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Abstract

We study one-sided matching problems where each
agent must be assigned at most one object. In
this classic problem it is often assumed that agents
specify only ordinal preferences over objects and
the goal is to return a matching that satisfies some
desirable property such as Pareto optimality or
rank-maximality. However, agents may have car-
dinal utilities describing their preference intensities
and ignoring this can result in welfare loss. We
investigate how to elicit additional cardinal infor-
mation from agents using simple threshold queries
and use it in turn to design algorithms that return a
matching satisfying some desirable matching prop-
erty, while also achieving a good approximation to
the optimal welfare among all matchings satisfy-
ing that property. Overall, our results show how we
can improve welfare by even non-adaptively ask-
ing agents for just one bit of extra information per
object.

1 Introduction
One-sided matching scenarios are ubiquitous in multiagent
resource-allocation settings and have been well-studied, es-
pecially as the housing allocation or housing market prob-
lem both in economics [Shapley and Scarf, 1974; Hyl-
land and Zeckhauser, 1979; Roth and Postlewaite, 1977;
Abdulkadiroğlu and Sönmez, 1998; Abdulkadiroğlu and
Sönmez, 1999; Sönmez and Ünver, 2010] and in computer
science [Abraham et al., 2004; Irving, 2004; Abraham et al.,
2006; Filos-Ratsikas et al., 2014; Amanatidis et al., 2021].
Other examples include assigning faculty members to school
committees, workers to tasks, etc.

Much of the literature assumes that agents have an accept-
able set of objects and that they submit an (ordinal) prefer-
ence order over this set. Given this, the standard objective
is to come up with an assignment of objects to agents (i.e.,
a matching) that satisfies some desirable property like Pareto
optimality [Shapley and Scarf, 1974; Abraham et al., 2004]
or rank maximality [Irving, 2004; Irving et al., 2006].
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Although matchings that satisfy such desirable proper-
ties are better than arbitrary ones, one key drawback is that
they may not take into account agents’ preference intensi-
ties. To illustrate this, consider the following simple example
where there are three agents {a1, a2, a3} and three objects
{o1, o2, o3}. Assume all agents agree that o1 is preferred to
o2 which is preferred to o3, but have different preference in-
tensities (i.e., cardinal utilities) for the objects. In particular,
a1 and a2 assign utility 0.9 to o1 and 0.1 to o2 while a3 as-
signs utility 0.51 to a1 and 0.49 to o2. All agents assign zero
utility for o3. If only ordinal preferences are considered then
any matching is, for example, Pareto optimal. However, any
matching that assigns o3 to a3 leads to significant loss in over-
all social welfare compared to other Pareto optimal matchings
and so is, in some sense, less desirable.

The observation that there might be a loss in welfare due
to ignoring preference intensities (henceforth, cardinal utili-
ties) is not new, and in particular, has been a much debated
issue surrounding various school-choice mechanisms ( [Ab-
dulkadiroğlu et al., 2011; Abdulkadiroğlu et al., 2015]). This
has also lead to proposals for new school choice mechanisms
that ask agents to provide some extra information along with
their ordinal preferences [Abdulkadiroğlu et al., 2015]. Our
work here is partially motivated by this line of work, but takes
a more computational approach that is similar in style to the
work that looks at distortion—which is essentially the cost
of using only ordinal information—in various settings [Pro-
caccia and Rosenschein, 2006; Boutilier et al., 2015; An-
shelevich and Sekar, 2016; Anshelevich and Zhu, 2017;
Goel et al., 2017; Abramowitz and Anshelevich, 2018].

Given a one-sided matching instance (the set of agents,
objects, and agents’ ordinal preferences), our goal is to find
matchings that satisfy some particular property, say,X , while
also accounting for agents’ cardinal utilities. We accomplish
this by designing algorithms that are guaranteed to return
matchings that satisfy propertyX while also achieving a good
approximation to the optimal welfare amongst all matchings
that satisfy X . One way to achieve this is to ask agents to
directly provide their cardinal utilities for objects. Such an
approach, however, places a high burden on the agents them-
selves as they are required to articulate and communicate
precise cardinal information. Instead we propose a middle-
ground and use simple binary queries to elicit relevant infor-
mation from agents. Our goal is to ask each agent a small
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number of such queries and return a matching that achieves a
good approximation as described above.

In particular, we consider the following four well-
studied matching properties: Pareto optimal matchings, rank-
maximal matchings, max-cardinality rank-maximal match-
ings, and fair matchings, and two rich cardinal utility mod-
els (unit-sum and unit-range valuations). We first explore
adaptive algorithms—algorithms that are able to change their
queries depending on how agents answer previous queries—
and show how for each of the properties mentioned above
and for any ε > 0, there is a deterministic algorithm that asks
O(c log n) queries per agent, where c =

⌈
log(n2·1/ε)
log (1+ε/2)

⌉
, and

returns a matching that achieves a (1 + ε)-approximation to
the optimal welfare among all matchings that satisfy the prop-
erty of interest. We then focus on non-adaptive algorithms
which, we argue, have many practical advantages over adap-
tive algorithms, and explore what is possible to achieve in the
special case where the algorithm is allowed at most one query
per (agent, object) pair. Table 1 summarizes our results.

Related Research. Motivation for our work is derived from
the school choice problem which addresses the loss in wel-
fare due to not taking preference intensities into account
[Abdulkadiroğlu et al., 2011; Abdulkadiroğlu et al., 2015].
Our concern here is similar, but we take a computational
approach, reminiscent to the work on distortion [Procac-
cia and Rosenschein, 2006; Anshelevich and Zhu, 2017;
Abramowitz and Anshelevich, 2018]. However, unlike this
body of work which aims to calculate the worst-case loss
in welfare due to only having ordinal preferences, we as-
sume that, in addition to ordinal preferences, it is also
possible to obtain information about agents’ cardinal utili-
ties. This in turn is similar to an approach that has been
explored in the voting context [Abramowitz et al., 2019;
Amanatidis et al., 2020], and one-sided matching [Amana-
tidis et al., 2021]. While this latter work also looks at one-
sided matching, the objective is different with its focus on
distortion, as opposed to finding “good” matchings satisfy-
ing certain properties. We also observe that the query models
used differ (with ours being significantly weaker).

Our work is also related to the study of communication
complexity of voting protocols [Mandal et al., 2020], to the
work on participatory budgeting which compares different
elicitation methods based on the distortion achieved ([Goel
et al., 2019; Benade et al., 2020]), and is more broadly in
line with the growing body of work that explicitly aims to
make mechanisms or algorithms more robust, by either mak-
ing use of coarse preference information [Chiesa et al., 2012;
Chiesa et al., 2014; Menon and Larson, 2019], or by mak-
ing sure that the algorithms designed produce solutions that
work “well” (in the approximation sense) even under slightly
modified inputs [Shiryaev et al., 2013; Bredereck et al., 2017;
Menon and Larson, 2018; Chen et al., 2019].

2 Model
For k ∈ Z+, let [k] denote the set {1, . . . , k}. We use N ,
where |N | = n, to denote the set of agents {a1, . . . , an}, and
H, where |H| = n, to denote the set of objects {h1, . . . , hn}.

We refer to ai as agent i and hj as object j. Every agent ai
has a weak order, Pi, over a subset of objects Ai ⊆ H, where
Ai, |Ai| ≥ 1, is the set of objects ai is willing to be matched
to, the acceptable set of ai. We use P = (P1, . . . , Pn) to
refer to the weak orders of all the agents in N and refer to P
as the preference profile of the agents. For an agent ai, and for
two objects hj , hk ∈ Ai, we use hj �i hk to denote that ai
strictly prefers hj over hk, and use hj �i hk to indicate that
hj is either strictly preferred or considered to be equivalent
to hk. We refer to I = (N ,H,P = (P1, . . . , Pn)) as an
instance, which encodes all the information about the agents,
objects, and the agents’ preferences, and use I to denote the
set of all possible instances.

Given an instance I = (N ,H,P), GI = (N ∪ H, E)
is the induced bipartite graph with edges (ai, hj) ∈ E if
hj ∈ Ai. We refer to e = (ai, hj) ∈ E as a rank-k edge
if |Uij | = k − 1, where Uij = {h` ∈ Ai | h` �i hj}. We
also use rank(ai, hj) to denote the k such that (ai, hj) is a
rank-k edge and refer to an object hj as ai’s rank-k object if
rank(ai, hj) = k.

We additionally assume that each agent ai has a cardi-
nal utility function vi : H → [0, 1], which is consistent with
the preference order Pi (meaning, h1 �i h2 ⇔ vi(h1) ≥
vi(h2)); we assume that if h /∈ Ai, then vi(h) = 0. We use
v = (v1, . . . , vn) to denote the valuation profile of agents and
VI to denote the set of all possible valuation profiles that are
consistent with the given preference profile in I. In this work
we consider two specific classes of valuation functions;

Unit-sum valuations: For each agent i, vi is such that∑
h∈H vi(h) = 1.

Unit-range valuations: Agents are said to have unit-range
valuations if for each agent i, there exists hj , hk ∈ Ai
such that hj �i hk, and maxh∈Ai

vi(h) = 1 and
minh∈Ai vi(h) = 0. In words, the most preferred ob-
jects have value 1, the least preferred objects have value
0, and every other acceptable object has value between
0 and 1.

Note that information about the cardinal utilities is not part
of an instance I. Given I, we are interested in matchings
of agents to objects, namely bijections µ : N → H. For c ∈
N ∪H, we refer to µ(c) as c’s partner in µ or as c’s allocation
in µ. Alternatively, a matching is also defined as a collection
of edges µ in GI such that each vertex is part of at most one
edge in µ. We use MGI to denote the set of all possible
matchings in GI .

2.1 Pareto Optimal and Signature-Based
Matchings

Although for a given instance there are several possible
matchings, we are interested in matchings which also satisfy
some additional desirable property. In particular, we consider
the following well-studied properties: Pareto optimal match-
ings [Shapley and Scarf, 1974; Abraham et al., 2004], rank-
maximal matchings [Irving, 2004; Irving et al., 2006], max-
cardinality rank-maximal matchings [Mehlhorn and Michail,
2005; Abraham et al., 2006], and fair matchings [Mehlhorn
and Michail, 2005; Huang et al., 2013]. The latter three
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Ordinal
algorithms

Adaptive threshold
query algorithms(

for any ε > 0, O(c log n) queries
per agent, where c =

⌈
log(n2·1/ε)
log (1+ε/2)

⌉)
Non-adaptive threshold

query algorithms(
at most 1 query

per (agent, object) pair
)

unit-sum valuations

UB: O(n2)
[Theorem 1]

LB: Ω(n2)
[Theorem 1]

1 + ε
[Theorem 3]

UB: O(n2/3)
[Theorems 5 and 4]

LB: Ω(
√
n)

[Theorem 8]

unit-range valuations

UB: O(n)
[Theorem 1]

LB: Ω(n)
[Theorem 1]

1 + ε
[Theorem 3]

UB: O(
√
n)

[Theorems 6 and 7]

LB: Ω(
√
n)

[Theorem 8]

Table 1: Summary of our results. For X , where X is one of the properties in the set {Pareto optimal, rank-maximal, max-cardinality rank-
maximal, fair}, an upper bound (UB) of α indicates that there is a deterministic algorithm that always produces a matching that satisfies X
and achieves an α-approximation to the optimal welfare among matchings that satisfy X . A lower bound (LB) of β indicates that there is no
deterministic algorithm that produces a matching that satisfies X and achieves a β-approximation to the optimal welfare among matchings
that satisfy X .

are different ways to strengthen Pareto optimality and are to-
gether referred to as signature-based matchings.
Definition 1. Given an instance I = (N ,H,P), a matching
µ ∈MGI is Pareto optimal (PO) w.r.t. I if ∀µ′ ∈MGI

(∃ai ∈ N , µ′(ai) �i µ(ai))⇒ (∃aj ∈ N , µ′(aj) ≺j µ(aj))

Definition 2. Given an instance I = (N ,H,P), and a
matching µ ∈ MGI , let si denote the number of agents that
are matched to a rank-i edge in µ. Then, µ is

• rank-maximal if µ maximizes the number of agents who
are matched to a rank-1 edge and, subject to that, it max-
imizes the number of agents who are matched to rank-2
edges, and so on. Formally, for each µ′ inMGI define
its signature to be the n-tuple sµ′ = (s1, . . . , sn). Then
µ is the matching with the lexicographically optimal sig-
nature.

• max-cardinality rank-maximal if µ is a maximum car-
dinality matching and, subject to that, is also rank-
maximal. Formally, for each µ′ inMGI define its signa-
ture to be the (n+ 1)-tuple (

∑n
i=1 si, s1, . . . , sn). Then

µ is the matching with the lexicographically optimal sig-
nature.

• fair if µ is a maximum cardinality matching and, sub-
ject to that, minimizes the number of agents who are
matched to a rank-n edge and, subject to that, min-
imizes the number of agents who are matched to a
rank-(n − 1) edge, and so on. Formally, for each µ′

in MGI define its signature to be the (n + 1)-tuple
(
∑n
i=1 si,−sn,−sn−1, . . . ,−s1). Then µ is the match-

ing with the lexicographically optimal signature.
Signature-based matchings can be reduced to an instance

of the following problem, which we refer to as priority-p
matchings, for a given p = (p1, · · · ,pn) [Irving, 2004;
Irving et al., 2006; Mehlhorn and Michail, 2005; Huang et
al., 2013; Michail, 2007].
Definition 3. Given an instance I = (N ,H,P =
(P1, . . . , Pn)) and a priority vector p = (p1, . . . ,pn), where

∀i ∈ [n], pi ∈ Z≥0 and ∃j, k ∈ [n] such that pj 6= pk, a
matching µ ∈ MGI is said to be a priority-p matching if µ
is a matching of maximum weight in MGI , where a rank-r
edge in GI is assigned the weight pr.

In particular, given an instance I, we can show that,1

• when pj = n2(n−j+1) for all j ∈ [n], a matching is
a priority-p matching if and only if it is rank-maximal
matching w.r.t. I.

• when pj = n2n+n2(n−j) for all j ∈ [n], a matching is a
priority-p matching if and only if it is a max-cardinality
rank-maximal matching w.r.t. I.

• when pj = 4n2n − 2nj−1 for all j ∈ [n], a matching is
a priority-p matching if and only if it is a fair matching
w.r.t. I.

For ease of exposition, we sometimes use priority-p, where
pi = 0 for all i ∈ [n] to refer to Pareto optimal matchings.
Note that this is purely for notational convenience since the
algorithms we discuss in the context of Pareto optimal match-
ings are extensions to the ones for priority-p matchings. We
also use P to denote the set of priority vectors of interest.

2.2 Worst-Case Welfare Lost
Given an instance I, we are interested in deterministic al-
gorithms which return a matching that satisfies one of the
properties just defined. However, such matchings may not
be unique. We argue that a principled way of select-
ing amongst all such matchings is to consider the cardi-
nal utilities of the agents, returning a matching with small
worst-case welfare loss. Formally, for an instance I, con-
sider the set of matchings S ⊆ MGI such that S is the
set of all Pareto optimal/rank-maximal/max-cardinality rank-
maximal/fair matchings in GI . Next, for a matching µ ∈ S,
v ∈ VI , and for an edge e = (ai, hj) ∈ µ, let value(e) =

1The proof of this can be found in the full version of the paper
(arXiv:2011.13977).
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Algorithm 1 Welfare Optimal Priority-p Matching

1: Input: I = (N ,H,P), priorities p = (p1, . . . ,pn), and v =
(v1, . . . , vn), where vi : H → [0, 1]

2: Output: welfare-optimal priority-p matching w.r.t. I
3: GI = (N ∪H, E)← graph induced by I
4: for e = (ai, hj) ∈ E do
5: r ← rank(ai, hj)
6: we ← pr + vi(hj)
7: end for
8: µ← max-weight matching in GI with weights {we}e∈E
9: return µ

vi(hj) and SW(µ | v) =
∑
e∈µ value(e), the social welfare

of µ given the valuations v.2 Given this, consider a determin-
istic algorithm A where, for all I ∈ I, A(I) ∈ S and let
L(A), which we refer to as the worst-case welfare loss of A,
be defined as L(A) := maxI∈I L(A, I), where

L(A, I) := sup
v∈VI

max
µ∗∈S

SW(µ∗ | v)

SW(A(I) | v)
.

The objective is to design algorithms that return a match-
ing with the desired property and minimize L(A). Through-
out this paper, we say that, for an α ≥ 1, an algorithm A
achieves an α-approximation to the optimal social welfare
among Pareto-optimal/rank-maximal/max-cardinality rank-
maximal/fair matchings if L(A) ≤ α.

We first observe that any purely ordinal algorithm, that is
an algorithm that uses only the ordinal preferences of the
agents, performs poorly with respect to worst-case welfare
loss. Due to space limitations all proofs are in the full version
(arXiv:2011.13977).

Theorem 1. Let X denote one of the properties in the
set {Pareto-optimal, rank-maximal, max-cardinality rank-
maximal, and fair}. Let A be a deterministic ordinal algo-
rithm that always produces a matching that satisfies property
X . If there are n agents with unit-sum valuation functions,
then L(A) ∈ Ω(n2). If there are n agents with unit-range
valuation functions then L(A) ∈ Ω(n). Moreover, these
bounds are asymptotically tight.

At the other extreme, an algorithm may have access to
all utility information from the agents and, thus, is capable
of returning the welfare-optimal matching subject to the un-
derlying desired property. In particular, given an instance
I = (N ,H,P) and valuation functions of the agents v =
(v1, . . . , vn), where vi : H → [0, 1], the welfare-optimal
priority-p problem is to find a matching of maximum welfare
among the set of priority-p matchings. We observe that this
reduces to an instance of the max-weight matching problem
on GI .

Theorem 2. Given an instance I = (N ,H,P), a vec-
tor of priorities p = (p1, . . . ,pn), where p ∈ P, and
v = (v1, . . . , vn), where vi : H → [0, 1], Algorithm 1 returns
a welfare-optimal priority-p matching w.r.t. I.

2For notational convenience, when v is clear from the context,
we just write SW(µ) instead of SW(µ | v).

3 Binary Threshold Queries
In this section we look at the central question of this paper:
How can one improve social welfare in one-sided matching
problems by asking only a small number of queries? We
believe that asking directly for cardinal utility information
places a high cognitive burden on agents. Therefore, we aim
for a middle-ground between solely ordinal and fully cardinal
algorithms. We do this by analysing the power of using very
simple queries, namely binary threshold queries.

Definition 4. For an agent ai, object hj , and a real num-
ber tk ∈ [0, 1], a binary threshold query, Q(ai, hj , tk), asks
agent ai to return 1 (alternatively, asks them to say “Yes”)
if vi(hj) ≥ tk, and 0 (alternatively, asks them to say “No”)
otherwise.

Given an instance I and answers to a certain number of
binary threshold queries, our goal is to design deterministic
algorithmsA that minimize the worst-case welfare loss L(A)
and, for all I ∈ I, produces a matching in S (i.e.,A(I) ∈ S),
where S is the set of all Pareto optimal/rank-maximal/max-
cardinality rank-maximal/fair matchings in GI . Towards
this end, we begin by considering adaptive algorithms—
algorithms that are allowed to change its queries based on the
agents’ responses—and show how, when considering each
of the four properties of interest, one can obtain a (1 + ε)-
approximation to the optimal welfare. Following this, we
look at, what we believe is the more interesting and practi-
cal, case of non-adaptive algorithms. In particular, we restrict
ourselves to algorithms that can ask at most one query per
(agent, object) pair and show upper and lower bounds on the
approximation achievable. Unless explicitly specified, all re-
sults hold for both unit-sum and unit-range valuations.

3.1 Adaptive Algorithm to Achieve
(1 + ε)-Approximation

Given an instance I and a property encoded as a priority-
vector. Algorithm 2 returns a matching with the desired prop-
erty. The high-level idea behind the algorithm is straightfor-
ward. For a specific choice of parameter c, it associates a
partition of objects with every agent, where for k ∈ [c], an
object is in Eik if agent ai’s value for the object is within
some defined interval Bk. Using these partitions, carefully
computed weights are assigned to the edges in the induced
bipartite graph, GI . A max-weight matching on the result-
ing weighted graph is then computed. Below we show for
c =

⌈
log(n2·1/ε)
log (1+ε/2)

⌉
, this results in an (1 + ε)-approximation

algorithm that uses O(c log n) queries per agent. In particu-
lar, this means that one can achieve a 2-approximation using
O(log2 n) queries per agent.

Theorem 3. Given an ε > 0, an instance I = (N ,H,P),
and a priority vector p = (p1, . . . ,pn), Algorithm 2
adaptively asks O(c log n) queries per agent, where c =⌈
log(n2·1/ε)
log (1+ε/2)

⌉
, and returns a

1. Pareto optimal matching µ that achieves a (1 + ε)-
approximation to the optimal welfare among all Pareto
optimal matchings when pi = 0 for all i ∈ [n].
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Algorithm 2
1: Input: ε > 0, I = (N ,H,P), and p = (p1, . . . ,pn)
2: Output: a PO matching when pi = 0 for all i ∈ [n] and a

priority-p matching when p ∈ P
3: GI = (N ∪H, E)← graph induced by I
4: c←

⌈
log(n2·1/ε)
log (1+ε/2)

⌉
5: ti ← ( 2

2+ε
)i, for i ∈ [c]

6: for ai ∈ N do
7: for k ∈ [c] do
8: Eik ← {(ai, hj) ∈ E | Q(ai, hj , tk) = 1 and, if k ≥

2,Q(ai, hj , tk−1) = 0}
9: for e = (ai, hj) ∈ Eik do

10: r ← rank(ai, hj)
11: value′(e)← tk
12: we ← pr + value′(e)
13: end for
14: end for
15: end for
16: µ← max-weight matching in GI with weights {we}e∈E
17: if pi = 0 for all i ∈ [n] then
18: µ ← run top-trading cycles (TTC) algorithm with µ (from

line 16) as the initial endowment
19: end if
20: return µ

2. priority-p matching µ that achieves a (1 + ε)-
approximation to the optimal welfare among all priority-
p matchings when p ∈ P.

We observe that Theorem 3 immediately informs us about
distortion. Any algorithm that returns a Pareto-optimal
matching and achieves an α-approximation to the optimal
welfare amongst all Pareto-optimal matchings must have dis-
tortion of α since welfare-optimal matchings are necessarily
Pareto-optimal. Thus, we are able to automatically confirm
and extend earlier distortion results [Amanatidis et al., 2021],
using a weaker query model. Furthermore, we again empha-
size our interest in broader classes of matchings.

3.2 Non-Adaptive Algorithms: Asking One Query
Per (agent, object) Pair

We now turn our attention to non-adaptive algorithms, in par-
ticular looking at algorithms that can only ask one query per
(agent, object) pair and cannot change these queries depend-
ing on earlier responses. We believe that this is the more in-
teresting and practical setting to consider for this problem,
since such an algorithm does not have to wait for the agents
to respond and also does not require an agent to answer mul-
tiple queries with respect to the same object—doing which
would in turn entail that the agent is somewhat sure about
their cardinal utilities.

We present two algorithms for when agents have unit-sum
valuations, first in the context of priority-p matchings and
second for Pareto optimal matchings. The latter is an exten-
sion of the former. In Algorithm 3, first the thresholds for
the queries are carefully chosen. Then, in the induced bi-
partite graph, GI , weights for the edges are determined by
agents’ responses to queries. A max-weight matching in this
graph is returned and is guaranteed to be a priority-p match-
ing. If a Pareto-optimal matching is required then a little bit

Algorithm 3
1: Input: an instance I = (N ,H,P) and priorities p =

(p1, . . . ,pn)
2: Output: a priority-p matching when p ∈ P
3: GI = (N ∪H, E)← graph induced by I
4: t1 ← 1

n1/3

5: ti ← 1

min{i,n1/3}·n2/3 , for all i ∈ {2, . . . , n}
6: for e = (ai, hj) ∈ N ×H do
7: r ← rank(ai, hj)
8: ifQ(ai, hj , tr) then
9: we ← pr + tr

10: else
11: we ← pr
12: end if
13: end for
14: µ← max-weight matching in GI , where weights are (we)e∈E
15: return µ

Algorithm 4
1: Input: an instance I = (N ,H,P = (P1, . . . , Pn))
2: Output: a Pareto optimal matching
3: µ′MM ←matching returned by Alg 3 on I and p = (0, . . . ,0)
4: µMM ← µ′MM \ {e ∈ µMM | we = 0}
5: if |µMM | == 0 then
6: µ′aux ← matching in GI that maximizes the number of

agents who are matched with an edge of rank at most
b 3
√
n/2c

7: else
8: µ′aux ← matching in GI where as many agents as possible

to a rank-1 edge
9: end if

10: µaux ← µ′aux \ {(a, o) | (a, o) ∈
µ′aux and either a or o is matched in µMM}

11: µrest ← arbitrarily match the acceptable (agent, object) pairs
that are not matched in µMM ∪ µaux

12: µ← run TTC with µMM ∪ µaux ∪ µrest as initial endowments
and return the resulting matching.

13: return µ

of additional work is needed to handle the situation where
Algorithm 3 returns a matching where not all agents and ob-
jects are matched. Algorithm 4 is the extension that handles
this case, by carefully handling the initial unmatched agents
through the construction of an auxiliary matching.
Theorem 4. Given an instance I = (N ,H,P) and a vector
of priorities p = (p1, . . . ,pn), where p ∈ P, Algorithm 3
asks one non-adaptive query per (agent, object) and returns a
priority-p matching that achieves anO(n2/3)-approximation
to the optimal welfare among all priority-p matchings for the
case when agents have unit-sum valuations.
Theorem 5. Given an instance I = (N ,H,P), Algorithm 4
asks one non-adaptive query per (agent, object) pair and re-
turns a Pareto optimal matching that achieves an O(n2/3)-
approximation to the optimal welfare among all Pareto opti-
mal matchings for the case when agents have unit-sum valu-
ations.

Finally, we also consider the case when agents have unit-
range valuations and show that it is possible to obtain an
O(
√
n)-approximation to the optimal social welfare among
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Pareto optimal and priority-p matchings. The algorithms and
analyses for this case share similarities with Algorithms 3
and 4, and can be found in the full version (arXiv:2011.
13977).
Theorem 6. Given an instance I = (N ,H,P) and a
vector of priorities p = (p1, . . . ,pn), where p ∈ P,
there exists an algorithm that asks one non-adaptive query
per (agent, object) and returns a priority-p matching that
achieves an O(

√
n)-approximation to the optimal welfare

among all priority-p matchings for the case when agents have
unit-range valuations.
Theorem 7. Given an instance I = (N ,H,P), there exists
an algorithm that asks one non-adaptive query per (agent,
object) and returns a Pareto optimal matching that achieves
an O(

√
n)-approximation to the optimal welfare among all

Pareto optimal matchings for the case when agents have unit-
range valuations.

Lower Bounds
We finally turn our attention to lower bounds for the
case when an algorithm can ask at most one query per
(agent, object). We show that, for the unit-sum and unit-
range valuation cases, any deterministic algorithm A that
asks at most one query per (agent, object) pair and pro-
duces a Pareto-optimal/rank-maximal/max-cardinality rank-
maximal/fair matching has a worst-case welfare loss of
Ω(
√
n), i.e., L(A) ∈ Ω(

√
n).

Theorem 8. Let X denote one of the properties in the
set {Pareto-optimal, rank-maximal, max-cardinality rank-
maximal, and fair}. Let A be a non-adaptive determinis-
tic algorithm that always produces a matching that satisfies
property X and asks at most one query per (agent, object)
pair. If there are n agents with unit-sum valuation functions
or unit-range valuations, then L(A) ∈ Ω(

√
n).

4 Discussion
We investigated the benefit of eliciting a small amount of in-
formation about agents’ cardinal utilities in the context of
one-sided matching. We designed algorithms that used sim-
ple threshold queries and returned a matching satisfying some
desirable matching property, while also achieving a good ap-
proximation to the optimal welfare among all matchings sat-
isfying that property. Our results show how we can improve
welfare by even non-adaptively asking agents for just one bit
of extra information per object. Given a one-sided matching
instance, there are often multiple matchings of interest and
we view the methodology we presented here as providing a
principled way of tie-breaking.

While adaptive algorithms provide better approximation
guarantees, we believe the benefits of non-adaptive ap-
proaches outweigh the negatives. The argument for not in-
sisting agents reveal full and exact cardinal utility informa-
tion in the first place is that this places too high a cognitive
demand on the agents. Our non-adaptive approach, which
asks for only one bit of information for each (agent, object)
pair, could be implemented using a simple menu – reducing
the time and effort an individual agent must interact with the
matching process.

There are a number of future research directions that this
work can take. For example, we may want multiple agents to
be assigned the same object, like when assigning students to
courses or schools. Only minimal modifications are needed
to address this case. In particular, every time we construct
a graph in any of the algorithms, all that needs to be done
is to create kj copies for the node that corresponds to ob-
ject hj . Other open algorithmic problems include address-
ing the gap between the upper and lower bounds for the non-
adaptive algorithms, expanding the set of properties of inter-
est to include, for example, popular matchings [Abraham et
al., 2007], or asking similar questions in the context of two-
sided matching problems. Finally, we are interested in bet-
ter understanding the implications of deploying such an ap-
proach in practice, including evaluating how interface-design
might best support queries, as well as better understanding
what matching properties are deemed to be most important
by users and designers of systems.
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