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Abstract

When aggregating preferences of multiple agents,
strategyproofness is a fundamental requirement.
For randomized voting rules, so-called social de-
cision schemes (SDSs), strategyproofness is usu-
ally formalized with the help of utility functions.
A classic result shown by Gibbard in 1977 char-
acterizes the set of SDSs that are strategyproof
with respect to all utility functions and shows that
these SDSs are either indecisive or unfair. For
finding more insights into the trade-off between
strategyproofness and decisiveness, we propose the
notion of U-strategyproofness which requires that
only voters with a utility function in the set U
cannot manipulate. In particular, we show that if
the utility functions in U value the best alterna-
tive much more than other alternatives, there are U -
strategyproof SDSs that choose an alternative with
probability 1 whenever all but k voters rank it first.
We also prove for rank-based SDSs that this large
gap in the utilities is required to be strategyproof
and that the gap must increase in k. On the nega-
tive side, we show that U-strategyproofness is in-
compatible with Condorcet-consistency if U satis-
fies minimal symmetry conditions and there are at
least four alternatives. For three alternatives, the
Condorcet rule can be characterized based on U-
strategyproofness for the set U containing all equi-
distant utility functions.

1 Introduction

When a group of agents wants to find a joint decision in a
structured way, they can choose from a multitude of differ-
ent voting rules. However, it is not clear which rule is the
best one as each one has its benefits. This problem lies at
the core of social choice theory which draws increased atten-
tion by computer scientists because it can be used to reason
about computational multi-agent systems (see, e.g., [Cheva-
leyre et al., 2007; Brandt et al., 2013; Brandt et al., 2016b;
Endriss, 2017]). A fundamental requirement for voting rules
is strategyproofness, i.e., agents should not be able to benefit
by lying about their preferences. In a seminal result, Gib-
bard [1973] and Satterthwaite [1975] have shown that every
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deterministic strategyproof voting rule is dictatorial if there
are at least three different outcomes possible.

Randomization allows to escape this impossibility the-
orem, and we analyze therefore social decision schemes
(SDSs). These functions aggregate the preferences of agents
to lotteries over alternatives which determine for every alter-
native its winning chances. The final winner is then decided
by chance according to these probabilities. While this model
allows to circumvent many impossibilities, it is not straight-
forward how to define strategyproofness because the voters’
preferences over lotteries are unclear. Maybe the most promi-
nent approach is to assume that voters use cardinal utility
functions on the alternatives to compare lotteries with respect
to their expected utilities. However, voters still report ordi-
nal preference relations to the SDS and hence, strategyproof-
ness is defined by quantifying over utility functions: an SDS
is strategyproof if voting honestly maximizes the expected
utility for every voter and every utility function that is con-
sistent with his true preferences. This strategyproofness no-
tion, often called SD-strategyproofness, has been analyzed
by Gibbard [1977] and Barbera [1979] who prove that all
SD-strategyproof SDSs are indecisive because they almost
always randomize over multiple alternatives. Even more,
Benoit [2002] has shown that SD-strategyproofness is in-
compatible with the basic democratic idea that an alternative
should be the winner of an election if an absolute majority of
the voters report it as their best alternative.

While it is unfortunate that SD-strategyproofness does not
allow for decisive SDSs, this strategyproofness notion seems
also too demanding for because in many applications not all
utility functions are plausible. For instance, when a repre-
sentative body votes about budget proposals, it seems rea-
sonable that similar proposals have similar utilities. Thus,
we might neglect utility functions with a large gap between
such options when discussing strategyproofness. This obser-
vation leads to the new notion of U-strategyproofness which
requires that truth telling only maximizes the expected utility
of a voter if his utility function is in the set U. Note that U-
strategyproofness does not forbid utility functions u ¢ U, but
voters with such utility functions might be able to manipulate.

U-strategyproofness allows for a more detailed analy-
sis than SD-strategyproofness because we can analyze the
exact set of utility functions U for which an SDS is U-
strategyproof. Conversely, we can also formulate strong im-
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possibility results based on U-strategyproofness for severely
restricted sets U and thus, we can pinpoint the source of ma-
nipulability far more detailed than with other strategyproof-
ness notions. Hence, U-strategyproofness offers both the pos-
sibility of positive results by finding U-strategyproof SDSs
for large sets U, and of strong impossibility results by using
only a small number of utility functions. Furthermore, in-
formation about U-strategyproofness can also be valuable in
practice: if the social planner can roughly guess the utility
functions of the voters, he might be able to choose an SDS
preventing manipulations. Even if the social planner does
not have such insights, he might opt for an SDS that is U-
strategyproof for a large set U as such an SDS is immune to
manipulations from most voters.

Other than introducing U-strategyproofness, we use this
new notion to investigate the trade-off between strategyproof-
ness and decisiveness. On the positive side, we show that
there are U-strategyproof SDSs that assign an alternative
probability 1 whenever all but k£ > 0 voters agree that it is the
best option if the utility functions in U value the best alter-
native much more than the other alternatives. Moreover, we
prove for rank-based SDSs that this gap in the utility func-
tions is required to be strategyproof and that it must increase
in k. On the other hand, we show that Condorcet-consistency
is incompatible with U-strategyproofness if the set U satis-
fies minimal symmetry conditions between preference rela-
tions and there are m > 4 alternatives. If there are only three
alternatives and an odd number of voters, the Condorcet rule
is characterized by U-strategyproofness for the set U of all
equi-distant utility functions and Condorcet-consistency. The
proofs of these theorems and of all propositions are omitted
because of space limitations.

2 Related Work

To our knowledge, we are the first authors who explicitly in-
vestigate U-strategyproofness. Nevertheless, ideas similar to
U-strategyproofness have been used before. For instance,
Sen [2011] and Mennle and Seuken [2021] define strate-
gyproofness by considering restricted sets of utility functions
and thus, their works can be interpreted as first results on
U -strategyproofness. Moreover, in set-valued social choice
(where the outcome of an election is a non-empty set of al-
ternatives instead of a lottery) preferences over sets of alter-
natives are often derived from utility functions. For instance,
Duggan and Schwartz [2000] and Benoit [2002] employ this
approach to motivate their strategyproofness notions. The re-
lationship between these results and U-strategyproofness is
discussed in more detail in Section 4.

There are also various results on other strategyproofness
notions in randomized social choice (see, e.g., [Gibbard,
1977; Hoang, 2017; Aziz et al., 2018; Brandl et al., 2018]),
many of which are surveyed by Brandt [2017]. These re-
sults either prove the incompatibility of strategyproofness
with other axioms or characterize specific SDSs. Our results
differ from previous ones as we investigate a different ques-
tion: instead of asking whether an SDS is strategyproof ac-
cording to some definition, we ask for which utility functions
it is strategyproof.
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Moreover, strategyproofness is often considered for re-
stricted domains of preference profiles (see, e.g., [Ehlers et
al., 2002; Bogomolnaia et al., 2005; Chatterji and Zeng,
2018]). For instance, Bogomolnaia et al. [2005] discuss an at-
tractive SD-strategyproof SDS for dichotomous preferences.
U-strategyproofness can be interpreted similarly, but we fo-
cus on utility functions instead of preference profiles: U-
strategyproof SDSs are immune to manipulations if we only
allow utility functions in U.

Another field related to U-strategyproofness is cardinal so-
cial choice, where the input of social decision schemes con-
sists of the utility functions of the voters. If we allow all
utility functions as input, every strategyproof cardinal SDS
is, under mild additional assumptions, a variant of a random
dictatorship (see, e.g., [Hylland, 1980; Dutta er al., 2007;
Nandeibam, 2013]). As noted by Dutta et al. [2007], these
negative results break down if the domain of cardinal SDSs
is restricted, but this setting is not well understood. Our
results provide insights in this problem because every U-
strategyproof SDS can be interpreted as a cardinal SDS that
is strategyproof on the domain U.

Finally, note that our model assumptions are quite similar
to those used in the analysis of the distortion of SDSs (see,
e.g., [Procaccia and Rosenschein, 2006; Gross et al., 2017,
Abramowitz et al., 2019]). Just as these authors, we assume
that voters only report ordinal preferences but use utility func-
tions to evaluate the quality of a lottery. Whereas distortion
focuses on the welfare of SDSs, we investigate their resis-
tance to strategic behavior of voters.

3 Preliminaries

Let N = {1,...,n} be afinite set of voters and let A be a set
containing m alternatives. A preference relation is an anti-
symmetric, transitive, complete, and reflexive binary relation
on A and R; denotes the preference relation of voter 7. We
compactly represent preference relations as comma-separated
lists. Let R denote the set of all preference relations on A. A
preference profile R is an n-tuple containing the preference
of every voter ¢ € N, i.e., R € R". When writing preference
profiles, we indicate the corresponding voter directly before
the preference relation to clarify which voter submits which
preference relation. For example, 1 : a,b,c indicates that
voter 1 reports that he prefers a to b to c.

In this paper, we discuss social decision schemes (SDSs),
which are functions that map preference profiles to lotteries
on A. A lottery p is a function from the set of alternatives
A to the interval [0, 1] such that }_ , p(z) = 1. Let A(A)
denote the set of all lotteries on A. Formally, a social decision
scheme is a function f : R™ — A(A) and we denote with
f(R, x) the probability assigned to = by the lottery f(R).

The definition of SDSs allows for a huge variety of func-
tions, some of which seem not desirable. Therefore, we in-
troduce axioms to narrow down the set of SDSs. Two basic
fairness axioms are anonymity and neutrality, which require
that voter and alternatives, respectively, are treated equally.
More formally, an SDS f is anonymous if f(R) = f(7w(R))
for all profiles R and permutations m : N — N, and neu-
tral if f(R,z) = f(7(R),7(x)) for all alternatives x € A,
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profiles R, and permutations 7 : A — A. Another nat-
ural axiom is unanimity, which requires of an SDS f that
f(R,z) = 1 for all preference profiles R in which all voters
agree that x is the best choice. While this axiom is so weak
that is often considered indisputable, it is also irrelevant in
practice as ballots are usually not unanimous. Therefore, we
introduce the stronger notion of k-unanimity: an SDS f is
k-unanimous if f(R,x) = 1 whenever n — k or more vot-
ers report = as the best alternative. By definition, unanim-
ity is equal to O-unanimity and note that k-unanimity is only
well-defined if & < 3. A well-known strengthening of k-
unanimity is Condorcet-consistency. For defining this axiom,
let ngyy(R) = {i € N: 2Ry} — [{i € N: yR;z}| denote
the majority margin between two alternatives x,y € A in
the preference profile R. An alternative x is the Condorcet
winner in a preference profile R if n,,(R) > 0 for all other
alternatives y € A\ {x}. Less formally, an alternative x is the
Condorcet winner if it is preferred to every other alternative
by a majority of the voters. Finally, an SDS f is Condorcet-
consistent if f(R,z) = 1 for all profiles R and alternatives
x € A such that x is the Condorcet winner in R.

An important class of SDSs are rank-based SDSs. The ba-
sic idea of these schemes is that voters assign ranks to the
alternatives and that an SDS should only rely on these ranks,
but not on which voter assigns which rank to an alternative.
For formalizing this concept, we denote with r(R;,z) =
{y € A: yR;x}| the rank of alternative x in voter 4’s prefer-
ence relation. Moreover, we define the rank vector r*(R, x)
as the vector that contains the rank of x with respect to every
voter in increasing order, i.e., 7* (R, z); < r*(R, x);41 for all
i € {1,...,n — 1}, and the rank matrix r*(R) as the matrix
that contains the rank vectors of all alternative as rows. Fi-
nally, we call an SDS f rank-based if it only depends on the
rank matrix, i.e., f(R) = f(R’) for all preference profiles R,
R’ with r*(R) = r*(R'). The set of rank-based SDSs con-
tains many prominent functions such as point scoring rules
and anonymous SDSs that only depend on the first-ranked al-
ternatives of the voters.

4 U-Strategyproofness

A central problem in social choice is that of manipulability:
voters may lie about their preferences to achieve a better out-
come. While the definition of a manipulation is easy if an
SDS never randomizes between multiple alternatives, it is not
clear how to compare non-degenerate lotteries. A classical
approach for this problem is to assume that voters are en-
dowed with wutility functions u; : A — R. We impose the
constraint that no voter assigns the same utility to two alter-
natives, i.e., u;(x) # u;(y) for all voters ¢ € N and alterna-
tives x,y € A, to ensure that the ordinal preference relation
induced by a utility function is anti-symmetric. We denote
with U the set of all such utility functions and say that a util-
ity function u € U is consistent with a preference relation R
if u(x) > u(y) iff Ry for all alternatives x,y € A. Finally,
each voter ¢ uses his utility function u; to compare lotteries by
their expected utilities E[pl,, = >, 4 p(x)u;(x), i.e., voter
i prefers lottery p weakly to lottery g if E[pl,, > E[q]u,.
Even though we assume the existence of utility functions,
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voters only report ordinal preferences. Consequently, strate-
gyproofness is often defined by quantifying over utility func-
tions. In particular, Gibbard [1977] employs this approach to
define SD-strategyproofness: an SDS f is SD-strategyproof
if E[f(R)]u; > E[f(R)]s, for all voters i € N, preference
profiles R, R', and utility functions u; € U such that u; is
consistent with R; and R; = R’ forall j € N\ {i}. While
SD-strategyproofness allows for strong negative results (see,
e.g. [Gibbard, 1977; Barbera, 1979]), it lacks relevance for
many practical applications as not all utility functions are
plausible. Also, SD-strategyproofness provides often only
shallow theoretical insights as it is not possible to pinpoint
the source of manipulability.

In order to address these problems, we introduce a new
strategyproofness notion by restricting the set of feasible util-
ity functions U beforehand: an SDS f is U-strategyproof it
E[f(R)]u, > E[f(R)]y, forall voters i € N, preference pro-
files R, R’, and utility functions u; € U such that u; is consis-
tent with R; and R; = R/ forall j € N\ {i}. Less formally,
U-strategyproofness only requires that voters with a utility
function in U cannot increase their expected utility by mis-
representing their preferences. Hence, U-strategyproofness
is equal to SD-strategyproofness and smaller sets of utility
functions result in less demanding strategyproofness notions.
Note that U-strategyproofness solves both problems of SD-
strategyproofness: we can investigate whether an SDS is ma-
nipulable in practice by dismissing implausible utility func-
tions, and we can find the core of impossibility results by
determining the minimally required set of utility functions.
Next, we discuss an example to illustrate the difference be-
tween U-strategyproofness and SD-strategyproofness.

Example 1. Consider the profiles R' and R? shown be-
low and let f denote an SDS such that f(R',z) = %for
z € {a,b,c} and f(R?,b) = 1. Moreover, consider the util-
ity functions uy, ug, and uz with ui(a) = 2, u1(b) = 1,
ui(c) = 0, ug(a) = 3, uz(b) = 1, uz(c) = 0, us(a) = 3,
uz(b) = 2, and ug(c) = 0. These utility functions are only
consistent with voter 1’s preference relation in R, and thus,
we can check whether this voter can benefit by deviating to
R%. A quick calculation shows that E[f(R')]., 1 =
Elf(R*)]uy ELf (R, = § > 1 = E[f(R*)]u,, and
E[f(RY)]u, = 5 < 2 = E[f(R?)]u,. Hence, voter 1 can
increase his expected utility if his utility function is us and
thus, f is SD-manipulable. In contrast, voter 1 does not ben-
efit from deviating to R? if his utility function is w, or us.
Since the preferences of the other voters are not consistent
with uy, ua, and us, it follows that f is {uy, us }-strategyproof
on these two profiles.
R!: 1:a,b,c

R?: 1: b,a,c

2:b,c,a
2:b,c,a

3:¢,a,b
3:¢c,a,b

In our results, we always consider U -strategyproofness for
symmetric sets U, i.e., we assume that v € U implies that
u™ uom € U for every permutation m on A. This
formalizes the natural condition that all preference relations
should be treated equally. Moreover, the symmetry condition
is rather weak since every neutral SDS is U’-strategyproof for
a symmetric set U' if it is U-strategyproof for a set U # (.
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Proposition 1. If a neutral SDS is U-strategyproof for a set
U # 0, it is U'-strategyproof for a symmetric set U’ with
UcCcvU'.

A special case of our symmetry assumption is that U con-
sists of a single utility function u and its renamings, i.e., that
U = {uom: m € II}, where II denotes the set of all permu-
tations on A. In this case, we write u'l-strategyproofness in-
stead of U-strategyproofness. Note that u'-strategyproofness
associates every preference relation with exactly one utility
function, whereas {u}-strategyproofness, i.e., strategyproof-
ness for a single utility function u, only affects a single pref-
erence relation. Since the utility of an alternative only de-
pends on its rank for u'l-strategyproofness, we often write
u(k) to denote the utility of the k-th best alternative of a
voter. As the next proposition shows, it suffices to consider
uMl-strategyproofness or even {u}-strategyproofness because
for every SDS f and every preference relation R;, the set of
utility functions u that are consistent with R; and for which
f is strategyproof is convex.

Proposition 2. For every SDS f and preference relation R;,
the set Ur, = {u € U: wis consistent with R; and f is
{u}-strategyproof} is convex.

We can use this proposition to show that an SDS is U-
strategyproof for a large set U by proving that it is ull-
strategyproof for a few utility functions w; € {uy,...,u;}.
Assuming that u1, . .., u; are all consistent with a preference
relation R?;, it follows then from Proposition 2 that the SDS is
@-strategyproof for every utility function 4 that can be rep-
resented as a convex mixture of uq, ..., u;, which means that
it is U-strategyproof for a large set U.

Next, note that U-strategyproofness inherits many attrac-
tive properties from SD-strategyproofness: for instance, the
convex combination of U-strategyproof SDSs is itself U-
strategyproof, i.e., the set of U-strategyproof SDSs is con-
vex for every set U. As a consequence of this observation, it
is often possible to construct an anonymous U-strategyproof
SDS based on a non-anonymous U-strategyproof SDS.
Another similarity between U-strategyproofness and SD-
strategyproofness is that both axioms disincentivize even ma-
nipulations from groups of voters with the same preferences.

Finally, observe that U-strategyproofness can be used to
transfer results from set-valued social choice to the proba-
bilistic setting. We explain this relation using the impossibil-
ity result of Benoit [2002] as example. This theorem states
that strategyproofness is incompatible with 1-unanimity for
set-valued social choice functions if voters prefer every sub-
set of their best two alternatives to every other set and other in
our model negligible conditions are satisfied. For formulating
this result for SDSs, we have to compare lotteries only based
on their support supp(p) = {x € A: p(z) > 0}. Hence,
let € = mingec 4, rerr:f(R,2)>0 f (R, z) denote the smallest
non-zero probability assigned to an alternative by the SDS f
and note that €5 is well-defined since SDSs are defined for
a fixed set of alternatives and voters. Given this probabil-
ity, we derive that every voter whose utility function u sat-
isfies u(2) > (1 — ef)u(l) + efu(3) prefers every lottery
that randomizes only over his best two alternatives to every
other lottery. After rearranging this equation, we can formu-
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late Benoit’s impossibility as follows.

Proposition 3. No SDS f satisfies both u-strategyproofness
and 1-unanimity if u(1) —u(2) < 1if€f (w(2)—u(3)), m >3,
andn > 3.

Note that Proposition 3 highlights the central requirement
of Benoit’s impossibility theorem: voters must be close to
indifferent between their best two alternatives. This refines
Benoit’s reasoning who justifies his strategyproofness notion
with voters who “like his or her two favorite alternatives
“much more” than the rest of the alternatives”.! Based on
this approach, we can also formalize other impossibility re-

sults from set-valued social choice with U-strategyproofness.

5 Results

In the sequel, we employ U-strategyproofness to analyze
the trade-off between strategyproofness and decisiveness.
In particular, we investigate two decisiveness axioms: k-
unanimity and Condorcet-consistency. The first axiom al-
lows for positive results if suitable utility functions are con-
sidered, whereas Condorcet-consistency is incompatible with
uMl-strategyproofness for every utility function u € U.

5.1 k-unanimity

A central result of Gibbard [1977], who attributes it to Hugo
Sonnenschein, is that the SDS called random dictatorship
(henceforth RD) is the only SD-strategyproof SDS that sat-
isfies unanimity and anonymity. This SDS assigns an al-

ternative = in a profile R the probability %, where
PL(R,z) = |{i € N: Yy € A : zR;y}| denotes the plu-
rality score of alternative . A common method for executing
RD is to choose a voter uniformly at random and to return
his most preferred alternative as winner. While RD is one
of the most attractive SD-strategyproof SDSs, it violates k-
unanimity for ¥ > 0. Even more, Benoit [2002] has shown
that every SD-strategyproof SDS fails k-unanimity for k& > 0.

However, we can define a variant of RD that satisfies both
k-unanimity for an arbitrary k& € {0,...,[251]} and U-
strategyproofness for a large set of utility functions U. Hence,
consider the following SDS, which we call k-random dicta-
torship (abbreviated by RD¥): if at least n — k voters agree
that alternative x is the best choice, assign alternative x a
probability of 1; otherwise, return the outcome of RD. As
we show in Theorem 1, RD® satisfies U -strategyproofness
forU = {u € U: u(l) —u(2) > k(u(2) —u(m))}, ie., if
voters have a strong preference for the first alternative, RD*
is strategyproof. Unfortunately, the definition of U depends
on k, i.e., for large values of k, there must be an extremely
large gap between u(1) and u(2). Another variant of RD,
which we refer to as OMNI™, solves this problem. This
SDS assigns probability 1 to an alternative x if more than
half of the voters report = as their best alternative, and oth-
erwise randomizes uniformly among all alternatives that are

"Benoit [2002] also discusses a variant for SDSs in which he uses
the minimal non-zero probability assigned to an alternative. How-
ever, Benoit only gives an example showing that there is a suitable
utility function such that the required preferences over sets extend to
preferences over lotteries.
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at least once top-ranked. This SDS is U-strategyproof for
U={uel:ul)—u?) >>" u2) —u()} While
OMNI* satisfies L";l |-unanimity for all numbers of voters
and alternatives, the condition on U seems only realistic if

there are few alternatives.

Theorem 1. For every k € {1,...,["5%|}, RD" satis-
fies U-strategyproofness for U = {u € U: u(l) — u(2) >
kE(u(2) — u(m))} and violates {u}-strategyproofness for ev-
ery utility function v ¢ U. Moreover, OMNI™ satisfies
U-strategyproofness for U = {u € U: u(l) — u(2) >
S s w(2)—u(i)} and violates {u}-strategyproofness for ev-
ery utility function u € U.

The constraint on the set U for RD" arises naturally by
considering the preference profile in which n — k — 1 voters
top-rank the second best alternative of voter ¢ and the remain-
ing k voters top-rank voter i’s least preferred alternative. In
this situation, voter ¢ can ensure that his second best alterna-
tive is chosen with probability 1 by reporting it as his best
one. Solving the corresponding inequality required by U-
strategyproofness leads to the bound on U. A similar worst-
case analysis can be applied for OMNT*.

While it is positive that k-unanimity and U-strategy-
proofness can be simultaneously satisfied at all, the bounds
on the sets U in Theorem 1 become increasingly worse with
large k£ and m. This raises the question for less demanding
bounds on the utility functions. As our next theorem shows,
the approach used for defining RD* and OMNI* has not
much space for improvement as both SDSs are rank-based.

Theorem 2. There is no rank-based SDS that satisfies u'-
strategyproofness and k-unanimity for 0 < k < 5 if m > 3,

n >3, and U(l) - U(Z) < Zﬁmax(&m—k—‘—l) u(2) - ’LL(Z)

The proof of Theorem 2 works by contradiction: we as-
sume that there is a k-unanimous rank-based SDS f that
satisfies ul-strategyproofness for a utility function v with
’LL(].) - U(Q) < Zzlmax(?;,m—k+l) U(2) - ’LL(Z) Moreover,
let k* = min(k, m — 2). Our analysis then starts at a pro-
file R where n — k* voters favor a the most, which implies
that f(R,a) = 1 due to k-unanimity. The central argument
is a rather involved construction that shows that a voter can
weaken alternative a from the first rank to the second one
without affecting the outcome. By repeatedly applying this
construction, we eventually arrive at a profile R’ where only
k* voters top-rank a and the remaining voters top-rank b,
but f(R',a) = 1. This is in conflict with k-unanimity as
n—k* > n—Fk voters report b as best choice but f(R',b) # 1.

Remark 1. A computer-aided approach has shown that
there are rather technical SDSs that satisfy k-unanimity and
uM-strategyproofness for utility functions u with (1) —
u(2) < 30 ax@moky1) W(2) — u(i) if we dismiss rank-
basedness and m < 4. Hence, rank-basedness is required
for Theorem 2. Moreover, most bounds of the theorem
are tight: if m 2, OMNI* and RD" are even SD-
strategyproof, and if n = 2, k-unanimity is not well-defined
for £ > 0. Furthermore, the condition on the utility func-
tions is almost tight: RD* shows that the bound is tight for
1-unanimity, and OMNI* shows that the bound is tight if
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u(1)

RDZOMNEE
9
RD*!
6 no rank-based
SDSs

3 u(2)

\ \ \ \ mk

1 2 3 4 5

Figure 1: Illustration of Theorem 1 and Theorem 2. We assume
that there are 5 alternatives and consider a utility function u with
w(2) = 3, u(3) = 2, u(4) = 1, and u(5) = 0. The figure
shows for which values of u(1) the SDSs RD (blue area), RD"
(green area), RD? (magenta area), and OMNI* (orange area) are
uM-strategyproof on the vertical axis. The horizontal axis illustrates
the values of k for which these SDSs are k-unanimous. The red area
displays the impossibility of Theorem 2 and the gray area marks the
values of u(1) with u(1) < u(2).

k > m — 2. Finally, RD* shows that no constraint of the
type u(1) —wu(2) < 32 g u(2) — u(i) + e with e > 0
can result in an impossibility because we can always find a
utility function w such that 32" . w(2) — u(i) +e€ >
(1) —u(2) > k(u(2) — u(m)) by making the difference be-
tween u(7) and u(m) for ¢ > 3 sufficiently small. Neverthe-
less, it remains open to find rank-based SDSs that satisfy U-
strategyproofness and k-unanimity for U = {u € U: u(1) —
w(2) =3 i uw(2) —u(i)}and 2 <k <m — 3.

Remark 2. Theorem 1 and Theorem 2 have an intuitive in-
terpretation: if voters strongly prefer their best alternative, it
becomes possible to achieve strategyproofness and decisive-
ness. This follows as strategyproofness is compatible with k-
unanimity if there is a sufficiently large gap between u(1) and
u(2). In contrast, it is impossible that an SDS satisfies both
axioms if voters are close to indifferent between their best
two alternatives. For the class of general SDSs, this is shown
by Benoit [2002], and for the class of rank-based SDSs, The-
orem 2 significantly weakens the requirements on the utility
functions.

Remark 3. Figure 1 illustrates the results of this section.
For this figure, we assume that there are 5 alternatives and
a large number of voters n > 11, and we fix all utilities
but u(1). Hence, we can compute the values of (1) for
all SDSs of Theorem 1 such that the considered SDS is u!!-
strategyproof. The figure shows that for RD*, the required
value of u(1) increases in k and the bound of OMNI" is in-
dependent of k. Moreover, the required values of u(1) are
quite large compared to u(2) for all SDSs but RD. However,
the red area shows the values of (1) for which Theorem 2 ap-
plies and hence, these large values are indeed required. The
white area shows that there is a small gap between the posi-
tive results in Theorem 1 and the impossibility in Theorem 2.
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5.2 Condorcet-consistency

As there are even rank-based SDS that are k-unanimous and
U -strategyproof for large sets U, the question arises whether
stronger decisiveness notions can be achieved by dismissing
rank-basedness. Unfortunately, we find a negative answer to
this question by considering Condorcet-consistency.

Theorem 3. There is no Condorcet-consistent SDS that sat-
isfies ull-strategyproofness regardless of the utility function u
ifm>4,n>5andn # 6, n # 8.

The proof of this result works by contradiction and relies
on a case distinction on the utility function . If u(1)—u(2) <
u(2) —u(m), the utility of the second best alternative is larger
than the average utility, which means that a voter can manipu-
late by making his second best alternative into the Condorcet
winner. If u(1) —u(m — 1) > u(m — 1) — u(m), voters
value their second worst alternative less than the uniform lot-
tery. As a consequence, there is a voter who can manipu-
late by weakening his second worst alternative such that it
is no longer the Condorcet winner. Finally, note that these
two cases are exhaustive: the strictness of the utility func-
tion u entails that u(m — 1) — u(m) < u(l) — u(m — 1) if
u(1l) —u(2) > u(2) — u(m) and m > 4.

A close inspection of the proof shows that the impossibil-
ity also holds if m = 3 unless U only contains equi-distant
utility functions, i.e., utility functions with «(1) — «(2)
u(2) — u(3). This raises the question whether there is a
U-strategyproof SDS that satisfies Condorcet-consistency in
this special case. Indeed, the Condorcet rule (abbreviated by
COND), which assigns probability 1 to the Condorcet win-
ner whenever it exists and returns the uniform lottery over all
alternatives otherwise, satisfies U-strategyproofness for this
set. Even more, the Condorcet rule is uniquely characterized
by these axioms if n is odd.

Theorem 4. COND is the only Condorcet-consistent SDS
that satisfies U-strategyproofness for U = {u € U: u(1) —
w(2) = u(2) —u(3)} if m = 3 and n is odd.

It is easy to show that the Condorcet-rule is U-
strategyproof for U = {u € U : u(1) — u(2) = u(2) —u(3)}
if m = 3 because the uniform lottery on all three alternatives
has for every voter the expected utility of «(2). Hence, the
proof mainly focuses on why no other Condorcet-consistent
SDS f satisfies U-strategyproofness for this set U. For this,
we show that there is a profile R and a voter ¢ such that voter
i’s expected utility E[f(R)],, is less than u(2). Moreover, this
voter can either make his second best alternative into the Con-
dorcet winner or revert to a preference profile in which each
alternative is chosen with a probability of % As both cases
yield an expected utility of «(2) for voter ¢, we have found a
contradiction to U-strategyproofness.

Remark 4. The Condorcet rule is also U-strategyproof for
the set of equi-distant utility functions if m = 3 and n is even.
However, other SDSs satisfy Condorcet-consistency and U-
strategyproofness for even n, too. For instance, the SDS that
assigns the Condorcet winner probability 1 whenever it exists
and uniformly randomizes among the top-ranked alternatives
otherwise satisfies also all required axioms. The proof for this
claim relies on the insight that every voter has a utility of at
least u(2) in the absence of a Condorcet winner.
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Remark 5. A well-known class of SDSs are tournament so-
lutions which only depend on the majority relation Ry =
{(z,y) € A%: nyy(R) > ny(R)} of the input profile R to
compute the outcome. For these SDSs, unanimity and u'!-
strategyproofness entail Condorcet-consistency. Thus, there
are no unanimous and u'l-strategyproof tournament solu-
tions, regardless of the utility function wu, if m > 4. This is
in harsh contrast to results for set-valued social choice, where
attractive tournament solutions satisfy various strategyproof-
ness notions (see, €.g., [Brandt et al., 2016al).

Remark 6. The proof of Theorem 3 also reveals more
insights about the compatibility of k-unanimity and wu'l-
strategyproofness for general SDSs. In particular, the
first case shows that no [%]-unanimous SDS can be u''-
strategyproof for a utility function v with u(1) — u(2) <
w(2) —u(m) if m >4 andn > 3.

6 Conclusion and Discussion

We study a new strategyproofness notion called U-
strategyproofness. Whereas the common notion of SD-
strategyproofness is derived by quantifying over all utility
functions, U-strategyproofness is derived by quantifying only
over the utility functions in a specified set U. This new strate-
gyproofness notion arises from practical observations as often
not all utility functions are plausible, and also has theoretical
advantages because it allows for a much finer analysis than
SD-strategyproofness. Furthermore, we analyze the compat-
ibility of U-strategyproofness and decisiveness axioms such
as k-unanimity and Condorcet-consistency. In particular, we
discuss SDSs that satisfy k-unanimity for any k£ with 0 < k <
n/2 and U-strategyproofness if the set U only contains utility
functions u for which u(1) —u(2) is sufficiently large. More-
over, we show for rank-based SDSs that the large gap between
u(1) and u(2) is required to be strategyproof and has to in-
crease in k. We also prove that U-strategyproofness is incom-
patible with Condorcet-consistency if the set U is symmetric
and m > 4. This impossibility also holds if m = 3 unless
the utility functions in U are equi-distant. In this special case
and if n is odd, the Condorcet rule can be characterized by
U-strategyproofness and Condorcet-consistency.

Our results have a very intuitive interpretation: strate-
gyproofness is only compatible with decisiveness if each
voter has a clear best alternative. Even more, the more de-
cisiveness is required, the stronger voters have to favor their
best alternative. This conclusion is highlighted by Theo-
rems 1 and 2 as well as the impossibility of Benoit [2002].
Moreover, it coincides with the informal argument that it is
easier to manipulate for a voter who deems many alternatives
acceptable as he can just report another acceptable alternative
as his best one. Hence, our results show that the main source
of manipulability are voters who are close to indifferent be-
tween some alternatives.
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