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Abstract

We study the allocation of indivisible goods among
groups of agents using well-known fairness notions
such as envy-freeness and proportionality. While
these notions cannot always be satisfied, we pro-
vide several bounds on the optimal relaxations that
can be guaranteed. For instance, our bounds im-
ply that when the number of groups is constant
and the n agents are divided into groups arbitrar-
ily, there exists an allocation that is envy-free up to
Θ(
√
n) goods, and this bound is tight. Moreover,

we show that while such an allocation can be found
efficiently, it is NP-hard to compute an allocation
that is envy-free up to o(

√
n) goods even when a

fully envy-free allocation exists. Our proofs make
extensive use of tools from discrepancy theory.

1 Introduction
Resource allocation problems arise in numerous facets of
modern society, from allotting supplies to neighborhoods in
a city to distributing personnel among governmental organi-
zations. A principal consideration when allocating resources
is fairness: the society is better off when all parties involved
feel that they receive a fair share of the resource. It there-
fore comes as no surprise that the study of how to allocate
resources fairly—commonly referred to as fair division—has
received substantial attention in economics and, as societies
becomes more interconnected and applications grow in scale,
in computer science [Brams and Taylor, 1996; Moulin, 2003;
Thomson, 2016; Moulin, 2019]

The vast majority of the fair division literature assumes that
each involved party consists of a single agent. Yet, in many
resource allocation scenarios, especially large-scale ones, re-
sources are allocated to groups of agents—even though the
agents in each group share the same set of goods, they may
have varying preferences over different goods in the set. In-
deed, some citizens of a neighborhood may benefit from new
books allotted to the public library, while others would rather
have additional fitness equipment in their local park. Simi-
larly, members of an organization may have diverse opinions
about the new personnel that they would like to have in their
organization. These scenarios cannot be captured by the tra-

ditional fair division setting, in which each recipient of a bun-
dle of goods is represented by a single preference.

The group aspect of fair division has been addressed in
a number of recent papers [Manurangsi and Suksompong,
2017; Ghodsi et al., 2018; Suksompong, 2018; Segal-Halevi
and Nitzan, 2019; Segal-Halevi and Suksompong, 2019;
Kyropoulou et al., 2020]. Most of these papers studied the
important fairness notion of envy-freeness: an agent is said to
be envy-free if she values the goods allocated to her group at
least as much as those allocated to any other group. When
goods are discrete—books, personnel, fitness equipment, and
many other common supplies fall into this category—envy-
freeness cannot always be satisfied even when allocating the
goods among individual agents; indeed, this can be easily
seen when there is a single valuable good and at least two
agents. This observation has motivated relaxing the envy-
freeness criterion to envy-freeness up to c goods (EFc), which
means that any agent’s envy toward another group can be
eliminated by removing at most c goods from that group’s
bundle, where c ≥ 1 is an integer parameter.

When allocating goods among individual agents, an EF1
allocation can be found regardless of the number of agents
[Lipton et al., 2004]. However, the picture for group allo-
cation is much less clear, even in the simplest case of two
groups. Segal-Halevi and Suksompong [2019] showed that
if the two groups contain n agents in total and the agents
have additive valuations, then an EFn allocation is guar-
anteed to exist. Their result follows by applying a clas-
sic theorem on consensus halving, i.e., a partition of a set
of divisible goods into two parts such that every agent val-
ues both parts equally. Since there is always a consensus
halving in which at most n goods are divided [Alon, 1987;
Simmons and Su, 2003], rounding such a consensus halving
yields an EFn allocation.1 On the other hand, Kyropoulou
et al. [2020, Prop. 3.5] gave a simple example showing that
it is impossible to ensure EFc for c ∈ o(log n), thereby leav-
ing an exponential gap in this fundamental question. Can we
always achieve an impressive fairness guarantee of mere log-
arithmic envy, or does the envy scale linearly with the number
of agents in the worst case?

1In fact, Segal-Halevi and Suksompong [2019] gave a slightly
better guarantee of EF(n−1). This guarantee was obtained by find-
ing a consensus halving for n − 1 of the agents, and letting the re-
maining agent choose the part that she prefers.
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1.1 Our Results
In this paper, we give a precise answer to the above question,
and much more. We consider a general setting with n =
n1 + · · ·+nk agents distributed into k ≥ 2 groups consisting
of n1, . . . , nk ≥ 1 agents, respectively. As is common in
fair division, we assume that the agents have additive utilities
over the goods. Besides EFc, we investigate relaxations of
two other important fairness notions: proportionality—every
agent believes that the share allocated to her group is worth
at least 1/k of the entire set of goods—and consensus 1/k-
division—each agent finds all k bundles to be of equal value.2
The precise definitions can be found in Section 2.1.

For each fairness notion and each n1, . . . , nk, we are inter-
ested in the smallest positive value c such that an allocation
satisfying that notion up to c goods always exists for agents
with arbitrary additive utilities. For envy-freeness and pro-
portionality, we denote this value of c by cEF(n1, . . . , nk)
and cPROP(n1, . . . , nk), respectively. On the other hand, for
consensus 1/k-division, the partition of agents into groups is
inconsequential, so we use the notation cCD

k (n). Our main
results provide bounds on these values:
Theorem 1.1. For any k, n1, . . . , nk ∈ N,

O(
√
n) ≥ cEF(n1, . . . , nk)

≥ Ω(
√

max{n1, . . . , nk}/k3).

Theorem 1.2. For any k, n1, . . . , nk ∈ N,

O(
√
n) ≥ cPROP(n1, . . . , nk)

≥ Ω(
√

max{n1, . . . , nk}/k3).

Theorem 1.3. For any n, k ∈ N,

O(
√
n) ≥ cCD

k (n) ≥ Ω(
√
n/k).

Note that since max{n1, . . . , nk} ≥ n/k, all three bounds
are asymptotically tight when k is constant. In particular,
Theorem 1.1 answers the question that we posed earlier: tak-
ing k = 2, we find that the optimal envy-freeness guarantee
for two groups is EFc where c ∈ Θ(

√
n). This significantly

improves upon the lower bound of Ω(log n) and upper bound
of O(n) from prior work, and implies that a decent, though
not outstanding, fairness guarantee can be obtained. We es-
tablish Theorem 1.3 along with the upper bounds of Theo-
rems 1.1 and 1.2 in Section 3, and the lower bounds of Theo-
rems 1.1 and 1.2 in Section 4.

Our main tools and techniques throughout this work come
from discrepancy theory, an area of mathematics that stud-
ies how much deviation from the desired state is necessary
in various settings—we provide the relevant background in
Section 2.2. The tools that we use imply that for each of the
fairness notions, an allocation satisfying the corresponding
upper bound in Theorems 1.1–1.3 can be found efficiently. In
light of this, a natural question is whether we can compute an
allocation improving upon these bounds if such allocations
are known to exist in a given instance. In Section 5, we pro-
vide a strong negative answer to this question: for example,

2When k = 2, consensus 1/k-division is better known as con-
sensus halving [Simmons and Su, 2003].

we show that even if a fully envy-free allocation is known to
exist for a certain instance, it is still NP-hard to find an allo-
cation that is envy-free up to o(

√
n) goods for that instance.

1.2 Further Related Work
While fair division has a long and storied history, several fair-
ness notions for the indivisible goods setting, including envy-
freeness relaxations, have only been proposed and studied in
the past few years [Bouveret et al., 2016; Markakis, 2017].
In the group setting, Kyropoulou et al. [2020] showed that
EF1 can be guaranteed for all agents only when the groups
are small—for instance, with two groups, an EF1 alloca-
tion does not always exist when both groups have size at
least three. Segal-Halevi and Suksompong [2019] investi-
gated democratic fairness, where the goal is to satisfy a cer-
tain fraction of the agents in each group. They showed that
for two groups with any number of agents, there exists an
allocation that is EF1 for at least half of the agents in each
group—this ratio is tight in the worst case, and continues to
be tight even if we relax EF1 to EFc for any constant c.

Besides the model that we consider, a number of papers
have studied related models and notions. Ghodsi et al. [2018]
addressed rent division among groups, where in addition to
deciding the allocation of the rooms, the agents must de-
termine how to split the rent of their apartment. Benabbou
et al. [2019] examined a group setting where the goods allo-
cated to each group are further divided among the members
of the group, so in contrast to our setting, each agent does
not derive full utility from the bundle of her group. Several
authors studied individual resource allocation using fairness
notions relating different groups of agents, for example no-
tions aiming to minimize envy that arises between groups
[Berliant et al., 1992; Husseinov, 2011; Todo et al., 2011;
Aleksandrov and Walsh, 2018; Conitzer et al., 2019; Aziz
and Rey, 2020].

Like fair division in general, consensus 1/k-division and
consensus halving have been studied by mathematicians and
economists for several decades [Hobby and Rice, 1965;
Alon, 1987; Simmons and Su, 2003], and attracted re-
cent interest from computer scientists in light of new com-
putational complexity results [Filos-Ratsikas and Goldberg,
2018; Filos-Ratsikas et al., 2020; Goldberg et al., 2020;
Deligkas et al., 2021]. In particular, Filos-Ratsikas and Gold-
berg [2018] proved that approximate consensus halving of
a one-dimensional heterogeneous divisible resource is PPA-
complete—this constituted the first PPA-completeness result
for a problem that is “natural” in the sense that its description
does not involve a polynomial-sized circuit.

2 Preliminaries
Let G = [m] be the set of goods, where [r] := {1, 2, . . . , r}
for any positive integer r. There are n = n1 + · · · + nk
agents divided into k ≥ 2 groups, where group i con-
tains ni ≥ 1 agents. Denote by a(i,j) the jth agent in
group i. The utility of a(i,j) for good ` is given by u(i,j)(`).
We assume that the agents’ utilities are additive, that is,
u(i,j)(G′) =

∑
`∈G′ u

(i,j)(`) for every G′ ⊆ G. An allo-
cation (A1, . . . , Ak) is an ordered partition of the goods into

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

336



k bundles, where bundle Ai is allocated to group i. In partic-
ular, A1 ∪ · · · ∪ Ak = G and Ai ∩Aj = ∅ for i 6= j.

2.1 Fairness Notions
We are interested in the following fairness notions:
Definition 2.1. Let c be a nonnegative integer. An allocation
(A1, . . . , Ak) is said to be

• envy-free up to c goods (EFc) if, for every agent a(i,j)
and every i′ 6= i, there exists a setB ⊆ Ai′ with |B| ≤ c
such that u(i,j)(Ai) ≥ u(i,j)(Ai′ \B).

• proportional up to c goods (PROPc) if, for every agent
a(i,j), there exists a set B ⊆ G \ Ai with |B| ≤ c such
that u(i,j)(Ai) ≥ u(i,j)(G)/k − u(i,j)(B).

• a consensus 1/k-division up to c goods if, for every
agent a and every pair of bundles Ai, Ai′ , there exists
B ⊆ Ai′ with |B| ≤ c such that a values Ai no less than
Ai′ \B.

Note that unlike the first two notions, the third notion
does not depend on how the agents are distributed across
groups. For each k, n1, . . . , nk, let cEF(n1, . . . , nk) (resp.,
cPROP(n1, . . . , nk)) denote the smallest value of c such that
an EFc (resp., PROPc) allocation is guaranteed to exist for
agents with additive utilities. Similarly, let cCD

k (n) denote
the analogous value for consensus 1/k-division up to c goods
when there are n agents and k bundles. We have the following
relations between these values.
Proposition 2.2. For any k, n′, n1, . . . , nk ∈ N, we have
(a) cEF(n1, . . . , nk) ≤ cCD

k (n1 + · · ·+ nk);

(b) cPROP(n1, . . . , nk) ≤ cEF(n1, . . . , nk);
(c) cEF(n′, . . . , n′) ≥ cCD

k (n′), where there are k copies of
n′ on the left-hand side.

Proof. We prove the three relations in turn.

(a) This follows immediately from the observation that a
consensus 1/k-division up to c goods for n1 + · · ·+ nk
agents is also envy-free up to c goods for these agents
regardless of how the agents are distributed into groups.

(b) It suffices to show that for any c, every EFc allocation
is also PROPc. Let (A1, . . . , Ak) be an EFc allocation,
and consider agent a(i,j). By definition of EFc, for each
i′ 6= i, there exists Bi′ ⊆ Ai′ with |Bi′ | ≤ c such that
u(i,j)(Ai) ≥ u(i,j)(Ai′ \Bi′).
Let B denote the set of the c most valuable goods for
a(i,j) outside of Ai, breaking ties arbitrarily. We have
u(i,j)(B) ≥ u(i,j)(Bi′) for all i′ 6= i. Letting Bi = ∅,
we have

u(i,j)(Ai) ≥
1

k

∑
i′∈[k]

u(i,j)(Ai′ \Bi′)

≥ 1

k

∑
i′∈[k]

(
u(i,j)(Ai′)− u(i,j)(B)

)
= u(i,j)(G)/k − u(i,j)(B).

Hence, the allocation is PROPc, as desired.

(c) Given n′ agents, we make a copy of each agent in each
of the k groups. Any EFc allocation with respect to these
groups is also a consensus 1/k-division for the original
agents. The conclusion follows.

2.2 Discrepancy Theory
In this section, we outline the tools from discrepancy theory
that we will use in this work. Intuitively, a basic connection
between discrepancy theory and our group fair division set-
ting is the following: Discrepancy theory considers a setting
where there is a collection of subsets (also known as a set
system) and we want to color the elements of the ground set
in two colors so that each subset contains roughly the same
number of elements of each color. The elements of the ground
set correspond to the goods in our setting, while each subset
represents an agent and its elements correspond to the goods
that the agent values. The goal of discrepancy theory is there-
fore similar to that of dividing the goods into two sets so that
each agent values the two sets almost equally.

In this work, we view a vector v ∈ Rk also as a column
matrix v ∈ Rk×1. We use 1k to denote the k-dimensional
all-1 vector; when the dimension is clear from context, we
may drop the subscript and simply write 1. Furthermore, for
a set S ⊆ [k], we write 1(S) ∈ {0, 1}k to denote the indicator
vector of S, i.e., (1(S))i = 1 if and only if i ∈ S.

For every p ∈ [1,∞), we use ‖v‖p to denote the `p norm of

v, defined by
(∑

i∈[k] |vi|p
)1/p

. The `∞ norm of v, denoted
by ‖v‖∞, is maxi∈[k] |vi|. The Hamming norm of v, denoted
by ‖v‖0, is the number of non-zero coordinates of v.

2-Color Discrepancy
As mentioned earlier, a classic scenario in discrepancy the-
ory is when there is a set system and the goal is to color the
elements in two colors in such a way that each subset con-
tains roughly the same number of elements of each color.
As Lovász et al. [1986] noted, this notion generalizes natu-
rally to any matrix. Specifically, the discrepancy of a matrix
A ∈ Rn×m is defined as

disc(A) := min
x∈{0,1}m

‖A(0.5 · 1− x)‖∞.

Here x can be thought of as a 2-coloring and the quantity
‖A(0.5 · 1− x)‖∞ measures how “unbalanced” it is.

Let

discmax(n) := sup
m∈N

sup
A∈[0,1]n×m

disc(A).

A priori, discmax(n) might even be infinite since we allow
A to have an arbitrary number of columns. Remarkably, how-
ever, it is known3,4 that discmax(n) is bounded by O(

√
n):

Lemma 2.3 ([Alon and Spencer, 2000, Corollary 12.3.4]).
For any n ∈ N, discmax(n) ≤ O(

√
n).

3We note here that some of the bounds we refer to are stated only
for 0-1 matrices A. However, one can check that they also hold for
any matrix A ∈ [0, 1]n×m. See also the full version of our paper
where we sketch how the constructive versions of these bounds can
be derived [Manurangsi and Suksompong, 2021].

4See also [Spencer, 1985] on which this bound is based.
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The above bound is also known to be asymptotically tight:
Lemma 2.4 ([Spencer, 1985]). For any n ∈ N, it holds that
discmax(n) ≥ Ω(

√
n).

Weighted Discrepancy. The p-weighted discrepancy [Do-
err and Srivastav, 2003] is a generalization of discrepancy
where 0.5 is replaced by some p ∈ [0, 1]:

wdiscp(A) := min
x∈{0,1}m

‖A(p · 1− x)‖∞.

Similarly to above, let

wdiscmax
p (n) := sup

m∈N
sup

A∈[0,1]n×m

wdiscp(A).

Using standard techniques in discrepancy theory, we can
prove the following lower bound on wdiscmax

p (n). (This
bound was also implicit in the work of Doerr and Srivastav.)
Proposition 2.5. For any p ∈ (0, 1/2] and any n ∈ N such
that n ≥ 16/p, we have wdiscmax

p (n) ≥ Ω(
√
pn).

The proof of Proposition 2.5, as well as all omitted proofs,
can be found in the full version of our paper [Manurangsi and
Suksompong, 2021].

Multi-Color Discrepancy
We will also use the extension of the 2-color definition to
multi-color cases due to Doerr and Srivastav [2003]. Recall
that a k-coloring of [m] is a function χ : [m] → [k]. The
k-color discrepancy of A is defined as

disc(A, k) := min
χ:[m]→[k]

max
s∈[k]

∥∥∥∥A(1

k
· 1− 1(χ−1(s))

)∥∥∥∥
∞
.

Note that disc(A, 2) coincides with disc(A) defined earlier.
Similarly to above, we let

discmax(n, k) := sup
m∈N

sup
A∈[0,1]n×m

disc(A, k).

The following lemma is a consequence of Corollary 3.5 of
Doerr and Srivastav [2003] and Lemma 2.3.
Lemma 2.6 ([Doerr and Srivastav, 2003]). For any n, k ∈ N,
discmax(n, k) ≤ O(

√
n).

Furthermore, Doerr and Srivastav also proved the follow-
ing lower bound:5

Lemma 2.7 ([Doerr and Srivastav, 2003, Theorem 5.2]). For
any n, k ∈ N such that k ≥ 2, discmax(n, k) ≥ Ω(

√
n/k).

3 Approximate Fair Division From
Multi-Color Discrepancy

In this section, we derive generic upper and lower bounds for
the value cCD

k based on the multi-color discrepancy bounds
discmax(n, k). Our results are stated formally below.
Theorem 3.1. For any n, k ∈ N, we have

cCD
k (n) ≥ ddiscmax(n, k)e.

5Doerr and Srivastav [2003] only stated their lower bound for
n such that a Hadamard matrix of order n exists. However, as ex-
plained in our proof of Proposition 2.5, this implies the same asymp-
totic bound for all n ∈ N.

Theorem 3.2. For any n, k ∈ N, we have
cCD
k (n) ≤ 4 · ddiscmax(2n, k)e.

By the known bounds for discmax (Lemmas 2.6 and 2.7),
the two results above yield Theorem 1.3.

Using the relationships between cCD
k , cEF, and cPROP estab-

lished in Proposition 2.2, we get the following corollary:
Corollary 3.3. For any k, n′, n1, . . . , nk ∈ N, we have
(a) cEF(n1, . . . , nk) ≤ 4 · ddiscmax(2(n1 + · · ·+ nk), k)e;
(b) cPROP(n1, . . . , nk) ≤ 4 ·ddiscmax(2(n1+ · · ·+nk), k)e;
(c) cEF(n′, . . . , n′) ≥ ddiscmax(n′, k)e, where there are k

copies of n′ on the left-hand side.
Parts (a) and (b), together with the known upper bound

for discmax (Lemma 2.6), give us the upper bounds in The-
orems 1.1 and 1.2. On the other hand, part (c) is not suffi-
cient for the lower bounds in these theorems yet, since the
above corollary does not apply to the “unbalanced groups”
case where some groups are small, e.g., when n1 = · · · =
nk−1 = 1 and nk = n′. Indeed, the lower bound parts of
Theorems 1.1 and 1.2 will be handled in Section 4.

3.1 Lower Bound
We prove Theorem 3.1 via a simple reduction that views each
row of a matrix A as a vector of utilities for the goods. The
existence of a consensus 1/k-division up to a small number
of goods would imply a strong upper bound on the discrep-
ancy of A. This is formalized below; since the distribution of
agents into groups is irrelevant for consensus 1/k-division,
we use the notation aj and uj instead of a(i,j) and u(i,j).

Proof of Theorem 3.1. Let ∆ := ddiscmax(n, k)e. Note that
∆ − 1 < discmax(n, k). Thus, there exists m ∈ N and
A ∈ [0, 1]n×m such that disc(A, k) > ∆− 1. We define the
agents’ utilities by uj(`) = Aj,` for all j ∈ [n] and ` ∈ [m].
It suffices to show that there is no consensus 1/k-division up
to ∆− 1 goods with respect to these utilities.

Suppose for the sake of contradiction that there is a con-
sensus 1/k-division up to ∆ − 1 goods, (A1, . . . , Ak). Let
χ : [m]→ [k] denote the coloring corresponding to this allo-
cation, i.e., χ−1(s) = As.

Consider any agent aj . Since the allocation is a consensus
1/k-division up to ∆ − 1 goods and each good has value at
most 1 to each agent, the following holds for all i, s ∈ [k]:

∆− 1 ≥ |uj(Ai)− uj(As)|. (1)
Fix any s ∈ [k]. For each j ∈ [n], this inequality allows us to
bound the jth entry of A

(
1
k · 1− 1(χ−1(s))

)
as∣∣∣∣∣

(
A

(
1

k
· 1− 1(χ−1(s))

))
j

∣∣∣∣∣ =

∣∣∣∣uj(G)

k
− uj(As)

∣∣∣∣
=

∣∣∣∣∣∣1k
∑
i∈[k]

(uj(Ai)− uj(As))

∣∣∣∣∣∣ ≤ 1

k

∑
i∈[k]

∣∣uj(Ai)− uj(As)∣∣
(1)
≤ ∆− 1,

where the first inequality follows from the triangle inequality.
Applying this for all j ∈ [n], we have disc(A, k) ≤ ∆−1,

contradicting our assumption that disc(A, k) > ∆− 1.
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3.2 Upper Bound
We next prove our upper bound (Theorem 3.2), which turns
out to be more challenging than the lower bound. To demon-
strate this, let us consider using the “reverse” of the reduction
in the proof of Theorem 3.1; specifically, suppose we create
one row for each agent corresponding to her utilities. The
discrepancy bound ensures that we can divide the goods into
k bundles so that each agent’s utilities for the k bundles are
not too different. However, this does not translate into any
bound on the number of goods necessary in the relaxation of
any of the fairness notions, since it is possible that an agent
has a tiny utility for every good in some bundle.

To tackle this issue, we must also ensure that each agent has
some “large” (i.e., valuable) goods in every bundle. To this
end, we divide the set of goods (with respect to each agent)
into the set of large goods and the set of “small” goods. We
create one row as before, but only for the small goods; this is
to ensure that the utilities of the agent for the small goods do
not differ by much between bundles. Additionally, we cre-
ate a row corresponding to the large goods, which ensures
that the agent has a non-trivial number of large goods in each
bundle. When choosing the size of the set of large goods ap-
propriately, this gives us the desired bound. We formalize this
intuition in the proof below.

Proof of Theorem 3.2. Let T := ddiscmax(2n, k)e. For every
agent aj , let Sjlarge ⊆ G denote the set of L := min{m, 3Tk}
goods that the agent values the most (ties broken arbitrar-
ily), and let pj := min`∈Sj

large
uj(`). We define yj as the

m-dimensional indicator vector of Sjlarge, i.e., yj = 1(Sjlarge).
We also define zj as the utility vector of the goods outside of
Sjlarge, scaled by 1/pj , i.e.,

zj` =

{
uj(`)/pj if ` /∈ Sjlarge;

0 otherwise.

By our choice of Sjlarge and pj , we have zj ∈ [0, 1]m. (We use
the convention 0/0 = 0, i.e., zj is the all-zero vector when
pj = 0.)

Finally, we define our matrix A =
[
y1 · · ·ynz1 · · · zn

]T
;

note that A ∈ [0, 1]2n×m. From the definition of discmax,
there exists a coloring χ : [m]→ [k] such that∥∥∥∥A(1

k
· 1− 1(χ−1(i))

)∥∥∥∥
∞
≤ T. (2)

for all i ∈ [k]. We pick our allocation (A1, . . . , Ak) accord-
ing to χ, that is, Ai = χ−1(i) for all i ∈ [k].

Next, we argue that for every pair i, i′ ∈ [k] and every
agent aj , there exists B ⊆ Ai′ of size at most 4T such that
uj(Ai) ≥ uj(Ai′ \B); this suffices to finish the proof. From
(2) and the definition of A, we have

T ≥
∣∣∣∣〈yj ,(1

k
· 1− 1(Ai)

)〉∣∣∣∣ =

∣∣∣∣Lk − |Ai ∩ Sjlarge|
∣∣∣∣

and

T ≥
∣∣∣∣〈zj ,(1

k
· 1− 1(Ai)

)〉∣∣∣∣

=
1

pj
·
∣∣∣∣1k · uj(G \ Sjlarge)− u

j(Ai \ Sjlarge)

∣∣∣∣ .
Rearranging these, we have∣∣∣∣Lk − |Ai ∩ Sjlarge|

∣∣∣∣ ≤ T (3)

and ∣∣∣∣1k · uj(G \ Sjlarge)− u
j(Ai \ Sjlarge)

∣∣∣∣ ≤ pj · T. (4)

A similar argument on bundle Ai′ implies∣∣∣∣Lk − |Ai′ ∩ Sjlarge|
∣∣∣∣ ≤ T (5)

and ∣∣∣∣1k · uj(G \ Sjlarge)− u
j(Ai′ \ Sjlarge)

∣∣∣∣ ≤ pj · T. (6)

Let B := Ai′ ∩ Sjlarge. By (5), we have |B| ≤ L/k + T ≤
4T . Now, ifm ≤ 3Tk, then we have L = m andAi′ \B = ∅.
Thus, uj(Ai) ≥ uj(Ai′ \B) trivially holds in this case.

Next, consider the case m > 3Tk, so L = 3Tk. In this
case, we may bound uj(Ai)− uj(Ai′ \B) as follows:

uj(Ai)− uj(Ai′ \B)

= uj(Ai ∩ Sjlarge) +
(
uj(Ai \ Sjlarge)− u

j(Ai′ \ Sjlarge)
)

≥ pj · |Ai ∩ Sjlarge|+
(
uj(Ai \ Sjlarge)− u

j(Ai′ \ Sjlarge)
)

(3)
≥ pj(L/k − T ) +

(
uj(Ai \ Sjlarge)− u

j(Ai′ \ Sjlarge)
)

(4),(6)
≥ pj(L/k − T )− 2pj · T ≥ 0,

where the first inequality follows from our definition of pj
and the last inequality follows from L = 3Tk. This con-
cludes the proof.

4 Lower Bounds From Weighted Discrepancy
In this section, we prove a lower bound on cPROP for k groups
via weighted discrepancy:
Theorem 4.1. For any n′, k ∈ N, we have

cPROP(2n′, 1, . . . , 1) ≥ dwdiscmax
1/k (n′)/ke.

Combined with Proposition 2.2, this gives a similar lower
bound for cEF (again, the left-hand side contains k − 1 1’s):
Corollary 4.2. For any n′, k ∈ N, we have

cEF(2n′, 1, . . . , 1) ≥ dwdiscmax
1/k (n′)/ke.

These two results, together with the lower bound on
wdiscmax

p (Proposition 2.5) and the observation that remov-
ing agents does not increase the value of cEF or cPROP, yield
the lower bound parts of Theorems 1.1 and 1.2. More specif-
ically, we claim that for any n1, . . . , nk, we have

cEF(max{n1, . . . , nk}, 1, 1, . . . , 1) ≤ cEF(n1, . . . , nk). (7)
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To see why this claim holds, first note that due to symme-
try, we may assume that n1 = max{n1, . . . , nk}. Note also
that if an allocation satisfies a fairness notion for a certain
instance, it still satisfies the same fairness notion when we ar-
bitrarily remove some agent(s) from some group(s). Hence,
given any instance with group sizes n1, 1, . . . , 1, we may add
agents with arbitrary utilities so that the group sizes become
n1, . . . , nk and apply the bound for the latter case. This im-
plies (7), whereupon we can apply Corollary 4.2 and Propo-
sition 2.5 to derive Theorem 1.1. A similar argument can be
used to derive Theorem 1.2 from Theorem 4.1.

The proof of Theorem 4.1 can be found in the full ver-
sion of our paper; we describe here the intuition behind it.
We construct the utility functions of the agents so that if
(A1, . . . , Ak) is proportional up to a small number of goods,
then x := 1(A1) gives us a small 1/k-weighted discrepancy.
Similarly to the proof of Theorem 3.1, we start by creating
n′ agents in the first group where each agent’s utilities corre-
spond to a row of A. This yields a lower bound on each entry
of A · 1(A1). To get an upper bound, we simply create a
“conjugate” of each of these agents in the first group, i.e., the
conjugate utility of each good is simply 1 minus the original
utility. However, this construction alone is not sufficient—for
example, it is still possible to assign all goods toA1. To avoid
this, we create one agent in each of the remaining groups with
the same utility for all goods. This ensures that A1 has size
roughly m/k, which turns out to be sufficient for bounding
the 1/k-weighted discrepancy (using x := 1(A1)).

5 Computational Complexity
Since efficient algorithms matching the bound in Lemma 2.6
are known [Bansal, 2010; Lovett and Meka, 2015]6 and all of
our upper bounds are obtained by polynomial-time reductions
to this bound, it immediately follows that given the goods
and the agents’ utilities for them, we can efficiently find an
allocation matching the upper bounds in our main theorems
(Theorems 1.1–1.3). In summary, we have:

Corollary 5.1. There exists a randomized polynomial-time
algorithm that can compute a consensus 1/k-division (or an
envy-free/proportional allocation) up to O(

√
n) goods.

In light of the above corollary, a natural question is whether
we can improve on this O(

√
n) bound if we know that, say,

an unknown “fully fair” division exists for a given instance.
For example, provided that there is a consensus 1/k-division
in that instance, can we efficiently find an allocation that beats
the upper bounds in Corollary 5.1?

A similar question has been asked in the context of dis-
crepancy theory; for the bound in Lemma 2.3, the answer was
shown to be negative [Charikar et al., 2011], i.e., even when
A has discrepancy zero, it is NP-hard to find x achieving dis-
crepancy o(

√
n). In this section, we extend this hardness to

the setting of fair division, as stated below.

Theorem 5.2. For any constant k ∈ N \ {1}, there exists a
constant εk > 0 such that it is NP-hard, given m goods and

6Please refer to the full version of our paper for more details
[Manurangsi and Suksompong, 2021].

k groups, each containing n′ agents with additive utilities, to
distinguish between the following two cases:

• (YES) There exists a consensus 1/k-division;

• (NO) No allocation is proportional up to εk
√
n′ goods.

In other words, when k is constant, we cannot asymptoti-
cally improve upon the bound in Corollary 5.1 even when we
are promised that a consensus 1/k-division exists. Note that
since consensus 1/k-division is the strongest notion and pro-
portionality the weakest (see Proposition 2.2), this theorem is
the “strongest possible”.

6 Conclusion and Future Work
In this paper, we have studied the allocation of indivisible
goods to groups of agents using the standard fairness no-
tions of envy-freeness, proportionality, and consensus 1/k-
division. We presented bounds on the optimal relaxations
of these notions that can be guaranteed for agents with ad-
ditive valuations; all of the bounds are asymptotically tight
when the number of groups is constant. Our results imply
that relatively strong fairness guarantees can be provided for
all agents even when agents in the same group, who share
the same set of resources, have highly differing preferences.
Moreover, we showed that computing allocations that im-
prove upon these bounds is NP-hard even in instances where
such allocations are known to exist.

Besides closing the gaps left by our work, an interesting
direction for future work is to consider agents with arbitrary
monotonic utilities. Indeed, the techniques from discrepancy
theory that we used crucially rely on the additivity assump-
tion; so does the result of Alon [1987] that established the
existence of a consensus 1/k-division for divisible goods.
Even in the case of prime numbers k, where a consensus 1/k-
division can be guaranteed for non-additive utilities [Filos-
Ratsikas et al., 2021],7 it is unclear whether such a division
can be rounded into a discrete allocation with a loss that is
bounded only in terms of n. Beyond the setting of our paper,
one could also consider allocating a mixture of indivisible and
divisible goods [Bei et al., 2021] or allowing groups to have
different entitlements which can correspond to the group sizes
[Chakraborty et al., 2020] as well.
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Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Com-
putational Social Choice, chapter 11, pages 261–283. Cambridge
University Press, 2016.

[Todo et al., 2011] Taiki Todo, Runcong Li, Xuemei Hu, Takayuki
Mouri, Atsushi Iwasaki, and Makoto Yokoo. Generalizing envy-
freeness toward group of agents. In IJCAI, pages 386–392, 2011.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

341


	Introduction
	Our Results
	Further Related Work

	Preliminaries
	Fairness Notions
	Discrepancy Theory
	2-Color Discrepancy
	Multi-Color Discrepancy


	Approximate Fair Division From Multi-Color Discrepancy
	Lower Bound
	Upper Bound

	Lower Bounds From Weighted Discrepancy
	Computational Complexity
	Conclusion and Future Work

