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Abstract
Proportional ranking rules aggregate approval-style
preferences of agents into a collective ranking such
that groups of agents with similar preferences are
adequately represented. Motivated by the applica-
tion of live Q&A platforms, where submitted ques-
tions need to be ranked based on the interests of the
audience, we study a dynamic extension of the pro-
portional rankings setting. In our setting, the goal
is to maintain the proportionality of a ranking when
alternatives (i.e., questions)—not necessarily from
the top of the ranking—get selected sequentially.
We propose generalizations of well-known aggre-
gation rules to this setting and study their mono-
tonicity and proportionality properties. We also
evaluate the performance of these rules experimen-
tally, using realistic probabilistic assumptions on
the selection procedure.

1 Introduction
From “ask-me-anything” sessions to panel discussions and
town hall meetings, an increasing number of both virtual and
in-person discussion formats are enhanced by digital tools
that aim to make the event more interactive and responsive
to the audience. Using live Q&A platforms such as slido
(www.sli.do), Mentimeter (www.mentimeter.com) or Pigeon-
hole Live (www.pigeonholelive.com), participants in the au-
dience can submit questions and upvote questions submitted
by others; a moderator then selects the most popular ques-
tions for the discussion. By reducing barriers to participation
(e.g., by allowing anonymous submissions), these tools aim
to better represent the diversity in the audience.

The moderator of the discussion is presented with an aggre-
gated list, in which audience questions are ranked by popular-
ity (i.e., number of upvotes). Based on this ranking, the mod-
erator then picks the next question. When selecting a ques-
tion, it is usually not required to follow the ranking strictly;
rather, the choice is at the moderator’s discretion, allowing
him or her to take into account other factors such as discus-
sion flow, etc. That being said, it is generally expected that
questions at the top of the ranking are more likely to be se-
lected than questions further down in the list. After a question
has been selected, it is removed from the ranking.

Ranking questions solely by popularity, though intuitively
appealing, has a major downside: minority opinions might
go completely unrepresented, even when the minority makes
up a substantial proportion of the audience. To illustrate this
phenomenon, which is often referred to as “tyranny of the
majority,” consider a situation in which the audience is com-
posed of two groups. One group makes up 60% of the entire
audience and is only interested in questions related to topicA;
the remaining 40% of participants are only interested in ques-
tions on a different topic B. Now, assuming that sufficiently
many questions on topicA have been submitted, and that par-
ticipants only upvote questions related to their own interest,
questions on topicB are unlikely to appear anywhere near the
top of the ranking, which is populated exclusively by ques-
tions on topic A. As a consequence, questions on topic B are
very unlikely to be selected, despite the fact that these ques-
tions are supported by 40% of the audience.

In this paper, we propose an approach to avoid the prob-
lem of underrepresenting minority opinions. Specifically, we
model the scenario described above as a proportional repre-
sentation problem and employ ranking algorithms based on
(approval-based) proportional voting rules [Aziz et al., 2017;
Brill et al., 2017]. The algorithms we consider aggregate the
upvotes of the participants into a proportional ranking over
questions, such that each minority (i.e., group of participants
with similar preferences) is represented in the ranking to an
extent that is proportional to the group’s size. Whenever a
question is selected by the moderator, our methods dynami-
cally recompute the ranking, pushing questions supported by
underrepresented groups closer to the top.

At a technical level, our point of departure is the theory of
proportional rankings [Skowron et al., 2017], which studies
how a collective ranking over a set of alternatives can be con-
structed in such a way that majority and minority opinions
are represented adequately. The question we are interested in
is how proportional ranking algorithms can be adapted to the
dynamic setting. More specifically, we ask:

How can the proportional representativeness of a
collective ranking be maintained in a dynamic set-
ting, where alternatives get selected sequentially?

To answer this question, we consider two well-known aggre-
gation rules dating back to the late 19th century: sequen-
tial Phragmén [Phragmén, 1894] and sequential PAV [Thiele,
1895]. These two rules, together with a few variants of the
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latter, performed best in the analysis conducted by Skowron
et al. [2017]. For both rules, we propose two distinct general-
izations to the sequential selection setting: a dynamic variant
and a myopic variant (see Section 3 for details). As a bench-
mark, we also consider the rule that simply orders questions
by the number of received upvotes.
Our contribution. In this paper, (i) we formalize the set-
ting of dynamic ranking rules and generalize the rules of
Phragmén and Thiele to this setting (Section 3); (ii) we de-
fine a notion of satisfaction monotonicity and analyze to what
extent the considered rules satisfy it (Section 4); (iii) we pro-
vide theoretical bounds regarding two different proportional-
ity notions (Section 5); and (iv) we experimentally evaluate
our dynamic ranking rules (Section 6). Omitted proofs and
further details can be found in the full version of this paper
[Israel and Brill, 2021].
Related work. Proportional representation is a fundamen-
tal desideratum in multiwinner elections [Monroe, 1995;
Faliszewski et al., 2017; Lackner and Skowron, 2020]. For
approval preferences in particular, a wide variety of pro-
portionality axioms have been studied [Aziz et al., 2017;
Sánchez-Fernández et al., 2017; Janson, 2018; Peters and
Skowron, 2020]. Proportionality in the context of rankings
has been considered in the aforementioned paper by Skowron
et al. [2017] and (for linear preferences) by Schulze [2011].
Notions of fairness over multiple elections among a fixed
set of voters have received considerable attention in previ-
ous years. This line of work includes, e.g., the study of
long-term fairness over different decisions [Freeman et al.,
2017; Lackner, 2020], single decisions under changing pref-
erences [Tennenholtz, 2004; Boutilier and Procaccia, 2012;
Parkes and Procaccia, 2013; Oren and Lucier, 2014; Hemas-
paandra et al., 2017], and storable votes [Casella, 2005;
Casella, 2012]. In a practical attempt to avoid the under-
representation of minorities, the live Q&A app SpeakUp
(www.speakup.digital) allows audience members to add at-
tributes (relating to, e.g., gender or education) to submitted
questions. The moderator can then manually filter questions
with attributes that have been underrepresented in the dis-
cussion. Requiring organizers to identify relevant attributes
poses the risk of overlooking important subgroups or intro-
ducing unwanted biases; it also presumes the willingness of
participants to reveal potentially sensitive information. In
contrast, the ranking algorithms considered in this paper do
not require attributes in order to ensure the representation of
minority opinions.

2 Preliminaries
We briefly introduce some basic concepts from the theory of
approval-based preference aggregation; for details, see the
survey by Lackner and Skowron [2020]. Let C be a finite
set of candidates and N = {1, . . . , n} a finite set of voters.
An (approval) profile A = (A1, . . . , An) is a list that con-
tains, for each i ∈ N , the approval set Ai ⊆ C of voter i.
Given an approval profile A and a candidate c ∈ C, we let
Nc = {i ∈ N : c ∈ Ai} denote the supporters of c. The
approval score of c is given by |Nc|. In the motivating appli-
cation, C consists of all submitted questions and Ai contains

the questions that have been upvoted by participant i.
For a finite set S, we let L(S) denote the set of all linear or-

ders, or rankings, over S. We often write a ranking r ∈ L(S)
as a sequence r = (r1, r2, . . . , r|S|), and for j ≤ |S|, we let
r≤j denote the set {r1, r2, ..., rj} of the first j elements in r.

An approval-based ranking rule maps an approval profile
A to a ranking r ∈ L(C) of all candidates. We will make use
of the following three (non-dynamic) ranking rules.1

Approval Voting (AV) ranks the candidates according to
their approval score. This rule is not proportional and we
use it mainly as a benchmark.

Sequential PAV (seqPAV) ranks candidates iteratively, in
each iteration choosing an unranked candidate maximizing
the marginal contribution in terms of weighted voter satis-
faction. Formally, for a subset S ⊆ C of candidates, de-
fine sc(S) =

∑
i∈N

∑|Ai∩S|
j=1

1
j . If k candidates have already

been ranked, the marginal contribution of an unranked candi-
date c is given by mc(c) = sc(r≤k ∪ {c})− sc(r≤k).

Sequential Phragmén can be described in terms of voters
buying candidates.2 Every candidate costs 1 credit. All voters
start without any credits but earn them continuously over time
(at a constant and identical rate). As soon as a group of voters
who all approve the same candidate c together own 1 credit,
they immediately buy that candidate; at this point, their bal-
ance is reset to 0 and candidate c is added in the next position
of the ranking. This is done until all candidates are ranked.

3 Dynamic Ranking Rules
In this section, we formally introduce the setting of dynamic
ranking rules and we adapt existing (non-dynamic) ranking
rules to this setting. The input of a dynamic ranking rule
consists of two parts: an approval profile and a (potentially
empty) sequence of candidates that have already been “im-
plemented” or “executed”; the output is a ranking of all not-
yet-implemented candidates. To formalize this notion, we let
X = (x1, x2, . . . , xj) denote the sequence of implemented
candidates (where j ∈ {0, . . . , |C| − 1}); whenever the order
of elements in X does not matter, we slightly abuse notation
and treat X as the set X = {x1, x2, . . . , xj}.
Definition 1. An (approval-based) dynamic ranking rule R
maps a profile A and a sequence X = (x1, x2, . . . , xj) of
candidates to a rankingR(A,X) ∈ L(C \X).

Applying a dynamic ranking rule to a sequential selection
process (as outlined in the introduction) is now straightfor-
ward: At the beginning, when no candidate has yet been im-
plemented, X = () and the ranking R(A, ()) ranks all can-
didates in C. Given this ranking, a decision maker (DM)
selects an alternative x1 ∈ C to be implemented. The
updated ranking of the remaining candidates is then given
by R(A, (x1)), and the process is repeated. At iteration
t ∈ N, when t − 1 candidates have been implemented and

1All rules may encounter ties; we assume that a priority ordering
over candidates is used as a tiebreaker. In the motivating example,
the submission time of a question yields a natural priority ordering.

2Another (equivalent) formulation of this method is in terms of a
load balancing procedure [Janson, 2016; Brill et al., 2017].
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thus X = (x1, x2, . . . , xt−1), we let rt denote the ranking
R(A,X) ∈ L(C\X) from which the DM can make a choice.

We will sometimes make the assumption that the DM only
ever implements alternatives that appear near the top of the
ranking. In this depth-restricted setting, we are given a natu-
ral number h and we assume that xt ∈ rt≤h for all time steps t.
This setting models situations in which the DM does not have
the resources (or the ability) to consider the whole ranking.

The straightforward ranking rule AV trivially translates to
the dynamic setting: When a candidate is implemented, it
is simply removed from the ranking; the order between the
remaining candidates does not change. AV is used in all of the
live Q&A platforms mentioned in Section 1. In the following,
we propose dynamic variants of other ranking rules.

Dynamic seqPAV. For this straightforward dynamization of
seqPAV, we modify the notion of marginal contribution to
also take into account the satisfaction derived from previously
implemented candidates:

mcdyn(c) = sc(X ∪ r≤k ∪ {c})− sc(X ∪ r≤k).

Dynamic seqPAV ranks candidates iteratively, adding in each
round a candidate c maximizing mcdyn(c).

Dynamic Phragmén. Our first dynamization of sequential
Phragmén works in two phases. As before, voters buy can-
didates and every candidate has a cost of 1 credit. Voters do
not start with 0 credits, however; they may have an initial
debt due to previously implemented candidates they approve.
The debts of voters are determined in the first phase, which
iterates through the sequence X (starting with x1) and, for
each implemented candidate xj ∈ X , divides the cost of 1
among the voters in Nxj

. More precisely, this assignment of
debts is done in such a way that, in each iteration j, the max-
imum total debt across all voters in Nxj

is as small as possi-
ble. (The assignment of debts, therefore, mimics the assign-
ment of loads in the load-balancing formulation of sequential
Phragmén.) We let di ≥ 0 denote the total debt of voter i ∈ N
resulting from this first phase. In the second phase, we run se-
quential Phragmén to obtain the desired ranking of candidates
in C \ X . At the beginning of this phase, each voter i has a
credit balance of−di ≤ 0. As in sequential Phragmén, voters
continuously earn credits, and voters starting with debts can
only participate in the purchase of a candidate once they have
a positive balance. Voters are not allowed to go into debt for
buying candidates.

These dynamic rules rank candidates in the same fash-
ion as their non-dynamic counterparts, while taking the se-
quence X of previously implemented candidates into ac-
count. (Note that the implementation order matters for dy-
namic Phragmén, but not for dynamic seqPAV.) In particular,
both dynamic rules coincide with their non-dynamic counter-
part when X = (). Moreover, the ranking among the remain-
ing candidates does not change whenever the top-ranked can-
didate is implemented: if rt = (r1, r2, r3, . . .) and xt = r1,
then rt+1 = (r2, r3, . . .).

We also consider two “myopic” dynamic ranking rules.

Myopic seqPAV. In this myopic dynamization of seqPAV,
we compute the marginal contribution of each candidate c ∈

C \ X only with respect to the set X of previously imple-
mented candidates, i.e., mcmyopic(c) = sc(X ∪{c})− sc(X).
Then, we simply rank those candidates according to decreas-
ing mcmyopic(c)-value.

Myopic Phragmén. In this myopic dynamization of se-
quential Phragmén, we first run the first phase of dynamic
Phragmén in order to determine the debts {di}i∈N of voters.
Then, for each candidate c ∈ C \ X , we compute the voter
debts that would result from adding candidate c to X (and
running the first phase for one more iteration). Let the debts
induced by candidate c be {dci}i∈N . Myopic Phragmén ranks
the candidates in C \X according to increasing maxi∈Nc

dci ,
breaking ties according to the second highest debt, and so on.

Intuitively, myopic seqPAV and myopic Phragmén rank
candidates according to their suitability of being the next im-
plemented candidate. In contrast to dynamic seqPAV and dy-
namic Phragmén, this way of comparing candidates does not
lead to rankings that are representative by themselves. In par-
ticular, both myopic rules coincide with AV when X = ().

We illustrate these rules with a simple example.

Example 2. Let C = {a, b, c, d, e} and assume alphabetic
tiebreaking. Consider a set of 9 voters with the following
approval sets:

5× {a, b}, 3× {c, d}, 1× {e}.

Let V denote the group consisting of the 5 {a, b}-voters
and V ′ the group consisting of the 3 {c, d}-voters. First, con-
sider dynamic seqPAV and dynamic Phragmén. In the first
iteration, both rules output r1 = (a, c, b, d, e), effectively al-
ternating between candidates supported by voter groups V
and V ′. Let us assume that the DM implements candi-
date x1 = b, i.e., X = (b). Then, the two rules output
r2 = (c, a, d, e).

Next, consider myopic seqPAV and myopic Phragmén. In
the first iteration, both rules (and AV) rank the candidates
according to their approval scores: r1 = (a, b, c, d, e). After
the implementation of b, both rules output r2 = (c, d, a, e),
which differs from the AV ranking r2 = (a, c, d, e).

In this example, all of our ranking rules demote candidate a
in r2 because voter group V is already (partially) satisfied
with X = (b). The myopic rules even rank both c and d
higher than a in r2, since implementing either c or d would
yield a more proportional sequenceX than choosing awould.

All presented ranking rules can be computed in polynomial
time; see the full version of this paper for an asymptotic run-
time analysis and pseudocode.

4 Monotonicity of Voter Satisfaction
We start our analysis of dynamic ranking rules by consider-
ing the satisfaction of voters during the sequential selection
process. In doing so, we assume that voters derive satisfac-
tion not only from implemented candidates they approve, but
also—possibly to a lesser extent—from approved candidates
appearing near the top of the ranking: high positions in the
ranking come with increased attention (and, presumably, high
selection probabilities in future iterations) for the respective
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candidates. In particular, improved ranking positions of sup-
ported candidates can be viewed as a kind of compensation
for (groups of) voters who are not (yet) well-represented by
the implemented alternatives. To make this concrete, con-
sider an iteration t, where the DM is confronted with rank-
ing rt and chooses to implement candidate xt. Following
the logic outlined above, it might be natural to expect that
voters not approving xt (or, more precisely, the candidates
approved by these voters) should get a “boost” in the rank-
ing. At the very least, it seems reasonable to expect that the
satisfaction of such voters with the new ranking rt+1 is at
least as high as with the old ranking rt. AV trivially satis-
fies this property, which we informally refer to as satisfaction
monotonicity. Somewhat surprisingly, however, the following
simple example demonstrates that this intuitive monotonicity
notion is not achievable for dynamic ranking rules that satisfy
a minimal degree of representativeness.3

Example 3. Consider the following profile with 7 voters:

1× {a}, 3× {b}, 3× {a, c}.
All rules considered in this paper rank the approval winner a
first in r1. If the DM chooses to implement candidate x1 = c,
all of our rules—except AV—output r2 = (b, a) in the second
iteration. Intuitively, the rules give more voting power to the
3 supporters of b (all of which are unrepresented by c) than to
the 4 supporters of a (3 of which are already partially repre-
sented). Observe that the satisfaction of the voter approving
a decreases when going from r1 to r2, despite the fact that
this voter does not approve the candidate being implemented.

The following definition is motivated by the question
whether monotonicity failures can be prevented by moving to
the depth-restricted setting and putting lower bounds on the
size of voter groups for which monotonicity should hold. To
measure satisfaction of a group V ⊆ N of voters with a set
S ⊆ C of candidates, we use the average satisfaction of V
with S, i.e., avgV (S) =

1
|V | ·

∑
i∈V |Ai ∩ S|.

Definition 4. For h ≥ 1 and α ∈ (0, 1], a dynamic ranking
rule satisfies (h, α)-monotonicity if, for all profiles and all
groups of voters V ⊆ N of size |V | ≥ α · |N |, the following
holds for every iteration t:

If xt /∈
⋃
i∈V

Ai, then avgV (r
t+1
≤h ) ≥ avgV (r

t
≤h).

That is, (h, α)-monotonicity requires that satisfaction
monotonicity holds for groups that make up at least an α-
fraction of the electorate, and when measuring average satis-
faction with respect to the first h positions in a ranking.

AV trivially satisfies (h, α)-monotonicity for all h and
all α. On the other hand, all other considered rules violate
this notion unless we consider rather large groups of voters.
Proposition 5. Consider the depth-restricted setting for some
h ≥ 3. Then, dynamic seqPAV and dynamic Phragmén fail to
satisfy (h, α)-monotonicity for all α < 6

2h+5 .

3Example 3 can be turned into an impossibility result: Every
dynamic ranking rule that (i) ranks the approval winner at the top in
the first iteration and (ii) gives priority to less satisfied voter groups
fails satisfaction monotonicity.

Furthermore, myopic seqPAV and myopic Phragmén fail to
satisfy (h, α)-monotonicity for all α < 1

h .
The monotonicity requirement can be weakened further by

only requiring satisfaction monotonicity in cases in which the
implemented candidate is never co-approved with any candi-
date that is approved by a member of the group under con-
sideration (i.e., there is no c ∈

⋃
k∈V Ak with {c, xt} ⊆ Ai

for some i ∈ N ). Both myopic rules satisfy this weak imple-
mentation monotonicity, whereas the two dynamic versions
fail it. For a thorough discussion of this weaker version of
monotonicity, we refer to the full version of this paper.

Despite the negative results in this section, we rarely found
monotonicity violations of any kind in our experiments (see
Section 6).

5 Proportional Representation
We now turn to analyzing the proportional representativeness
that is provided by our dynamic ranking rules. The following
two sections capture different perspectives on representation,
focusing on the representativeness of the ranking rt at any
given iteration t (Section 5.1) and on the representativeness
of the set X of implemented candidates (Section 5.2).

5.1 Proportionality of Rankings
In certain applications of dynamic ranking rules, such as the
live Q&A platforms mentioned in the introduction, it is desir-
able for the ranking rt to provide a representative overview
of the opinions of the voters at any given iteration t. In this
section, we prove proportionality guarantees that are satisfied
by ranking rt for any fixed iteration t.

Measures for the proportionality of a ranking have been
proposed by Skowron et al. [2017]. In particular, κ-group
representation measures, informally speaking, how far down
in the ranking a group of voters needs to look in order to
obtain a given amount of satisfaction. In order to adapt the
notion of κ-group representation to the dynamic ranking set-
ting, we need the following notation. For iteration t, let
Xt = {x1, . . . , xt−1} denote the set of candidates imple-
mented in the first t − 1 rounds and, for a group V ⊆ N of
voters, let λt(V ) = |

⋂
i∈V Ai \Xt| denote the cohesiveness

of V with respect to the remaining candidates C \Xt.
Definition 6 (Group representation). Let κ(α, λ) be a func-
tion from ((0, 1]∩Q)×N) to N. A dynamic ranking rule sat-
isfies κ-group representation if the following holds for all pro-
filesA, groups of voters V ⊆ N , rational numbers α ∈ (0, 1],
and integers λ, t ≤ |C|:

If |V | ≥ α · n and λt(V ) ≥ λ, then avgV (r
t
≤κ(α,λ)) ≥ λ.

In words: If a group V of voters makes up an α-fraction
of the electorate and has at least λ commonly approved can-
didates remaining at iteration t, then this group derives an
average satisfaction of at least λ from the candidates ranked
in the top κ(α, λ) positions of ranking rt.4

4A natural lower bound for κ(α, λ) is given by dλ/αe. Note that
the κ functions used in this section not only depend on α and λ, but
also on the set V and on the sequence X of previously implemented
candidates. In an attempt to simplify notation, we decided to not
make this dependencies explicit in Definition 6.
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Our first result in this section is for dynamic Phragmén.
We recall that di denotes the initial debt of voter i at the end
of the first phase of the method, and let dVavg = 1

|V |
∑
i∈V di

denote the average debt of voters in V .
Theorem 7. Dynamic Phragmén satisfies κ-group represen-
tation for

κ(α, λ) =

⌈
2(λ+m+ 1) + s · |V |

α

⌉
,

where m = |
⋃
i∈V Ai ∩X| and s =

∑
i∈V (di − dVavg)

2.
Observe that this function is increasing both in the num-

ber m of already implemented candidates that are approved
by some voter in V and in the variance s of debts of voters
in V . For the special case X = (), Theorem 7 implies a
group representation of

⌈
2λ+2
α

⌉
for (non-dynamic) sequential

Phragmén. For λ ≥ 2, this is an improvement over the κ-
group representation bound of

⌈
5λ
α2 + 1

α

⌉
proved by Skowron

et al. [2017].
The proof of Theorem 7 employs the notion of proportion-

ality degree [Skowron, 2018]. In particular, we first prove a
bound on the proportionality degree of dynamic Phragmén,
using a potential function approach that is similar to the one
used by Skowron [2018] for the non-dynamic setting. Then,
we establish a relationship between the proportionality degree
and group representation, and use it to translate the bound on
the former into a bound on the latter.

For dynamic seqPAV we prove the following generalisation
of Theorem 3 by Skowron et al. [2017]; the latter theorem
corresponds to the special case X = ().
Theorem 8. Dynamic seqPAV satisfies κ-group representa-
tion for

κ(α, λ) =

⌈
2(λ+ 1 + avgV (X))2

α2

⌉
.

AV does not perform any different in the dynamic rank-
ing setting compared to the non-dynamic one. Thus, it satis-
fies the same bounds on group representation as those stated
in Theorem 2 by Skowron et al. [2017]. Since myopic seq-
PAV and myopic Phragmén both agree with AV in the case
X = (), the same bounds hold for these two rules.
Proposition 9. Myopic seqPAV and myopic Phragmén fail κ-
group representation for κ(α, λ) ≤

⌈
λ·α

2α−1

⌉
− 1 and for all

functions κ(α, λ) if α ≤ m+1
m+2 , where m = |

⋃
i∈V Ai ∩X|.

5.2 Proportionality of Implemented Candidates
In this section, we study worst-case bounds on the represen-
tativeness of the set X of implemented candidates. Clearly,
no non-trivial bounds are obtainable without restricting the
selection behavior of an adversarial DM. Therefore, we will
make the following two assumptions throughout this section:

(A1) The DM is depth-restricted and always implements a
candidate from the top h positions of the ranking.

(A2) Every candidate c ∈ C has sufficiently5 many “clones,”
i.e., candidates c′ with identical supporter set Nc′ = Nc.

5Given an upper bound T on the number of iterations, h+T −1
clones suffice (as at least h clones will always remain in the ranking).

Assumptions (A1) and (A2) together ensure that the DM can
be forced to implement a candidate approved by a voter, by
populating the top h positions exclusively with such candi-
dates. Arguably the most natural way to ensure (A2) is to
assume that we are in the party-approval setting [Brill et al.,
2020], where candidates are interpreted as parties and can be
selected arbitrarily often. In the motivating example of live
Q&A platforms, party-approval preferences could result from
assigning attributes to questions and eliciting participants’ ap-
proval preferences over attributes.

Recall that Xt+1 denotes the set containing the imple-
mented candidates from the first t rounds. The following
property is a natural adaption of the well-studied propor-
tionality axiom proportional justified representation (PJR)
[Sánchez-Fernández et al., 2017].
Definition 10. A dynamic ranking rule satisfies proportional
justified selection (PJS) if the following holds for all t, ` ∈ N
and for all groups V ⊆ N of voters: If |V | ≥ `

t · |N | and
|
⋂
i∈V Ai| ≥ `, then |Xt+1 ∩

⋃
i∈V Ai| ≥ `.

A weaker version of this axiom is obtained by fixing ` = 1;
in analogy to a well-known notion due to Aziz et al. [2017],
we refer to the resulting property as justified selection (JS).

We prove the following theorem by treating the set Xt+1

of implemented alternatives as a committee and using the fact
that sequential Phragmén satisfies PJR [Brill et al., 2017].
Theorem 11. Under assumptions (A1) and (A2), myopic
Phragmén satisfies PJS.

Analogously, we can translate a representation guarantee
for sequential PAV [Sánchez-Fernández et al., 2017] into a
guarantee for myopic seqPAV.
Proposition 12. Under assumptions (A1) and (A2), myopic
seqPAV satisfies JS for t ≤ 5.
Similar positive results are not possible for the other rules we
consider.
Proposition 13. Dynamic seqPAV and dynamic Phragmén
fail to satisfy JS, even under assumptions (A1) and (A2) and
for t = 2.

6 Experimental Evaluation
In order to better understand the behavior of the dynamic
ranking rules considered in this paper, we conducted compu-
tational experiments using randomly generated approval pro-
files. Since we were mainly interested in the proportional rep-
resentation of groups of voters with similar preferences, we
generated profiles according to two probabilistic models that
lead to polarized electorates with easily identifiable groups.
We measured (1) how the satisfaction of a voter group with
the set of implemented candidates varies with the size of the
group, and (2) how the satisfaction of a voter group with the
current ranking varies over time.
Setup. All of our profiles consist of 60 voters and 20 can-
didates, and the approval sets are generated according to two
different models. In the blurred parties model, we assign each
voter and each candidate to one of two parties. The size of the
voter group V associated with the first party varies over the
experiments; the candidates are always divided equally. Each
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voter approves a candidate from their own party with 95%
probability and a candidate of the other party with 5% prob-
ability. The spatial model is an adaption of the 4-Gaussian
model used by Elkind et al. [2017] for linear preferences.
Voters and candidates correspond to points in the Euclidean
plane and voters approve nearby candidates. There are three
parties with equidistant center locations, and candidates as
well as voters get sampled as points around the party centers
according to a normal distribution. We let the size of the voter
group V associated with the first party grow, and divide the
remaining voters equally among the two remaining parties.
There are 7 candidates associated with the first party. The
selection behavior of the DM is modeled via Google click-
through rates. In particular, the probability of selection de-
creases when going down the ranking. In Figure 1 we plot
the averages of 100 generated elections. More details about
the setup can be found in the full version of this paper.

Satisfaction with implemented candidates. We measure
the average satisfaction of voter group V ⊆ N with Xk+1,
where k is the number of candidates associated with that
group (i.e., k = 10 for the blurred parties model and k = 7
for the spatial model). We plot this value against the relative
size α = |V |/|N | of the group V . The graphs in the first
row of Figure 1 show that for both models, AV is not propor-
tional: avgV (X

k+1) starts out very low and only jumps up
as soon as V becomes the biggest group (which happens at
α = 1/2 and α = 1/3, respectively). In other words, AV un-
derrepresents minorities and overrepresents majorities. The
performance of the other four rules are indistinguishable, as
all yield proportionally increasing satisfaction values.

Satisfaction with rankings. The graphs in the second row
of Figure 1 depict the average satisfaction of a group V of
size α = 1/4 with the first 5 candidates of the ranking over
the first 11 iterations. Again, AV behaves poorly, as it gives
satisfaction to V only once the larger groups have been sat-
isfied. The satisfaction values under the two myopic rules
jump heavily from one iteration to the next, as these rules
tend to mainly represent one group of voters per iteration. On
the other hand, the two dynamic rules keep the satisfaction
of V relatively constant at around one fourth of the maxi-
mum possible satisfaction. These rules provide proportional
representation in each single iteration, which is in line with
the theoretical results in Section 5.1.

7 Conclusion
Motivated by the problem of how submitted questions in a
live Q&A session can be ranked in a more representative
way, we have introduced dynamic ranking rules. We pro-
posed two paradigms of dynamizing existing ranking rules:
under the dynamic paradigm, we target proportional repre-
sentation of voter interests at each individual time step; un-
der the myopic paradigm, we try to make the set of imple-
mented candidates as representative as possible. While the
former approach lends more flexibility for the decision maker
and guarantees a proportional exposure of candidates in each
ranking, the latter approach is computationally more efficient
and yields stronger selection guarantees. Our experimental
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Figure 1: Experimental results for the blurred parties model (left)
and the spatial model (right). The graphs in the first row show the
average satisfaction of V with the first k implemented candidates,
for relative group size α ∈ [0, 1]. The graphs in the second row
show the average satisfaction of V with rt≤5, for 1 ≤ t ≤ 11.

results illustrate the difference between the two approaches,
and verify that both approaches lead to proportional results.

The application of live Q&A platforms gives rise to some
interesting extensions of our model. In realistic scenarios,
neither the electorate nor the set of candidates is static, as
people enter or leave the audience and new questions come
up continuously. Moreover, participants can change their ap-
proval preferences throughout the event. Our approach can
take these dynamic aspects into account in a straightforward
manner: After each implementation, we can apply our rank-
ing rules to the current set of not-yet-implemented candidates
and to the current approval preferences—the only necessary
information from previous iterations is the sequence of im-
plemented candidates.

The dynamic ranking rules proposed in this paper are appli-
cable to a wide variety of sequential selection procedures in
which proportional representation is desired and, at the same
time, some flexibility on the part of the decision maker is nec-
essary (e.g., think of human-in-the-loop decision support sys-
tems for hiring or budgeting decisions). Other applications of
dynamic ranking rules include committee election scenarios
in which some part of the committee is fixed (e.g., due to ex-
ternal constraints) and the remaining seats need to be filled in
such a way that the committee as a whole is representative.
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