting the ground truth ranking.

5.1 Difficulty & Expressiveness
We measure the following three metrics.

• Response time: Response time is known to be a good
objective proxy for the cognitive load associated with a
task [Rauterberg, 1992]. We measure the amount of time
spent by the turkers on the tutorials and questions of the
elicitation format.

• Perceived difficulty: As a subjective indicator of diffi-
culty, we consider the perceived difficulty reported by
the turkers (from Very Easy to Very Difficult) during the
review stage of the elicitation format.

• Perceived expressiveness: Expressiveness indicates the
amount of information that the turkers felt they were
able to convey through the elicitation format (from Very
Significant to Very Little).

Figure 2 shows the average time spent by the workers on
the tutorial and on an average question under the six elicita-
tion formats along with 95% confidence intervals (lower is
better). We observe a statistically significant trend: when we
fix a vote format (say Top or Rank), the average time spent
increases for both tutorials and questions as we make the pre-
diction format more complex (None→ Top→ Rank). In the
full version, we show the average time spent for each domain
and observe that the choice of the domain does not signifi-
cantly affect it regardless of the elicitation format.

Figure 3 and Figure 4 respectively show the reported distri-
butions of perceived difficulty (easier is better) and perceived
expressiveness (higher is better). Interestingly, the turkers
found the six elicitation formats to be of very similar diffi-
culty and similar expressiveness.

5.2 Predicting the Ground Truth Top Alternative
We now turn to analyzing how effectively the different elic-
itation formats help us predict the ground truth. In addition
to measuring the error of the ground truth estimate returned
by our algorithm, we also measure the error in the input votes
and predictions themselves. Note that every vote and predic-
tion is an estimate of some truth (either the ground truth or
a summary statistic of the other votes); thus, its error can be
measured with respect to the truth it is attempting to uncover.

First, we consider predicting simply the top alternative in
the ground truth ranking. For our algorithm as well as for
the input votes and predictions, we use, as error measure, the
frequency of incorrectly guessing the top alternative of the
truth they attempt to estimate. Figure 5 shows the average
prediction errors for various elicitation formats (lower is bet-
ter).5 We remind the reader that the effectiveness of SP voting
should be judged based only on elicitation formats which in-
clude some prediction information.

Given four alternatives, selecting an alternative uniformly
at random would result in a prediction error of 0.75. In-
terestingly, both the vote and prediction reports individually
have average error around this benchmark. Yet, by combin-
ing these two pieces of individually erroneous information,
SP voting is able to achieve significantly lower error. This is
not surprising because SP voting approach is design precisely
to pick out the minority of experts lurking among a majority
of non-experts by combining vote and prediction information.
Moreover, for a fixed type of vote (either Top or Rank), as the
prediction formats become more complex (None → Top →
Rank), the performance of SP voting improves.

Figure 6 compares SP voting to several standard vot-
ing rules including Plurality, Plurality with Runoff, Borda,
Copeland, Instant Runoff Voting (IRV), and Maximin Rule,
which ignore the prediction information and simply aggre-
gate the vote information in a democratic manner.6 The con-
ventional voting rules run on elections containing votes from
three elicitation formats (Rank-None, Rank-Top, and Rank-
Rank) whereas SP voting runs on each elicitation format in-
dividually. We can see that for Rank-Rank, SP voting (right-
most orange bar) outperforms all conventional voting rules,
despite having access to just a third of the samples. This in-
dicates that the prediction information helps significantly.

These observations hold even when we consider each do-
main separately. These results are provided in the full version.

5.3 Predicting the Ground Truth Ranking
We now consider predicting the full ground truth ranking. For
SP voting result as well as the individual votes and predic-
tions, we use the Kendall-Tau (KT) distance to measure the
error of the SP voting result, votes, and predictions compared
to the true ranking they aim to estimate. Figure 7 shows the
average KT distance for different elicitation formats (lower

5SP voting errors are obtained by averaging over 60 elections
associated with 60 questions. Vote/Prediction errors are averaged
over 1200 responses and have narrower confidence intervals.

6See [Brandt et al., 2016] for definitions of these rules.
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Figure 5: Average error in predicting the top alternative in the
ground truth. By combining both the vote and predictions, SP voting
achieves a much lower error than in either piece of information.

Figure 6: Comparing SP voting with conventional voting for pre-
dicting the top alternative. Incorporating the prediction reports helps
SP voting significantly outperform conventional voting.

Figure 7: Average error in predicting the ground truth ranking.
By combining both the vote and prediction information, SP voting
achieves a much lower error than in either piece of information.

Figure 8: Comparing SP voting with conventional voting for pre-
dicting the ground truth ranking. Incorporating the prediction re-
ports helps SP voting significantly outperform conventional voting.

is better). Given four alternatives, selecting a uniformly ran-
dom ranking will have an average KT distance of 3. Both the
votes and prediction reports have average error around this
benchmark. Similar to predicting the top alternative, SP vot-
ing produces significantly lower average error by combining
these two noisy pieces of information. Moreover, for each
vote format (either Top or Rank), as the prediction report be-
comes more expressive (None → Top → Rank) the average
error of SP voting decreases.

Finally, we compare SP voting with standard voting rules
(Figure 8) in terms of the average KT distance and find that
SP voting again outperforms all voting rules for Rank-Rank.

5.4 Prediction vs. Vote
Our results illustrate the importance of prediction in recover-
ing the ground truth. While eliciting ranked votes and pre-
dictions (Rank-Rank) achieves the lowest error, an intriguing
question arises when we seek to choose an elicitation format
that provides a reasonable tradeoff between accuracy and dif-
ficulty/expressiveness. Figures 5 and 7 show that Top-Rank
significantly outperforms Rank-Top while both formats are
comparable in terms of response time, perceived difficulty,
and perceived expressiveness. Thus, if we wish to choose an
elicitation format slightly more complex than Top-Top, mak-
ing the prediction more expressive is more promising than
that of the vote. The same observation holds when comparing
Top-Top versus Rank-None. This shows that when a tradeoff

between more complex vote and more complex prediction is
necessary, eliciting more complex prediction may be better.

6 Discussion
We extended surprisingly popular voting to recover a ground
truth ranking of alternatives and, through a crowdsourcing
study across different domains, showed that it outperforms
conventional voting approaches without significantly increas-
ing elicitation. In our study, the ground truth is a ranking over
four alternatives, and a challenging future direction is to ex-
tend this approach to rankings with more than four alterna-
tives. For a large number of alternatives, any practical elicita-
tion scheme would ask the voters to report a partial rank over
the alternatives, which will make it challenging to design ag-
gregation rules for such partial ranks.

Another interesting direction would be to derive theoret-
ical performance guarantees for surprisingly popular voting
when the number of participants is finite (the results of Pr-
elec et al. [2017] hold only in the limit) and when only partial
votes and predictions are elicited (this may require assuming
a parametric signal distribution such as the Mallows model).
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