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Abstract

The ability to learn from large quantities of com-
plex data has led to the development of intelli-
gent agents such as self-driving cars and assis-
tive devices. This data often comes from people
via interactions such as labeling, providing rewards
and punishments, and giving demonstrations or cri-
tiques. However, people’s ability to provide high-
quality data can be affected by human factors of an
interaction, such as induced cognitive load and per-
ceived usability. We show that these human factors
differ significantly between interaction types. We
first formalize interactions as a Markov Decision
Process, and construct a taxonomy of these inter-
actions to identify four archetypes: Showing, Cat-
egorizing, Sorting, and Evaluating. We then run a
user study across two task domains. Our findings
show that Evaluating interactions are more cogni-
tively loading and less usable than the others, and
Categorizing and Showing interactions are the least
cognitively loading and most usable.

1 Introduction
Intelligent agents such as self-driving cars, recommendation
engines, and assistive devices are becoming fixtures in ev-
eryday society due to their growing ability to learn from
large-scale data and to personalize based on data from in-
dividuals. Approaches to collecting data from people in-
clude asking for annotations on video and images [Real et
al., 2017], ratings of behavior [Daniel et al., 2015], task
demonstrations [Abbeel and Ng, 2004], critiques or cor-
rections of proposed trajectories [Cui and Niekum, 2018;
Bajcsy et al., 2018], and preferences between options [Sadigh
et al., 2017]. Distinctions between these techniques have led
to a growing body of work on understanding them relative to
each other. Different interaction types can be used in combi-
nation to accelerate learning [Palan et al., 2019], better lever-
age people as teachers [Bullard et al., 2018], and differ in
the amount of implicit information they encode [Jeon et al.,
2020]. Learning interactions are often selected based on how
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informative they are for a learner, without examining how hu-
man teachers may differently perceive and respond to those
interactions. However, people’s experiences with different in-
teractions can affect the data they provide.

In order to collect high-quality data, whether via active
learning or curated training sets, i.e. passive learning, it is
necessary to leverage data collection processes that accom-
modate people’s limitations. People provide noisy data, are
biased towards providing positive rewards, and get fatigued
[Amershi et al., 2014]. Several of the shortcomings in peo-
ple’s teaching capabilities may relate to the fact that as the
cognitive load (i.e. the portion of working memory being
utilized) on an individual increases, they grow more easily
distracted and have worse task performance [Sweller, 1988].
Interaction design can be used to modulate cognitive load in
human learners [Chandler and Sweller, 1991]; that is, the way
a task is presented can affect how burdensome it is and may
ultimately affect the quality of the data it produces.

Our key insights are twofold. First, that we can formal-
ize interactions as a Markov Decision Process (MDP) and
taxonomize them based on how data is provided to and acted
upon by human teachers. This taxonomy allows us to analyze
groups of similar interactions. It also enables us to empiri-
cally evaluate our second insight: these groups of interaction
types result in differences in human factors such as cognitive
load. Such factors are important to characterize, as they may
lead to downstream data quality effects.

We present a model-agnostic MDP to formalize interac-
tions, and a taxonomy of interaction types for human-agent
learning using four features: the amount of data the user is
asked to respond to, the amount of the data the user provides
in their response, the granularity of the user’s response, and
the responses the user can choose from. We analyze cur-
rent paradigms for learning from people, and find four dis-
tinct interaction archetypes: Showing, Categorizing, Sorting,
and Evaluating. We also present results from a user study
designed to identify differences between interaction types in
terms of human factors related to data quality, such as cog-
nitive load, confidence, and subjective usability. We find that
Evaluating interaction types, where people identify good be-
havior, are the most cognitively loading and least usable in
both of the study’s task domains. Categorizing (i.e., assign-
ing a positive or negative reward) and Showing (i.e., giving
demonstrations) are less cognitively loading and more usable.
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Figure 1: We identify and evaluate four interaction archetypes for sequential decision making (SDM, top) and Classification (bottom) tasks.

2 Related Work
Quality control research for data collection investigates how
users, often crowd workers, can provide good data via incen-
tives and task design [Lease, 2011; Kittur et al., 2013]. Our
research differs in that we study how human factors, such as
cognitive load and usability, differ between various interac-
tion types. The correlations between cognitive load, usabil-
ity, and task performance (e.g. providing good data) have
been observed and studied throughout cognitive psychology
[Sweller, 1988], human-computer [Longo, 2018] and human-
robot interaction [Prewett et al., 2010].

Researchers categorized the questions people ask while
learning into three interaction types: labels, demonstrations,
and feature queries [Cakmak and Thomaz, 2012]. Additional
research into developing learning agents that emulate the rich
learning interactions people use has involved combining mul-
tiple interaction types [Bullard et al., 2018] to better leverage
human teachers, leveraging trade-offs between interactions
[Palan et al., 2019], and exploring explicit and implicit in-
formation transfer [Jeon et al., 2020].

Our research extends this body of work by providing a
general taxonomy of interaction types as well as a princi-
pled framework for representing model-agnostic interactions.
Based on our taxonomy (justified in Section 3), we discuss
four categories of interactions.

Showing. Inverse reinforcement learning (IRL) is a learn-
ing from demonstration technique for recovering a reward
function from which to train a policy [Ng et al., 2000;
Abbeel and Ng, 2004]. Behavioral cloning learns a pol-
icy directly [Bain and Sammut, 1995; Schaal, 1999]. While
demonstrations can be highly informative, people are limited
in the number of examples they can provide and by their ex-
pertise.

Categorizing. This type of learning is commonly used for
classification and regression. For example, computer vision
leverages popular large-scale labeled datasets [Deng et al.,
2009; Everingham et al., 2010; Lin et al., 2014]. Labels also
include the assignment of rewards to actions, as in bandit
problems and reinforcement learning with human feedback
[Kober et al., 2013; Daniel et al., 2015]. The informativeness
of labels is limited by the size of the label set, and people are

known to give both overly positive rewards [Amershi et al.,
2014] and shifting ratings [O’Connor and Cheema, 2018].

Sorting. Preference elicitation is an active area of re-
search, especially in recommendation engines [Fürnkranz
and Hüllermeier, 2011]. Comparison and ranking-based ap-
proaches for learning reward functions are increasingly com-
mon [Sadigh et al., 2017; Bıyık et al., 2020; Wirth et al.,
2017]. These interactions are precise, and thought to be low
user effort. The technique is good at fine-tuning, but the in-
formation that can be gained from each query is limited.

Evaluating. Corrections are feedback on a proposed set of
actions either during or after task execution. These can be
physical or simulated [Bajcsy et al., 2018; Jain et al., 2015].
Users can also mark good or bad regions of a trajectory via
critiques [Cui and Niekum, 2018]. Credit-assignment inter-
actions, such as the one posed in [Jeon et al., 2020], can be
construed as a form of critique where the user is limited to
identifying only one good region. Off-switch games can be
considered as another special case of critiques where trajecto-
ries are segmented into a singular allowed section preceding
a singular disallowed section [Hadfield-Menell et al., 2016].

3 Taxonomy of Interaction Types
Many interaction types share fundamental similarities in how
people interface with them. By taxonomizing the space of
interaction types along those lines, we can more tractably
compare clusters of interactions. We construct a novel tax-
onomy that characterizes interaction types along four dimen-
sions: the action batch size of the learner’s queries, the action
batch size of the user’s responses, the number of intervention
opportunities available to the user per query, and the num-
ber of response choices available for a user to select from
per query. We identify four interaction archetypes, termed:
Showing, Categorizing, Sorting, and Evaluating.

3.1 Representing Model-Agnostic Interactions
In order to represent interactions, we must first introduce
some terminology. Let a query q refer to data that the user
is prompted to respond to. An annotation is the feedback that
the user gives in response to a query. An interaction type is
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Interactions Query Size Response Size Intervention Options Response Choice
Space References

Showing
Demonstrations 0 T 0 |AL|T [Ng et al., 2000;

Abbeel and Ng, 2004;
Ramachandran
and Amir, 2007;
Ziebart et al., 2008;
Bain and Sammut, 1995;
Schaal, 1999]

Categorizing
Labels T 1 0 |AU | [Deng et al., 2009; Ever-

ingham et al., 2010; Lin et
al., 2014]

Reward & Punishment T 1 0 |{−1,+1}| [Kober et al., 2013;
Daniel et al., 2015]

Sorting
Rankings T ·N N 0 N ! [Fürnkranz and

Hüllermeier, 2011;
Wirth et al., 2017;
Bıyık et al., 2020]

Preferences T · 2 2 0 2! [Sadigh et al., 2017]
Evaluating

Corrections T 0 ≤ i ≤ T 2T |AU |i [Bajcsy et al., 2018; Jain
et al., 2015]

Critiques T 0 ≤ i ≤ T 2T 2T [Cui and Niekum, 2018;
Jeon et al., 2020;
Hadfield-Menell et
al., 2016]

Table 1: We divide interactions into four clusters. T is the finite time horizon of a presented trajectory (1 in one-shot instances), N is the
number of trajectories of length T in a query or response, AU is the set of user actions, AL is the set of learner actions, and i is a subset of T .

the format of a query (i.e., “Showing”, “Categorizing”, “Sort-
ing”, or “Evaluating”). An interaction instance is a specific
query, e.g. “Should the label be ’library’ or ’bookshop’?” Fi-
nally, an interaction session is a series of interaction instances
of a particular interaction type, and associated annotations.

We choose to model interaction sessions as Markov Deci-
sion Processes (MDPs) for several reasons. MDPs provide
a sequential decision-making paradigm that captures how, in
active and passive learning, people provide a series of an-
notations over the course of an interaction session. Fur-
thermore, with this paradigm, we can treat human teachers
as agents making decisions over their own action and state
spaces, rather than as oracles in possession of data that is al-
ways equally accessible. This allows us to account for im-
perfect decision-making due to human factors (i.e. cognitive
load, usability). Finally, this enables us to analyze interaction
types separately from any underlying learning models. The
interaction type is a means to obtain data, and the learning
model (e.g. Gaussian process, neural network, Q-learning)
consumes that data. This distinction enables us to discuss in-
teraction types in terms of the user’s actions and the learner’s
actions, to analyze both passive and active data collection,
and to assess interactions regardless of learning objectives.

We subsequently define this MDP in further detail. First,
we define a user U as an agent interacting with a learner L
via queries. The interactions between U and L can be situ-
ated in passive or active learning contexts. Let AL define the
set of actions available to the learner L and at ∈ AL the ac-

tion taken at time t. For example, in an autonomous driving
task, AL consists of available steering controls. Let st ∈ SL

denote the state at time t (e.g. the position of the car). A tra-
jectory is a series of state-action pairs, ξ = (st, at)

T
t=0, where

T is some finite task horizon. This notation holds for one-
shot tasks such as accepting or rejecting an image annotation:
s0 is the image, and a0 is the suggested annotation.

Now, we describe an interaction session I as an MDP
:= (SU , AU , T ,R). Let AU define the set of actions avail-
able to the user, e.g. the feedback a user can give in a partic-
ular interaction type. For example, in a reward-punishment
interaction, AU = {−1,+1}. Note that AU and AL need not
be distinct: for demonstrations, the user may have the same
action space as the learner. This is sufficient notation for dis-
cussing the curation of training sets for passive learning. For
active learning, we define the state σi ∈ SU as the param-
eterization of L at the ith query, as made visible to the user
via means such as model weights. This is distinct from the
state of the underlying learner’s environment st, as discussed
previously. The transition T is a property of L (e.g., gradient
descent if the model is a neural network), and can be opaque
to the user. The reward R : SU 7→ R minimizes the differ-
ence between the desired and true output of L.

3.2 Features of the Taxonomy
Query Size (Actions). The batch size of a query is deter-
mined by the number of actions a ∈ AL it contains, and is
given by N · T . A query q consists of one or more trajecto-
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ries ξ with finite time horizon T such that q = {ξ0, .., ξN−1},
where N is the number of options presented to the user. In
the reward-punishment interaction we have been referring to,
the query presented to the user is a single (N = 1) example
of a trajectory: q = {ξ0}. If we were to instead use a prefer-
ence interaction, the user would select one of two trajectories
presented to them, such that N = 2 and q = {ξ0, ξ1}.
Response Size (Actions). The number of actions a ∈ AU

that a user provides in response to a query q is variable in size.
In the reward-punishment case, the user provides one action:
either a reward, or a punishment. If we were to use a prefer-
ence interaction instead, the user would provide two actions
by returning a total ordering over the two options presented
to them.

Intervention Options. This quantifies the user’s granular-
ity in providing feedback. In both the reward-punishment and
preference interactions we have used as examples, the expec-
tation is that the user must respond to the entirety of the query
q. Therefore, the space of their intervention choices is 0; it is
a coarse response. However, some interactions, such as cor-
rections [Bajcsy et al., 2018] allow the user to select subsets
of q = {ξ0} to modify; in the lunar lander case, a user could
select the entirety of ξ0 as good and make no modifications, or
adjust some chunk of i < T actions. The user’s intervention
choice is 2T because they have the opportunity to intervene
at each time step.

Response Choice Space. This is the number of possible re-
sponses that a user can provide, given a query q, and is related
to AU . In the reward-punishment example, the user can give
|AU | = |{−1,+1}| = 2 possible responses. More generally,
a user has as many response options as they have potential
rewards or labels to assign. On the other hand, if we were
to use a preference interaction, then |AU | = 2; more gener-
ally, in ranking N options, users have N ! orderings to choose
from.

4 User Study
We designed a mixed-design user study to find empirical dif-
ferences in cognitive load and usability between interaction
types. Our within-subjects independent variable, interaction
type, had four levels: Showing, Categorizing, Sorting, and
Evaluating. Our between-subjects independent variable, task
domain, had two levels: Sequential Decision Making (hence-
forth SDM), and Classification.

To enable comparisons between interaction types, we se-
lected similarly complex examples from each cluster and
minimized presentation differences. We made the assump-
tion that salient differences in user attitudes manifest even
between low-complexity interactions (e.g. differences would
be present between reward-punishment and 2-way preference
comparisons, not just rating scales and N -way rankings). We
chose the lowest-complexity, non-trivial examples of each in-
teraction type: demonstrations with a manageable |AL| = 4
for Showing, reward & punishment for Categorizing, prefer-
ence comparisons for Sorting, and credit assignment (a sub-
category of critiques) for Evaluating (Figure 1). We also stan-
dardized the interaction interface (e.g. the number of buttons,

duration of tasks, available controls) as much as possible to
minimize their impact on user attitudes.

The SDM task involved piloting a lunar lander to land up-
right between flag posts. Participants supplied or responded
to a trajectory. We manually created trajectories to show to
participants, and ensured an equal distribution of successful
and failed trajectories. For Showing, participants used key-
board inputs (|AL| = 4) to provide example trajectories. For
Categorizing, participants labeled a video of a potential lu-
nar lander trajectory with a thumbs-up or thumbs-down. For
Sorting, participants were shown two videos of potential tra-
jectories for a lunar lander, and chose the better one. Finally
for Evaluating, participants were given one video of a poten-
tial lunar lander trajectory, and used a double-ended slider to
select the best portion of the trajectory.

The Classification task consisted of a series of images to
be annotated. Users provided or responded to one-word cap-
tions. We used 20 images from Pascal VOC 2012 [Evering-
ham et al., 2010] by randomly selecting one image from each
of its classes. Captions to be evaluated were generated by
a Keras InceptionV3 [Szegedy et al., 2016] model trained
on ImageNet [Deng et al., 2009]. For Showing, participants
were given an image and typed a caption of their own choos-
ing into a textbox. For Categorizing, participants labeled an
image-caption pair as thumbs-up or thumbs-down. For Sort-
ing participants were shown two potential captions for a given
image, and chose the one they felt was better. Finally, for
Evaluating, participants were given one image-caption pair,
and used a grid to select the parts of the image that best justi-
fied the proposed caption.

Hypotheses
We hypothesize that interaction types are not interchangeable
with respect to their human factors:

H1 Cognitive load differs between interaction types

H2 Task completion times differ between interaction types

H3 User confidence varies between interaction types

H4 Subjective usability differs between interaction types

H5 Preferred interaction types differ between tasks

Our study is designed to identify significant differences, not
to find causal relationships, but we expect that as Response
Choice Space and Response Size increase, cognitive load will
increase, while usability and performance suffer.

4.1 Measures
We collected metrics on cognitive load (M1, M2), perfor-
mance (M3, M4), and usability (M5-M9), as well as partic-
ipants’ responses, and any button toggles or video replays.
Participants had the opportunity to provide additional feed-
back, and were asked to report their age and gender.

M1 - Secondary task performance. During each interac-
tion, participants pressed a key every time a color-changing
circle turned pink (Figure 2). The longer the participants’
reaction time, the greater the cognitive load [DeLeeuw and
Mayer, 2008].
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M2 - Paas subjective rating scale. After each interaction
section, participants responded to the prompt “How much
mental effort did this interaction type demand?” using a 9-
point Likert scale [Paas, 1992] .

M3 - Primary question response time. We recorded the
time between when the participant was given the stimulus
(e.g. began the lunar lander game, or was first presented with
an image to label) and when they submitted their response.

M4 - Self-reported confidence per query. For each query,
participants responded to the prompt “How confident are
you in your answer to the primary question (not the color-
changing circle) above?” with a 4-point Likert scale. We did
not include a neutral option.

M5 - Frustration. After each interaction section, par-
ticipants responded to the NASA TLX [Hart and Stave-
land, 1988] prompt “How insecure, discouraged, irritated,
stressed, and annoyed were you?” on a 9-point Likert scale.

M6 - Complexity. After each interaction section, par-
ticipants responded to the System Usability Scale (SUS)
[Brooke, 1996] prompt: “I found this interaction type un-
necessarily complex” with a 5-point Likert scale.

M7 - Ease of Use. After each interaction section, partici-
pants responded to the SUS prompt: “I thought this interac-
tion type was easy to use” with a 5-point Likert scale.

M8 - Overall Confidence. After each interaction section,
participants responded to the SUS prompt: “I felt very confi-
dent using this interaction type” with a 5-point Likert scale.

M9 - Forced Ranking. At the study’s conclusion, users an-
swered “My nth choice interaction type would be . . . ” for
their first, second, third, and fourth choice interactions.

4.2 Procedure
Participants were fully counterbalanced between all orderings
of interaction types within a task domain. Participants were
given instructions describing the study. They then practiced
responding to the secondary task. At the beginning of each
interaction type’s section, participants were presented with
instructions describing the interaction, and an example of a

Figure 2: Participants responded to primary tasks described in Sec-
tion 4.1, a secondary task (M1), and a confidence assessment (M4).

good response. Participants then practiced the interaction, in-
cluding the secondary task and confidence assessment. Each
interaction type’s section comprised five questions presented
in a sequential, but randomized, order.

5 Results
We collected data from 150 Prolific workers over the age of
18 and with approval ratings ≥ 98%. Partial or duplicate task
completions were discarded, leaving us with 144 participants,
72 per task domain. 61.1% of the participants self-identified
as male, 37.5% as female, and 1.39% as non-binary. Their
ages ranged from 18 to 70 (M = 26.71, SD = 9.45). This
study and recruitment procedure was approved by our Insti-
tutional Review Board. We analyzed the effects of interaction
types in each domain separately, and opted not to evaluate in-
teraction effects between domains for two reasons. First, we
use Likert-type scale data which is subject to interpersonal
variance and cannot be reliably compared between separate
populations. Second, our goal is not to identify differences
between these specific domains, but to show that task domain
can affect participants’ preferences.

We analyzed all ordinal data using a Friedman Test fol-
lowed by a post-hoc Wilcoxon signed-rank test (Bonferonni
correction α = 0.0083). Numerical data was analyzed with
a one-way repeated measures ANOVA and post-hoc pairwise
Tukey analyses. We used α = 0.05 for our analyses. Because
we used only portions of NASA-TLX and SUS to avoid par-
ticipant fatigue, we treat each question as an individual item.

H1: Cognitive load differs between interaction types. A
one-way repeated measures ANOVA revealed a statistically
significant difference in secondary task reaction times (M1,
Figure 3a) between interaction types (F (3, 213) = 6.57, p <
0.001 in SDM, and F (3, 213) = 20.04, p < 0.001 in Classi-
fication). In SDM, secondary reaction time was significantly
longer in Showing as compared to Categorizing (p < 0.05).
In Classification, secondary task reaction time during Evalu-
ating was significantly less than in Showing, Sorting or Cat-
egorizing (p < 0.01). For completeness, we repeated this
analysis after performing outlier rejection for samples more
than three standard deviations from the mean: no differences
were found in our results.

Differences were also found in participants’ subjective as-
sessments of the mental effort each interaction type required
(M2, Figure 3b) in both domains (χ2(3) = 1.3× 10−13, p <
0.001 in SDM, and χ2(3) = 4.44 × 10−15, p < 0.001 in
Classification). In SDM, participants felt that Sorting was
significantly harder than Categorizing (p < 0.006), and that
Evaluating was significantly harder than Showing, Sorting,
and Categorizing (p < 0.001 in all cases). In Classifica-
tion, participants rated Evaluating as significantly harder than
Showing, Sorting, and Categorizing (p < 0.001 in all cases).
The data supports H1.

H2: Task completion times differ between interaction
types. Statistically significant differences were found in re-
sponse times (M3, Figure 4) between interaction types in
both domains (F (3, 213) = 28.79, p < 0.001 in SDM,
F (3, 213) = 166.29, p < 0.001 in Classification). In SDM,
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(a) Objective cognitive load; higher values indicate greater load.

(b) Subjective cognitive load; darker values indicate greater load.

Figure 3: Cognitive load (H1) was measured both objectively (sec-
ondary task reaction time) and subjectively.

response times were significantly greater in Sorting as com-
pared to Showing and Categorizing, and in Evaluating as
compared to any other interaction type (p < 0.01 for both).
In Classification, participants’ response times to Evaluating
were significantly greater than to any other interaction type
(p < 0.01 in all cases). Figure 4 demonstrates these findings
visually. When we repeated this analysis after performing
outlier rejection for samples more than three standard devi-
ations from the mean, our results largely stayed the same:
we additionally found that Showing interactions in the Clas-
sification domain took significantly longer than Categorizing
(α < 0.05). The data supports H2.

H3: User confidence varies between interaction types.
Median per-trial confidence scores (M4, Figure 5) were sig-
nificantly different between interaction types in both do-
mains (χ2(3) = 49.24, p < 0.001 in SDM, and χ2(3) =
102.91, p < 0.001 in Classification). In SDM, participants
were significantly more confident in their responses to Show-
ing and Categorizing than Sorting or Evaluating (p < 0.01 in
all cases). In Classification, participants were more confident
in their responses to Showing than to any other interaction
(p < 0.01 in all cases). They were also more confident in
their responses to Categorizing than to Sorting and Evaluat-
ing (p < 0.01 in both cases). The data supports H3.

Figure 4: Time taken to complete the primary interaction task (H2).

Figure 5: Per-trial confidence in response quality (H3).

H4: Subjective usability differs between interaction types.
Significant differences were found in participants’ ratings of
frustration (χ2(3) = 27.07, p < 0.001 in SDM, χ2(3) =
50.94, p < 0.001 in Classification), perceptions of com-
plexity (χ2(3) = 41.68, p < 0.001 in SDM, and χ2(3) =
69.30, p < 0.001 in Classification), ease of use (χ2(3) =
33.14, p < 0.001 in SDM, and χ2(3) = 54.19, p < 0.001
in Classification), and confidence with the interaction type
(χ2(3) = 28.66, p < 0.001 in SDM, and χ2(3) = 55.63, p <
0.001 in Classification). These results, corresponding to M5
through M8, are shown in Figures 6 through 9.

Participants felt more frustrated by Evaluating than any
other interaction in both task domains (p < 0.00145 in all
cases). They perceived Evaluating as more unnecessarily
complex than any other interaction in both task domains as
well (p < 0.001 in all cases); in Classification, they also per-
ceived Sorting as unnecessarily more complex than Catego-
rizing (p < 0.00785). Correspondingly, participants found
Evaluating to be less easy to use than any other interaction
type in both task domains (p < 0.001 in all cases). In SDM,
participants were more confident with Showing, Sorting, and
Categorizing over Evaluating (p < 0.001 in all cases). In
Classification, participants felt more confident using Show-
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Figure 6: Responses to subjective measures of frustration (H4).
Darker colors denote greater frustration.

Figure 7: Responses to subjective measures of complexity (H4).
Darker colors denote higher perceived complexity.

ing than Sorting (p < 0.00230) or Evaluating (p < 0.001).
They also felt more confident using either Sorting or Catego-
rizing over Evaluating (p < 0.001 in both cases). The data
supports H4.

H5: Preferred interaction types differ between tasks.
We tallied participants’ preferred interaction types (M9) us-
ing a Condorcet method. We found that in SDM, participants
preferred Showing, Sorting, Categorizing, and then Evaluat-
ing. In Classification, they preferred Categorizing, Sorting,
Showing, and then Evaluating. The data supports H5.

6 Discussion
Our results show that interaction types are differently cog-
nitively loading and usable, and may variably impact per-

Figure 8: Responses to subjective measures of ease of use (H4).
Darker colors denote greater ease of use.

Figure 9: Responses to subjective measures of confidence (H4).
Darker colors denote greater perceived confidence.

formance as estimated via task completion times and self-
assessed confidence. Participants rated Evaluating interac-
tions as requiring the most cognitive effort, being the most
frustrating, the most unnecessarily complex, least easy to use,
and inspiring the least confidence. Objectively, they also took
the longest time to complete Evaluating tasks. In SDM, Sort-
ing took longer than Showing and Categorizing. In Classifi-
cation, participants felt Sorting was more unnecessarily com-
plex than Categorizing and were less confident using it than
Showing. This suggests that Categorizing is preferable to
Sorting, which is preferable to Evaluating. This corresponds
to our expectation that as an interaction’s Response Choice
Space and Response Size increases, its usability decreases.

Unexpectedly, Showing, has the largest Response Choice
Space and was among the easiest to use. This may be due
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to cognitive shortcuts: when guiding the lunar lander, users
may not be processing all possible trajectories, nor are they
thinking of every word they know in order to caption images.
Thus, our big-O estimates may have been too coarse to cap-
ture the nuances of a user’s perceived response space.

We also found a disagreement between participants’ sub-
jective assessment of mental effort and their objective sec-
ondary task performance, as in prior work [DeLeeuw and
Mayer, 2008]. This could indicate that there are additional,
unknown factors that affect perceived mental effort. We did
also observe a relationship between participants’ primary task
reaction times and subjective assessments of cognitive load,
indicating that they took longer on cognitively loading tasks.
This may have given them more opportunities to respond to
the secondary task, influencing their reaction times.

Pre-existing notions that interaction types such as Evaluat-
ing and Sorting might be more user-friendly than others (par-
ticularly Showing), because they require fewer inputs from a
user, were not supported in the two domains we evaluated.
Furthermore, differences existed in participants’ preferred in-
teractions between the task domains, despite our standardiza-
tion of interaction types within and between them. Future
work is required to understand how properties of a task do-
main influence interactions.

This work is one step towards developing a principled un-
derstanding of the algorithmic and human-factors compo-
nents of learning interactions. In particular, it is a neces-
sary step towards understanding the trade-off between the ex-
pected informativeness of a learning interaction, and a user’s
ability to provide high quality feedback. As data-gathering
needs increase in scale and across domains, understanding
this relationship will expand our ability to design learning in-
teractions that not only accommodate the needs of learning
agents, but also leverage the capabilities of human teachers.
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