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Abstract
Consider a graph G, representing a social network.
Assume that initially each node is colored either
black or white, which corresponds to a positive or
negative opinion regarding a consumer product or
a technological innovation. In the majority model,
in each round all nodes simultaneously update their
color to the most frequent color among their con-
nections.
Experiments on the graph data from the real world
social networks (SNs) suggest that if all nodes in
an extremely small set of high-degree nodes, often
referred to as the elites, agree on a color, that color
becomes the dominant color at the end of the pro-
cess. We propose two countermeasures that can be
adopted by individual nodes relatively easily and
guarantee that the elites will not have this dispro-
portionate power to engineer the dominant output
color. The first countermeasure essentially requires
each node to make some new connections at ran-
dom while the second one demands the nodes to be
more reluctant towards changing their color (opin-
ion). We verify their effectiveness and correctness
both theoretically and experimentally.
We also investigate the majority model and a vari-
ant of it when the initial coloring is random on the
real world SNs and several random graph models.
In particular, our results on the Erdős-Rényi and
regular random graphs confirm or support several
theoretical findings or conjectures by the prior work
regarding the threshold behavior of the process.
Finally, we provide theoretical and experimental
evidence for the existence of a poly-logarithmic
bound on the expected stabilization time of the ma-
jority model.

1 Introduction
When facing a decision or forming an opinion about a topic
such as a consumer product, a technological innovation, or a
political event, humans often consult friends, family or oth-
ers in their close circle for advice. Additionally, we often
consider the opinions of the figures whose opinions we value

in some way; for example, politicians we usually agree with,
celebrities whom we look up to, or well-established scientists.
In this way, an individual’s opinion is influenced by the opin-
ions of the people around her. Furthermore, due to the rise of
online social networking, opinions are formed and changed
at a higher pace. Consequently, there has been a growing de-
mand for a quantitative understanding of the opinion forming
process.

Recently, within the field of computer science, especially
computational social choice and algorithmic game theory,
there has been a rising interest in developing and studying
mathematical opinion diffusion models, which aim to mimic
the process of opinion forming in a society. At a high level
of abstraction, in these models one usually consider a graph
G and some initial coloring of the nodes, where each node
is colored either black or white. This graph is meant to rep-
resent a social network, in which the agents are modeled as
nodes and an edge between two nodes corresponds to a rela-
tion between the respective agents, e.g. friendship, common
interests, or advice. The color of a node represents its opinion
on an innovation or a political party, etc. After initialization,
in each round a group of nodes update their color based on a
predefined rule.

Plentiful instances of the aforementioned abstract model
have been introduced and studied. Among them, the majority
model has attracted considerable attention, cf. [Auletta et al.,
2015]. In the majority model, for a graph G and an initial
coloring, in each round all nodes simultaneously update their
color to the most frequent color in their neighborhood. In
case of a tie, a node keeps its current color. We also consider
the (ψ1, ψ2)-majority model, for some ψ1, ψ2 > 1/2. Here,
a black (resp. white) node changes its color if at least ψ1

(resp. ψ2) fraction of its neighbors hold the opposite color
from itself. We observe that this is the same as the majority
model for ψ1 = ψ2 = ψ for a ψ slightly larger than 1/2.

Several different variants of the majority model have been
studied by prior work (cf. [Keller et al., 2014]). We will fo-
cus on the following two variants. Assume that each node v
has an influence factor r(v). Here also each node chooses the
majority color, but it counts the color of a neighbor v, r(v)
times. By default we assume that r(v) = 1 for each node v,
otherwise it is mentioned explicitly. Note that if all nodes
have influence factor one, we recover the majority model.
Secondly, we consider the variant in which we assign a stub-
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bornness factor γ(v) ∈ (0, 1) to each node v. Then, a node
v changes its color if at least γ(v) fraction of its neighbors
have the opposite color. We observe that if we assign a fixed
stubbornness factor γ to all nodes, this would coincide with
the (ψ1, ψ2)-majority model for ψ1 = ψ2 = γ.

All the updating rules that we study in this paper are de-
terministic. Furthermore, for an n-node graph G, there are
2n possible colorings. Therefore, after at most 2n rounds the
process reaches a cycle of colorings. The number of rounds
the process needs to reach the cycle and the length of the cy-
cle are called the stabilization time and period of the process.
We say a color (black or white) wins if more than half of the
nodes share that color in the final configuration.

Moreover, a color takes over if all nodes share that color
in the final configuration. We say a set of nodes form a
white/black coalition if they are all white/black. A node set S
is said to be a winning set (resp. dynamo) if black color wins
(resp. takes over) once nodes in S form a black coalition.

1.1 Our Contribution
Question 1. What is the number of black nodes required for
the black color to win or take over? Alternatively, more re-
alistically speaking, if a marketing campaign can convince
a group of individuals to adopt a new product, and the goal
is to trigger a large cascade of further adoptions building on
collective decision-making, which set of individuals should
it target and how large this set needs to be? When consider-
ing graphs of real world Social Networks (SNs), [Avin et al.,
2019] experimentally observed that in such graphs, if a small
set of nodes (e.g. 1% of nodes) with the highest degrees form
a black coalition and have an influence factor slightly larger
than the rest of nodes, the black color wins. Such a small
set of high-degree nodes are meant to approximate the elites,
which are a relatively small and well-connected set of individ-
uals (i.e., nodes) with substantial economic or social power,
cf. [Avin et al., 2017].

Several random graph models have been introduced to sim-
ulate the real world SNs. Arguably, one of the most well-
studied such graph models is the Preferential Attachment
(PA) random graph [Barabási and Albert, 1999]. In contrast
to the real world SNs, [Avin et al., 2019] observed that in the
PA graphs, with comparable number of nodes and edges, a
small set of black nodes is not capable of enforcing the vic-
tory of the black color, unless they have extremely large in-
fluence factors. Therefore, they suggested for future work
to propose graph models which not only retain well known
characteristics of the real world SNs, but also support the ex-
istence of a small set of nodes with a significant dispropor-
tionate power in the majority model.

The fact is even though the PA model possesses some cru-
cial features of the real world SNs, it also suffers from lack of
some fundamental properties such as a high clustering coef-
ficient (that is, two neighbors of a node are likely to be adja-
cent), cf. [Krioukov et al., 2010]. Hence, the aforementioned
result by [Avin et al., 2019] is just another indication that the
PA model is not a decent choice to represent the SNs. On
the other hand, Hyperbolic Random Graph (HRG) [Krioukov
et al., 2010] is known to possess all the desired fundamental
properties, including a high clustering coefficient, making it

an interesting and suitable model to consider, leading to our
first contribution.
Contribution 1. Our experiments on HRG matches the re-
sults for the real world SNs; that is, almost the same number
of highest degree black nodes with a rather small influence
factor suffices for the black color to win. (The parameters
of the HRG selected suitably to make it comparable to the
respective SN. See Section 1.2, for more details.)

Given this disproportionate amount of controlling power
of the elites, a natural question that arises is whether one can
develop a counter measure to overpower them.

A proposed countermeasure ideally should not require sig-
nificant changes in the graph structure or the updating rule.
Furthermore, it should be easy for the agents to implement,
e.g. it should not require them to have a full knowledge of the
graph structure or memorize the history of the process.
Contribution 2. We propose two countermeasures and sup-
port their effectiveness both experimentally and theoretically.
Firstly, we show that if we require every agent to make a cer-
tain number of new connections at random, a small set of elite
nodes cannot control the output of the majority model any-
more. More formally, we prove that if we add a graph with
strong expansion properties on top of any graph, including a
real world SN, for the black color to win a significant num-
ber of nodes must be black initially. Secondly, we show that
if each agent changes her color only if a “sufficiently” large
fraction of her neighbors hold a different color, no small set
of nodes can determine the output of the process. This is re-
alized by assigning a high stubbornness factor to each node.
Furthermore, we demonstrate that our experiments support
these theoretical findings.
Question 2. What is the probability that the black color wins
(or takes over) if we assume that initially each node is colored
black independently with some probability pb ∈ (0, 1)?

It is known (cf. [Zehmakan, 2020]) that in the majority
model on “nearly” regular graphs with strong expansion prop-
erties, such as random regular graphs and Erdős-Rényi ran-
dom graph (See Section 1.2 for a formal definition), if pb is
“slightly” more (resp. less) than 1/2, then black (resp. white)
color takes over asymptotically almost surely. (We say that
an event occurs asymptotically almost surely (a.a.s.) if it hap-
pens with probability tending to 1 when we let the number of
nodes go to infinity.)
Contribution 3. We provide experimental results confirming
the existence of this threshold behavior in the Erdős-Rényi
and regular random graphs, and show that this behavior is
also observed in the PA random graph. However, the majority
model turns out to exhibit a different behavior on real world
SNs and HRG. That is, the black (resp. white) color might
not take over even when pb (resp. 1 − pb) is significantly
larger than 1/2. However, we show that upon the addition of
a d-regular random graph for a reasonably large d we recover
the aforementioned threshold behavior.

We study the above question for the (ψ1, ψ2)-majority
model as well. We prove that for a dense Erdős-Rényi ran-
dom graph, the process exhibits a threshold behavior with two
phase transitions: (i) the white color takes over if pb < 1−ψ1

(ii) both colors will survive (i.e., no color takes over) if
1− ψ1 < pb < ψ2 (iii) the black color takes over if ψ2 < pb
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a.a.s. Furthermore, our experiments suggest that such a
threshold behavior is also present in the PA random graph,
sparse regular random graphs, HRG, and the real world SNs,
but for different threshold values.

As mentioned, the majority model on the Erdős-Rényi ran-
dom graph Gn,q is well understood when pb is smaller or
larger than 1/2. What if we have pb = 1/2? [Benjamini et al.,
2016] conjectured if q is “sufficiently” larger than 1/n, then
a.a.s. one of the two colors almost takes over (i.e., all nodes
share the same color at the end, except a sub-linear number of
them). [Fountoulakis et al., 2020] proved that the conjecture
is true when q is larger than 1/

√
n, but it has remained open

for q smaller than 1/
√
n.

Contribution 4. We perform experiments whose results sup-
port this conjecture. More precisely, we observe that in the
majority model on Gn,q with pb = 1/2 if q = c/n for c ≥ 12,
one of the two colors almost takes over. However, if c ≤ 8,
the process reaches a configuration where almost half of the
nodes are black.
Question 3. What is the stabilization time and period of
the process? For the majority model on a graph G =
(V,E), [Goles and Olivos, 1980] proved that the period
is always one or two. Furthermore using some algebraic
tools, [Poljak and Turzı́k, 1986] showed that the stabiliza-
tion time is in O(|E|), which [Frischknecht et al., 2013]
proved to be tight, up to some poly-logarithmic factor. How-
ever, if we start from a random coloring, where each node is
black independently with probability pb, the probability that
an extremal coloring, for which the process takes a long time,
emerges is fairly small. Hence, a natural question that arises
here is whether one can provide stronger bounds on the ex-
pected stabilization time (i.e., the expected number of rounds
the process needs to reach a cycle of colorings from a random
initial coloring). It is widely believed that a poly-logarithmic
upper bound must exist, but this is proven only for some spe-
cial classes of graphs, cf. [Zehmakan, 2020].
Contribution 5. As our first evidence for a poly-logarithmic
upper bound, we prove that the expected stabilization time
of the majority model is at most log n when the underlying
graph is a cycle Cn. Furthermore, we experimentally inves-
tigate the expected stabilization time of the majority model
on different random graph models and real world SNs and
our findings support the conjectured poly-logarithmic bound.
It is worth to stress that the process takes the longest at the
threshold value pb = 1/2.

We study the stabilization time of the (ψ1, ψ2)-majority
model too and, building on a potential function argument,
prove that it is also bounded by O(|E|) when ψ1 = ψ2. For
the proof, we set a connection between the number of edges
whose endpoints have opposite colors in the initial coloring
and the number of rounds the process needs to end. As we
will explain, this technique might be useful to prove a poly-
logarithmic bound on the expected stabilization of the major-
ity and (ψ1, ψ2)-majority model.

1.2 Preliminaries
Graph Definitions. Let G = (V,E) be an n-node graph.
For a node v ∈ V , N (v) := {u ∈ V : {u, v} ∈ E} is the
neighborhood of v. For a set S ⊂ V , we define N (S) :=

⋃
v∈S N (v) and NS (v) := N (v) ∩ S. Moreover, d (v) :=
|N (v) | is the degree of v in G and dS (v) := |NS (v) |.

Furthermore, for two node sets S and S′, we define
e (S, S′) := |{(v, u) ∈ S × S′ : {v, u} ∈ E}| where S × S′
is the Cartesian product of S and S′.

Note that whenever graph G is not clear from the con-
text, we add a superscript, e.g. we write dG(v), dGS (v), and
eG(S, S′).
Random Graphs. Let Gn,q denote the Erdős-Rényi ran-
dom graph, which is the random graph on the set {1, · · · , n},
where each edge is present independently with probability q.
We denote by Gn,d the d-regular random graph, which is the
random graph with a uniform distribution over all d-regular
graphs on n nodes.
Models. For a graph G = (V,E), a coloring is a function
C : V → {b, w}, where b and w represent black and white,
respectively. For a node v ∈ V , the set NCa (v) := {u ∈
N (v) : C (u) = a} includes the neighbors of v which have
color a ∈ {b, w} in coloring C. Assume that we are given
an initial coloring C0 on a graph G. In a model M , Ct (v),
which is the color of node v in the t-th coloring for t ∈ N,
is determined based on a predefined updating rule. We are
mainly interested in the following two models, where Ct (v)
is defined by a deterministic updating rule as a function of
Ct−1 (u) for u ∈ N (v) ∪ {v}.
Majority Model. In the majority model

Ct(v) =

{
Ct−1(v) if |NCt−1b (v)| = |NCt−1

w (v)|
argmaxa∈{b,w}|N

Ct−1
a (v)| otherwise

.

(ψ1, ψ2)-Majority Model. In the (ψ1, ψ2)-majority model
for some ψ1, ψ2 ∈ (1/2, 1]

Ct(v) =


w if Ct−1(v) = b ∧ |NCt−1

w (v)| ≥ ψ1d(v)

b if Ct−1(v) = w ∧ |NCt−1

b (v)| ≥ ψ2d(v)

Ct−1(v) otherwise
.

In these models, we define Bt and Wt for t ∈ N0 to be the
set of black and white nodes in Ct.
Experimental Setup. We run our experiments for the
graph data of the Facebook (FB) and YouTube (YT) SN
from [Viswanath et al., 2009] and [Mislove et al., 2007] and
Twitter (TW) and Slashdot (SD) graph data from [Leskovec
and Krevl, 2014].Furthermore, we focus on several random
graph models such as Erdős-Rényi (ER) Random Graph,
Random Regular Graph (RRG), Preferential Attachment (PA)
Random Graph, and Hyperbolic Random Graph (HRG). To
make our experiments on the random graph models and real
world SNs comparable, we set the parameters of random
graphs in a way that they have the same number of nodes
and edges in expectation. For the generation of the RRG and
HRG, we rely on the (approximation) algorithms of [Steger
and Wormald, 1999] and [Staudt et al., 2015] respectively,
and the implementations in [Hagberg et al., 2008]. To gen-
erate HRG, in addition to the number of nodes and edges,
one needs to provide the exponent of the power-law degree
distribution β and the temperature T as the input parameters.
Throughout this paper, we set β = 2.5 and T = 0.6. Ex-
periments which required random choice of edges or colors
were executed 8 times and then the average output was con-
sidered. Furthermore, (several) experiments were carried out
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on an Intel Xeon E3 CPU, with 32 GB RAM, and a Linux
OS.

1.3 Prior Works
Opinion Diffusion Models. In the plethora of opinion diffu-
sion models, considerable attention has been devoted to the
study of different variants of the majority model, such as an
asynchronous updating rule [Anagnostopoulos et al., 2020],
various tie-breaking rules [Schoenebeck and Yu, 2018], and
randomized updating rules [Mossel et al., 2013]. Even more
complex models such as the one considered in [Ferraioli and
Ventre, 2017] which follows an averaging-based updating
rule, or the models in [Faliszewski et al., 2018] and [Brill
et al., 2016] can be seen as extensions of the majority model.

In the present paper, we consider variants of the major-
ity model previously studied by cf. [Avin et al., 2019] and
[Auletta et al., 2017]. Furthermore, the (ψ1, ψ2)-majority
model, which is a generalization of the model studied in [Bal-
ister et al., 2010].
Minimum Size of a Winning Set. Determining the mini-
mum size of a winning set and a dynamo has been considered
in various majority based models and for different classes
of graphs such as ER [Benjamini et al., 2016], PA [Avin et
al., 2019], and lattice [Balister et al., 2010]. For general
graphs, [Berger, 2001] proved that there exist arbitrarily large
graphs which have dynamos of constant size under the ma-
jority model and it was shown in [Auletta et al., 2018] that
every n-node graph has a dynamo of size at most n/2 under
the asynchronous variant.
Random Initial Coloring. The majority model with a ran-
dom initial coloring has been investigated for different classes
of graphs such as hypercubes and preferential attachment
trees, cf. [Balister et al., 2010]. As stated, special attention
has been devoted to the study of ER when each node is black
independently with probability pb = 1/2, cf. [Benjamini et
al., 2016].
Stabilization Time and Period. [Goles and Olivos, 1980]
proved that the period of the majority model is always one or
two. Recently, it was shown by [Chistikov et al., 2020] that
it is PSPACE-complete to decide whether the period is one
or not for a given coloring of a directed graph. Furthermore,
[Poljak and Turzı́k, 1986] proved that the stabilization time of
the majority model on a graph G = (V,E) is upper-bounded
by O(|E|). Stronger bounds are known for special classes
of graphs. For instance, for a d-regular graph with strong
expansion properties the stabilization time is in O(logd n),
cf. [Zehmakan, 2020].

2 Power of Elites and Countermeasures
[Avin et al., 2019] observed that in real world SNs, if a small
set (e.g. 1%) of the elite nodes are provided with a constant
influence factor (e.g. 8), they are capable of determining the
outcome of the majority model, i.e., they form a winning set.
In the PA random graphs with comparable parameters, in con-
trast, these authors showed that for a small set of elite nodes to
form a winning set, they must have an extremely large influ-
ence factor. As mentioned earlier, the PA random graph lacks
the presence of a high clustering coefficient cf. [Krioukov et

al., 2010]. We believe this is the source of such discrepancy.
On the other hand, HRG is known [Krioukov et al., 2010]
to possess all the aforementioned properties, justifying our
choice to investigate the majority model on HRG.

Our experiments demonstrate that the size and influence
factor required for a set of elites to form a winning set is ap-
proximately the same in the real world SNs and HRGs with
comparable parameters. This is depicted for YT SN in Fig-
ure 1 (left), and other SNs are included in the full version of
this paper. Figure 1 (left) also covers PA, which was already
investigated by [Avin et al., 2019].
Disproportionate Power of Elites. Naturally, the question
arises how to prevent a small set of elite nodes from deter-
mining the outcome of the majority model. To this end, we
propose two countermeasures to overpower the elites. Firstly,
we prove that if we add a sufficiently dense RRG on top of
any graph, in particular a SN, no small winning set will exist.
Secondly, we show that if we assign a sufficiently large stub-
bornness factor to each node, no small set of elites can create
a winning set.
Countermeasure 1. Adding a RRG on top of a SN is es-
sentially the same as asking agents (nodes) to make a set of
connections at random. Consider a small set S of elite nodes
who form a winning set in a SN. Intuitively speaking, the
randomly added connections for each node are unlikely to be
chosen from set S, thus reducing the influencing power of the
elite nodes in S. We formally state our result in Theorem 2,
of which the proof can be found in the full paper version.

Theorem 2. Let G1 = (V,E1) be an arbitrary graph with
average degree d̄, G2 = (V,E2) be a d-regular graph and
Z ⊂ V be an arbitrary set of nodes in G = (V,E1 ∪ E2)
with |Z| = 0.05n and n = |V |. Let G1 = (V,E1) be an
arbitrary graph with average degree d̄ and G2 = (V,E2)
be a d-regular graph. Suppose that Z ⊂ V is an arbitrary
set of nodes in G = (V,E1 ∪ E2) and |Z| = 0.05n, where
n = |V |. Consider the majority model on G, where B0 = Z
and all nodes in Z have influence factor r ≤ 10 (while it is
1 for the rest of nodes). If σ(G2) ≤ β and d = crd̄ for a
suitable choice of constants c, β > 0, the white color wins.

Corollary. [Friedman, 2003] proved that for a random d-
regular graph Gn,d, σ (Gn,d) ≤ 2/

√
d a.a.s. when d ≥ 3.

This implies that the statement of Theorem 2 holds a.a.s if
G2 = Gn,d for a sufficiently large d. Therefore, if we add a
Gn,d on top of a SN, there is no winning set which includes
less than 5% of the nodes. Recall that based on [Avin et al.,
2019] the real world SNs usually allow winning sets of much
smaller size than 5%; for example in YT SN, a set of highest
degree nodes of size 0.15%. As we will discuss, our exper-
iments support even stronger bounds than the one given in
Theorem 2. Lastly, it is worth to mention that the constraint
r ≤ 10 can be relaxed, but cannot be lifted entirely because
if a set S of elites in a SN have extremely large influence fac-
tors, even after adding a complete graph on top of the SN, S
is a winning set.
Countermeasure 2. Note that we consider the setting in
which initially a set of elites form a black coalition, and the
rest of nodes (or most of them) are white. Hence intuitively
speaking, if most nodes become very reluctant to change their
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Figure 1: The minimum size of a winning set of elite nodes whose
influence factor is r = 2x (while it is 1 for the rest of nodes) (left) on
YT SN and HRG and PA with comparable parameters, and (right)
on FB SN and the graphs CM1 and CM2, corresponding to our
countermeasures applied to FB SN. CM1 is the union of FB SN
and a RRG with degree d = 2rd̄ (where d̄ is the average degree
of FB SN). CM2 denotes FB SN in which all nodes get assigned a
stubbornness factor γ = 1− 1/2r.

color (i.e., have a large stubbornness factor), one would ex-
pect most of the white nodes to keep their color unchanged.
We state this observation more formally in Theorem 3, proven
in the full version of this paper.

Theorem 3. Consider a graph G = (V,E). Let Z ⊂ V
such that |Z| < n/2 and dZ(v) ≤ fd(v) for some f ∈ (0, 1)
and every v ∈ V \ Z. Consider the majority model where
all nodes in Z have influence factor r ∈ N. If for each node
v ∈ V \ Z the stubbornness factor γ(v) > r

r+ 1−f
f

, then Z is

not a winning set.
Observe that the statement of Theorem 3, in particular, is

true when Z includes the nodes of highest degree and they all
have influence factor r (while it is 1 for the rest of nodes).
Experiments of Countermeasures. The experimental re-
sults of both countermeasures applied to FB SN are depicted
in Figure 1 (right), which confirm their effectiveness. (The
plots for other SNs are given in the full version of the pa-
per) For instance, our experiments indicate that in FB SN an
elite set consisting of 0.4% of nodes with influence factor 16
form a winning set, but after applying countermeasure CM1

(adding a RRG) and CM2 (assigning high stubbornness fac-
tor) an elite set of size 10% and 33%, respectively, is required
to win, with the same influence factor.

3 Random Initial Coloring
We experimentally investigate the majority and (ψ1, ψ2)-
majority model on various real world SNs and random graph
models, where initially each node is black independently with
probability pb. We aim to determine the final fraction of black
nodes (i.e., the number of black nodes in the final configura-
tion divided by the number of all nodes) for different values
of pb.
Majority Model with Random Coloring. Our experimen-
tal results for the majority model on SD SN and several ran-
dom graph models with comparable parameters are depicted
in Figure 2 (left). (The plots for other real world SNs can
be found in the full version of the paper). We observe that

the majority model is a fair density classifier on ER, RRG,
and PA. That is, for pb < 1/2 (resp. pb > 1/2), the white
(resp. black) color takes over. This confirms some prior the-
oretical results, cf. [Zehmakan, 2020]. However for SD SN
and HRG, the white (resp. black) color might not take over
even when pb (resp. 1−pb) is much smaller than 1/2. Lastly,
we note that upon the addition of a RRG with the same aver-
age degree on top of SD SN, the aforementioned fair density
classification behavior emerges. (See CM1 in Figure 2 (left))
Uniform Random Coloring. In prior work, special atten-
tion has been devoted to the study of the majority model on
the Erdős-Rényi random graph Gn,q for pb = 1/2. In par-
ticular, [Benjamini et al., 2016] conjectured that if q is suffi-
ciently larger (resp. smaller) than 1/n, the process reaches an
almost monochromatic coloring (resp. an almost balanced
coloring) a.a.s. In an almost monochromatic coloring, all
nodes share the same color, except a sub-linear number of
them, and in an almost balanced coloring the difference be-
tween the number of black and white nodes is sub-linear.
Our experiments on Gn,q for n = 1000000 indicate that for
q ≥ 12/n (resp. q ≤ 8/n) the process reaches an almost
monochromatic coloring (resp. an almost balanced coloring).
Hence, our results support the correctness of the conjecture.
(ψ1, ψ2)-Majority Model with Random Coloring. We
prove that in the (ψ1, ψ2)-majority model on Gn,q a.a.s., for
q sufficiently larger than log n/n (which is the connectivity
threshold): (i) the white color takes over if pb < 1 − ψ1

(ii) both colors will survive (i.e., no color takes over) if
1− ψ1 < pb < ψ2 (iii) the black color takes over if ψ2 < pb.
The proof of this proposition can be found in the full version
of this paper. Furthermore, we experimentally investigate the
(ψ1, ψ2)-majority model, for certain values of ψ1, ψ2, with a
random initial coloring on various real world SNs and ran-
dom graph models with comparable parameters. Our results
for TW SN and corresponding random graphs are depicted in
Figure 2 (right). (Similar plots are provided in the full ver-
sion of the paper for other real world SNs.) We observe that a
similar threshold behavior with two phase transitions is also
present in TW SN, PA, HRG, and RRG but the threshold val-
ues are different from 1− ψ1 and ψ2.

4 Stabilization Time and Period
Stabilization in Majority Model. As discussed, prior work
has shown that the stabilization time and period of the ma-
jority model are bounded by O(|E|) and 2. However, in the
random setting a poly-logarithmic bound on the expected sta-
bilization time is believed to exist (but only proven for a some
special classes of graphs). We provide evidence to support
this conjecture. Firstly, we prove in Theorem 4that the ex-
pected stabilization time of the majority model on a cycle Cn

is at most log n. The proof of this theorem can be found in
the full version of the paper.
Theorem 4. Consider the majority model on a cycle Cn. If
each node is initially black independently with probability pb,
then the process stabilizes in log n rounds a.a.s.

Furthermore, we investigate the expected stabilization time
of the majority model on several real world SNs and random
graph models. This is depicted for SD SN and random graphs
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Figure 2: The final fraction of black nodes (left) in the majority
model with a random initial coloring for different values of pb on SD
SN, several random graphs with comparable parameters and CM1

(which corresponds to the union of SD SN and Gn,d for d = d̄,
where d̄ is the average degree of SD SN), (right) in the (ψ1, ψ2)-
majority model for ψ1 = 0.7 and ψ2 = 0.8 and different values of
pb on TW SN and random graphs PA, HRG and RRG with compa-
rable parameters.

with comparable parameters in Figure 3 (left). (See the full
version of the paper for other SNs.) In our experiments on all
these graphs the process ends in less than 30 rounds, while
the number of edges is around m = 500000. Thus, loosely
speaking, the expected stabilization time here seems to be
poly-logarithmic inm rather than linear. Furthermore, we ob-
serve that adding a RRG on top of SD SN (similar to our first
countermeasure in Section 2) speeds up the process. Hence,
adding random edges not only helps the color with initial ma-
jority to win, but also makes this happen faster.
Stabilization in (ψ1, ψ2)-Majority Model. Consider the
(ψ1, ψ2)-majority model, for ψ1 = ψ2, on a graph G =
(V,E). Building upon a potential function argument, we
prove in Theorem 5 that the stabilization time and period of
the process are upper-bounded by 4m∗ and 2, respectively,
where m∗ denotes the number of bichromatic edges in the
initial coloring. (Recall that an edge is bichromatic if its end-
points have opposite colors.) Note that m∗ ≤ |E| and the (ψ,
ψ)-majority model coincides with the majority model when
ψ is slightly larger than 1/2. Thus, Theorem 5, as a special
case, bounds the stabilization time of the majority model with
O(|E|), previously proven by [Poljak and Turzı́k, 1986]. The
main idea of our proof is to establish a relation between the
(ψ,ψ)-majority model onG and a process called the periodic
majority model on a weighed graph H , which is constructed
from G. Then, we argue that in this new process the summa-
tion of weights of bichromatic edges decreases in each round.
The proof is given in the full version of this paper.

Theorem 5. Consider the (ψ,ψ)-majority model, for some
ψ ∈ (1/2, 1], on a graph G = (V,E). The stabilization
time is upper-bounded by 4m∗, where m∗ is the number of
bichromatic edges in the initial coloring, and the period is
always one or two.

Furthermore, we experimentally analyze the expected sta-
bilization time of the (ψ1, ψ2)-majority model. See Fig-
ure 3 (right) for our results on TW SN (and random graph
models with comparable parameters) and the full version of
this paper, for other real world SNs. We observe that the ini-

Figure 3: The expected stabilization time for different values of pb
in (left) the majority model on SD SN and random graphs with com-
parable parameters andCM1 (which corresponds to the union of SD
SN and Gn,d for d = d̄, where d̄ is the average degree of SD SN),
(right) the (ψ1, ψ2)-majority model, for ψ1 = 0.7 and ψ2 = 0.8,
on TW SN and PA, HRG and RRG with comparable parameters.

tial probabilities pb for which the process takes the longest
to stabilize, are identical to the empirically observed thresh-
old values depicted in Figure 2 (right). We note that this is
also the case in the majority model, as the stabilization time
peaks at pb = 1/2 (visible in Figure 3 (left)), at which also
the phase transition occurs (visible in Figure 2 (left)).

5 Conclusion
We showed that in the real world social networks, an ex-
tremely small set of high-degree nodes (i.e., elites) can de-
termine the output of an opinion forming process. We de-
veloped two countermeasures which can be applied to over-
power such a small set of elite nodes. In general, motivated
from the study of effective marketing strategies, the problem
of finding a small set of agents whose opinion governs the fi-
nal dominant opinion has been extensively studied for various
models. However, the current understanding of the develop-
ment of countermeasure mechanisms to subdue such a small
group with disproportionate influencing power is limited. We
aspire this work to be a starting point for further investigation
of effective countermeasures for a large spectrum of models.

Furthermore, we proved that the (ψ1, ψ2)-majority model
exhibits a threshold behavior with two phase transitions at
1 − ψ1 and ψ2 when the underlying graph is a dense Erdős-
Rényi random graph. Our experiments suggest that a similar
threshold behavior might exist for other classes of graphs, but
the threshold values are different from 1−ψ1 andψ2. It would
be interesting to determine these values in the future work.

In addition, we provided several experimental and theoret-
ical evidence to support the widely believed conjecture of a
poly-logarithmic upper bound on the expected stabilization
time of the majority model; however, it remains open in its
full generality. For the (ψ1, ψ2)-majority model, for ψ1 = ψ2,
we proved that the stabilization time is bounded by 4 times
the number of bichromatic edges in the initial coloring. We
believe this can be an important milestone to settle the conjec-
ture. Specifically, if one can prove that from a random color-
ing the process reaches a coloring with poly-logarithmically
many bichromatic edges in a poly-logarithmic number of
rounds in expectation, then our result yields the conjecture.
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