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Abstract

We consider the problem of assigning items to
platforms in the presence of group fairness con-
straints. In the input, each item belongs to cer-
tain categories, called classes in this paper. Each
platform specifies the group fairness constraints
through an upper bound on the number of items it
can serve from each class. Additionally, each plat-
form also has an upper bound on the total number
of items it can serve. The goal is to assign items to
platforms so as to maximize the number of items
assigned while satisfying the upper bounds of each
class. This problem models several important real-
world problems like ad-auctions, scheduling, re-
source allocations, school choice etc. We show
that if the classes are arbitrary, then the problem is
NP-hard and has a strong inapproximability. We
consider the problem in both online and offline
settings under natural restrictions on the classes.
Under these restrictions, the problem continues to
remain NP-hard but admits approximation algo-
rithms with small approximation factors. We also
implement some of the algorithms. Our experi-
ments show that the algorithms work well in prac-
tice both in terms of efficiency and the number of
items that get assigned to some platform.

1 Introduction

Graph matching is a fundamental problem in graph theory
and theoretical computer science that has been studied ex-
tensively over the years. Computing the maximum match-
ing in bipartite graphs, both in the online and the offline
setting is an important building block in many applications
in allocation problems such as ad-auctions [Mehta, 2013;
Mehta et al., 20071, scheduling [McKeown et al., 1999], re-
source allocation [Halabian et al., 2012], school choice [Ab-
dulkadiroglu and S6nmez, 2003] etc. Since the notation used
in these various problems differ, we use the general terms
items and platforms to refer to the two parts of the bipartite
graph. In practice, items may be classified based on different
properties and hence may belong to certain groups or classes.

*These three authors contributed equally.
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Modeling the allocation problems as a vanilla matching prob-
lem seeks to optimize the cost of the solution alone and may
inadvertently be “unfair” to some classes of items. Necessi-
tated by the need to be fair and unbiased towards any group of
items in the input, there has been a lot of recent work study-
ing algorithms for various problems augmented with fairness
constraints, such as [Celis er al., 2018; Kay et al., 2015;
Costello et al., 2016; Bolukbasi et al., 2016]).

In this paper, we enforce group fairness through con-
straints that place an upper bound on the number of items
that can be matched from a particular class to a platform. We
note that group fairness constraints usually involve both up-
per and lower bounds. This is incompatible with the practical
applications that we have in mind, namely ad-allocation and
course allocation problems. For this reason, we focus only on
upper bounds. We formally define the problem as follows.

Classified Maximum Matching (CMM). We have a set A
of items and a set P of platforms, and these sets form the two
parts of a bipartite graph. The presence of an edge (a, p) in-
dicates that item a can be matched to platform p. Let N (p)
denote the neighborhood of p. Each platform p has a collec-
tion of classes C, C 2N _j.e., each item in N (p) may be-
long to some of the classes in C,,. Each class C' € C,, has an
associated quota qg denoting the maximum number of items
from C that can be assigned to p. In addition, each platform p
has a quota g, which is an upper bound on the total number
of items it can serve. Our goal is to compute an assignment
of items to platforms so as to maximize the number of items
assigned, while satisfying all the quotas.

Classes allow platforms to specify group fairness con-
straints — for instance the classes can be seen as properties
or categories and the quotas impose the constraints that not
too many items from one category are assigned to a plat-
form. These types of fairness constraints have been stud-
ied in many practical applications. In [Abdulkadiroglu and
Sénmez, 2003], the authors address the school choice prob-
lem where fairness constraints are imposed to achieve racial,
ethnic, and gender balance. In the assignment of medical
residents to hospitals in Japanese Residency Matching Pro-
gram (JRMP), regional quotas are introduced to ensure fair-
ness amongst urban and rural hospitals [Kamada and Kojima,
2012; Kamada and Kojima, 2015]. Huang [Huang, 2010] mo-
tivates classifications from the perspective of enabling diver-
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sity in academic hiring. Apart from matchings, group fairness
constraints have also been studied for many other problems
like the knapsack problem [Patel er al., 2021], and clustering
problems [Bera et al., 2019], to name a few.

Some recent pre-prints have discussed fairness in matching
problems. Soriano and Bonchi [Garcia-Soriano and Bonchi,
2020] study a different notion of individual fairness that they
call maxmin-fairness. Their goal is to output a solution such
that the satisfaction of one agent cannot be improved without
making another agent worse-off. Ma and Xu [Ma and Xu,
2020] measure fairness by the ratio of expected number of
agents matched from a particular group to the expected num-
ber of agents from that group and their goal is to maximize
the minimum of this ratio over all groups. Basu et al. [Basu
et al., 2020] also measure fairness based on metrics involving
the ratio of agents across groups and the utility they provide.
While qualitatively similar, our constraints can be seen as be-
ing orthogonal to such notions of fairness.

In different applications, the fairness constraints can have
a different structure. In [Kamada and Kojima, 2012; Kamada
and Kojima, 2015], each hospital belongs to exactly one re-
gion, hence fairness constraints partition the set of hospitals.
On the other hand, in the school choice problem in [Abdulka-
diroglu and Sénmez, 2003], a student belongs to multiple
constraints. The structure of the constraints crucially affects
the computational complexity of finding a fair allocation.
This has been illustrated in the context of bipartite match-
ings where one or both sides of the bipartition express prefer-
ences over the other side. Huang [Huang, 2010] and Fleiner
and Kamiyama [Fleiner and Kamiyama, 2012], address the
CMM problem when both sides of the bipartition have prefer-
ences over each other and the notion of optimality is stability,
whereas [Nasre et al., 2019] study the CMM problem under
the optimality criteria of rank-maximality and popularity. In
all these cases, it has been shown that the CMM problem can
be efficiently solved if the constraints have a laminar' struc-
ture, and is NP-hard in general [Nasre et al., 2019]. Such a
restriction has been considered before in the literature, such
as in the hospital-resident problem [Kamada and Kojima,
2012] or the college admissions problem [Bir6 et al., 2010;
Goto et al., 2016]. However, a finer relation between the
structure of the class constraints and the computational ef-
ficiency has not received much attention in literature. In this
paper, we address this issue by focusing on a quantification of
non-laminarity in the classes and its effect on computational
efficiency. We strengthen the hardness results in [Nasre et
al., 2019] and obtain new approximation algorithms for the
CMM problem in the offline setting.

Next, we turn our attention to the online version of the
problem. Online matching problems have numerous practical
applications, such as in ad-allocations [Mehta er al., 20071,
resource allocation [Devanur et al., 2011], etc. See [Mehta,
2013] for a survey on online bipartite matchings. Fairness
has also been studied in online settings such as online learn-
ing [Gillen et al., 2018] or ride-hailing platforms [Siihr ef al.,
2019]. ‘Fairness’ in another form has been considered pre-

'A family C of subsets of a set S is laminar if, for every pair of
sets X,Y € C,either X CYorY C XorXNY = 0.
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viously in the online literature. For example, the ‘frequency
caps’ mentioned in [Feldman et al., 2009] places a restriction
on the total number of ads that are shown to the same user, or
users from a particular demographic. We study some natural
online versions of the CMM problem. We first show that one
of our approximation algorithms for the offline non-laminar
case also works as an online algorithm, regardless of the in-
put model. For the setting where we restrict classes to be
laminar, we show that existing algorithms for online bipartite
matching carry over to our setting.

1.1 Models

We study CMM problem in various settings. In practice, as-
signing an item a to a platform p may generate a revenue,
which can be modelled as the weight of the edge (a,p). In
such a case the goal of the weighted CMM problem is to com-
pute an assignment of items to platforms so as to maximize
the total weight of edges in the matching, while satisfying the
quotas of all the classes. We now formally define our models.

Model 1 (Many-to-one). This is the setting described earlier.
In this setting, items can match to at most one platform.

Model 2 (Many-to-many). This is a more general setting in
which items may be matched to multiple platforms. In addi-
tion to the classes of platforms, each item ¢ also has a collec-
tion of classes C; C 2V, i.e., each platform in N (i) belongs
to some of the classes in C;, and the items also have quotas
for their classes. This model arises in scenarios like course
allocation, where students may be allotted multiple courses
subject to various restrictions. Courses may have restrictions
over the number of students allotted to it from each depart-
ment or from each batch.

In the setting of online matchings, the platforms are avail-
able offline and the items arrive online. When an item a € A
arrives online, its neighbours in P, and the classes that it par-
ticipates in are revealed. It must be immediately decided if
we match a to some platform and any edges matched cannot
be unmatched later. In the literature, the order in which the
items arrive has been studied in various models. In the adver-
sarial model, the items can arrive in an arbitrary order. We
study a natural online arrival model for the items, called the
Random input model. See [Mehta, 2013] for a survey of other
work on such models.

Model 3 (Random input). In this setting, there is an underly-
ing graph G = (AUP, E). The vertices of A arrive according
to a permutation chosen uniformly at random.

1.2 Our Results

In most applications, an item typically belongs to small num-
ber of classes, hence we first study this setting. For example,
[Abdulkadiroglu and Sénmez, 2003] discusses the Boston
student assignment mechanism which divides students into
two categories based on whether they already have a sibling
in the school and whether they are within walking distance to
the school. Similarly, in a faculty hiring scenario, the number
of classes (which would correspond to specializations) is in-
dependent of the number of applicants. For the scenario when
there are constant number of classes we show the following
result.
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Theorem 1 (Informal version of Theorem 6). The
CMM problem can be solved in polynomial time if there is a
constant number of platforms, each with a constant number
of classes. This leads to a %-approximation algorithm for an
arbitrary number of platforms, each with a constant number
of classes.

Now we turn to a more general setting where the number of
classes is arbitrary and exploit the structural relation amongst
the classes. We know from [Nasre et al., 2019] that when
the classes of every platform form exactly one laminar family
then the CMM problem is solvable in polynomial time. We
prove the following theorem.

Theorem 2. There is a polynomial-time algorithm achieving
an approximation ratio of ﬁ for the many-to-one setting
(Model 1) where each item belongs to at most A laminar fam-
ilies of classes per platform. This generalizes to the weighted
many-to-many setting (Model 2) where for each edge (a,p),
the classes of a and p that contain (a,p) can be partitioned
into A + 1 laminar families.

The above result is applicable in scenarios like ad-
allocation where the number of classes can be arbitrary, but
any ad belongs to a few of them. Complementing this, we also
obtain hardness results for computing the optimal CMM.

Proposition 1. (i) CMM cannot be approximated to a fac-
tor of n°~! for any € > 0 unless P NP, where
n = |A|, even when there is a single platform and all
edge weights are one.

(ii) When there is a single platform, and additionally, each
item appears in at most A classes, the problem is NP-

. o log? A
hard to approximate within a factor O (T)

The proof of Proposition 1 follows from a reduction from
the MAXIMUM INDEPENDENT SET problem.

In the online setting, we first remark that our algorithm
from Theorem 2 works as an online algorithm in the un-
weighted case, even when the input is adversarially chosen.

Theorem 3. There is a polynomial-time online algorithm
achieving, in any input model, a competitive ratio of ﬁ
for the many-to-one setting (Model 1) where each item be-
longs to at most A laminar families of classes per platform.
The algorithm extends to the many-to-many setting (Model 2)
where the classes of a and p containing each edge (a,p) can
be partitioned into A + 1 laminar families.

Having achieved a competitive ratio that is close to the
lower bound (from Proposition 1 (ii)), we consider the case
where classes are restricted to be laminar. We consider
the random order input model (Model 3) and show that a
simple greedy algorithm from the literature also works for
CMM and that it achieves the same competitive ratio. We
use the technique of randomized dual fitting which has been
used to analyse competitive ratios in works such as [Devanur
et al., 2013; Huang et al., 2018].

Theorem 4. There is a polynomial-time algorithm achieving
a competitive ratio of 1 — % for CMM with laminar classes
in the random input model.
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1.3 Implications for Other Problems

Although the CMM problem is modelled as a matching of
items to platforms, we show that the classes capture problems
which are well studied and are of independent interest.

Maximum Independent Set on Hypergraphs. Given a
hypergraph H = (V, E), and a function f : E — Z™, com-
pute the largest set of vertices S such that for every e € E,
[SNel < f(e). We note that when f(e) = 1 for each
edge e, this is the problem of computing the strong maximum
independent set and when f(e) = |e| — 1, this is the weak
maximum independent set problem. These problems are
well-studied for bounded-degree hypergraphs; [Halld6rsson
and Losievskaja, 2009] describe algorithms achieving factors
of & and z% for the strong and weak cases respectively,
where A denotes the maximum degree of a vertex in H.
For the weak independent set, this was further improved to

@] (%) in [Agnarsson e al., 2013]. However, to the

best of our knowledge, there is no known approximation al-
gorithm for the case when f(e) is an arbitrary value — we call
this the GENERALIZED MAXIMUM INDEPENDENT SET on
hypergraphs. We state our approximation result for indepen-
dent sets on hypergraphs below, which is a consequence of
Theorem 2.

1

Proposition 2. There is a polynomial time + approxima-
tion algorithm for the problem of computing a GENERALIZED
MAXIMUM INDEPENDENT SET on hypergraphs with maxi-
mum degree A.

For the case when average degree of the vertices is A, we
get the following:

Theorem S. There is a jx approximation algorithm for the

generalized independent set where r = % and A denotes
the average degree of a vertex.
OPT

For the CMM problem, this implies an 7 x;- approxima-
tion algorithm when we only have an upper bound on the av-
erage number of laminar families of classes an item belongs
to, and there is only one platform.

Ranking and Group Fairness. In an apparently different
model, Celis et al. [Celis et al., 2018] consider ranking n
items from a universe of m items, where n < m. Items
are assigned properties, and upper quotas for the number of
items from any property in the top k ranks. When items have
at most A properties each, they give a x1 approximation
while allowing constraints to be violated by a factor of 2. This
problem can be reduced to the CMM problem and our algo-
rithm from Theorem 2 achieves the same approximation fac-
tor without violating any class constraints. We leave the re-
duction to the full version of this paper [Sankar et al., 2021].

Simultaneous Matchings. Kutz et al. [Kutz et al., 2008]
study the problem called simultaneous matchings which is
defined as follows: given a bipartite graph G = (X U D, E)
and a collection F C 2%, find the largest solution M C F
such thatV C' € F, MN(C x D) is a matching. This problem
can be reduced to the CMM problem where every vertex d in
D has constraints F (excluding vertices to which d has no
edge), and each class has quota 1. The approximation factor
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in [Kutz et al., 2008] is better but the constraints are signifi-
cantly more restricted than ours.

2 Offline Approximation Algorithms

In light of the strong inapproximability result for the general
CMM problem (Proposition 1), we describe approximation
algorithms for some special cases.

2.1 Proof of Theorem 2

In this section, we consider the case when, for each platform p
and item a, the classes containing a can be partitioned into at
most A laminar families. We first present a %—approximation
algorithm for the case when there is only one platform. This
algorithm also generalizes the maximum independent set in
hypergraphs (Proposition 2). We extend this algorithm to a
A7 -approximation algorithm for the case with multiple plat-
forms and even to the many-to-many setting.

Let G = (AU{p}, E) be an instance of the CMM problem
with a single platform p and a family of classes C with the
above restriction.

Reduction to the GENERALIZED MAXIMUM INDEPEN-
DENT SET problem: We construct an instance H = (V, Ey)
by setting V = {v; | a; € A} and Ey = {ec | C € C},
and f(ec) = q(C). We call a set S C V feasible if for every
ee E,|SNe| < f(e). Wecallaset S CV maximal if S is
feasible and S U {v} is not feasible for every v € V' \ S. Our
algorithm is a simple greedy algorithm: output a maximal set
of vertices. To prove the approximation, we use the following
lemma. See the full version of this paper for the proof.

Lemma 1. Consider a set S C V and a set B C V\ S
such that S U B is a maximal set of vertices. Then for every
feasible set C' such that S C C and C N B = 0, we have
ICl < |S|+A|B.

Let ALG denote any maximal independent set of H and
OPT be the optimal independent set. In the above lemma,
set S = ALGNOPT,B = ALG\ OPT,C = OPT. The
lemma implies |OPT| < A|ALG|. This proves Proposi-
tion 2. We note that this also gives us a x-approximation
for the CMM problem in the single platform case when ev-
ery item belongs to at most A laminar families of the plat-
form. It is also easy to see that this algorithm runs in time
O(|V||Eg|). For every vertex, we add it if it does not exceed
the quota of any edge it belongs to.

Multiple Platforms. We can use the previous result to ob-
tain a x5 approximation for the multiple platforms case via
a simple O(|E|)-time reduction to the single platform case:
For every edge (a,p), make a new item e, ,. Replace all the
platforms by a single dummy platform. Since classes are sub-
sets of the neighbourhood sets of items or platforms, they can
also be seen as subsets of edges of the graph. These natu-
rally form classes over the items e, ,. This combined with
the result for the single platform case gives an O(|E| - |C])
algorithm for the multiple platform case where |C| is the total
number of classes, establishing Theorem 2.

Remark 1 (Weights on items). We remark that the same anal-
ysis goes through even if items have weights and the goal is
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to compute a maximum weight matching. The algorithm sim-
ply keeps matching the highest weight item that can feasibly
match to the platform.

2.2 Constant Number of Classes

We can also prove Theorem 2 via the following general state-
ment combined with Proposition 2. We leave the proof to the
full version of this paper [Sankar et al., 2021]. We will also
need this to prove Theorem 1.

Lemma 2. Given a polynomial-time a-approximation al-
gorithm for the many-to-one matching problem with a
single platform, we can obtain a polynomial-time ﬁ—
approximation for the matching problem with multiple plat-
forms.

Theorem 6 (Formal version of Theorem 1). The CMM prob-
lem can be represented as an IP with 2° variables if there is
only one platform with A classes. This can be solved in time

0(22A poly(n)), and also gives rise to a %-approximation

in time 0(22A poly(n)) for multiple platforms, each with A
classes of items.

Sketch. For an instance with A classes, every item can be
represented by a A-bit incidence vector of the classes it be-
longs to. This partitions the items into 22 types. Our ILP
has one variable for each type. The runtime is obtained via
[Lenstra, 1983]. Theorem 1 follows by setting A = O(1). In
practice, there exist integer program heuristics that are faster
(for example, see [Fischetti er al., 2005]). For arbitrarily large
number of platforms, each with a constant number of classes,
we can use this with Lemma 2 to get a %—approximation. O

2.3 Bounded Average Degree

We extend the result from the previous section for a single
platform to the case when the average number of laminar
families of classes an item belongs to is bounded by A. We
state it in terms of GENERALIZED MAXIMUM INDEPENDENT
SEThere. Now consider the case where the hypergraph H
constructed above has only bounded average degree of A.

Proof of Theorem 5. Since the average degree is A, for any
f, there cannot be more than % vertices of degree more than

fA. Suppose we estimate r and set f = % We call a vertex
low degree if its degree is at most fA, otherwise the vertex
is high degree. Then the number of low degree vertices is
> n(1—1%). In the graph induced by the low degree ver-

tices, the size of the optimal independent set is at least %,

since at most 2ZL vertices of high degree. We use our i
approximation algorithm on the graph induced by the low de-
gree vertices. Since this graph has maximum degree < %,
the size of the independent set has size > %.

Thus, our approximation ratio is at least ;5. We finally
need to estimate . We guess a value of O PT from 1 to n and
run the above procedure for each of the guesses. Amongst all
the solutions that we obtain, we pick the one with the highest
cardinality. This is guaranteed to do at least as well as the
case when we picked the correct value of OPT. O
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3 Online Algorithms

The online algorithm for Theorem 3 is essentially the same
as the one in Proposition 2 and works even for an arbitrary
input model. Whenever an item arrives online, we match it to
a platform such that the matching remains feasible. If there
is no such platform, we leave it unmatched. The output is a
maximal set, which by Proposition 2, gives us the required
competitive ratio. However, we point out that this only works
for the unweighted version.

We now look at an ‘easier’ version of CMM where the
classes form a laminar family. This version is known to have
an efficient offline algorithm, via the construction of a sim-
ple flow network. A similar construction is used to compute
the rank-maximal matching in [Nasre er al., 2019]. In this
setting, we look at the many-to-many CMM model (Model
2) and assume an input model where the item set arrives in
a uniformly random permutation (Model 3). For the sake of
the analysis, we assume that a random variable y; picked uni-
formly at random from [0, 1] for every item a;, and the items
arrive in the increasing order of y;. Therefore the random vec-
tor i := (y1, Y2, - - -, yn ) fully describes the order of arrival of
the items. We use ¢/_; to represent the vector after removing
y; from 3. We use the following greedy algorithm, and ana-
lyze its competitive ratio (in expectation): Keep an arbitrary,
fixed ranking of all the platforms in P. When an item arrives
online, match it to as many platforms as possible, picking the
highest ranked ones.

Sketch of Theorem 4. We use a linear programming relax-
ation of our problem to analyze our algorithm. We set the pri-
mal values according to the output of our algorithm, thereby
ensuring the feasibility of the primal solution. Now we need
to construct an appropriate dual solution. We use the follow-
ing folklore fact about the well-known method of dual fitting
in designing algorithms. This technique is used in [Devanur
et al., 2013; Huang et al., 2018] among others.

In the primal LP, we have a variable z;; = 1 <= item
a; is matched to platform p;. We also have constraints for
both the item and platform classes. In the dual LP, we have
variables corresponding to constraints in the primal LP. We
describe the LP formally in the full version of this paper.

Fact 1 (Folklore). Suppose we can set the dual variables such
that the primal objective is equal to the dual objective, and the
dual constraints of the form « > 1 instead satisfy E[a] > F.
Then, our algorithm has a competitive ratio F' in expectation.

Now, we set the dual variables so that the dual con-
straints have a lower bound of F. The following is the
key lemma in analyzing how the algorithm behaves depend-
ing on . Although it is inspired by [Devanur er al., 2013;
Huang et al., 2018; Goel and Mehta, 2008], our many-to-
many model (Model 2) is more complicated in that moving
one vertex up the ranking can cause more changes to the
matching because an item can match to multiple platforms.
Even apart from the platform classes, we must take care of
item classes as well. To that end, we use the following lemma.
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Lemma 3. For any 4, j such that j # 1, if an item a; is
matched to some platforms at y; = 1, then it cannot be un-
matched from any platform at y; = 0 € [0, 1] due to an item
class.

Once we have the lemma, we show Theorem 4 the follow-
ing way. Let o > 1 be such a dual constraint. We want to
show that E [o] > F or equivalently, E,_, [Ey, [o]] > F. We
look at the inner expectation. We fix y_; and vary y; from 0
to 1, and show using dual-fitting arguments and Lemma 3 that
E[a] > (1 —1). From Fact 1, this proves Theorem 4. [

€

4 Experiments

In this section, we present the experimental evaluation of our
offline algorithms from Theorem 1 and Theorem 2. We use a
total of seven datasets which we categorize as real-world and
synthetic datasets. The three real-world datasets are sourced
from an elective allocation process at an educational institu-
tion. The four synthetic datasets are generated as described
below. All experiments were run on a laptop running on a
64-bit Windows 10 Home edition, and equipped with an In-
tel Core 17-7500U CPU @2.7GHz and 12GB of RAM. For
solving integer programs, we used IBM ILOG CPLEX Op-
timization Studio 20.1 through its Python API. All code was
written to run on Python 3.8.

Real-World Datasets. We use data from three course-
registration periods at an educational institution. Each dataset
has around 100 courses and 2000 students. The students and
the courses correspond to items and platforms respectively in
our model. The edges represent the courses that a student
is interested in. The students are partitioned into 13 depart-
ments (majors) as well as 5 batches (1st year—5th year). Each
course has an overall quota denoting the maximum number of
students that can be allotted to it. For each course, we intro-
duce a quota for each department and a quota for each batch.
Each course belongs to one of two categories, and each stu-
dent can be matched to at most one course of each category.
The goal is to maximize the number of edges selected subject
to these constraints. This can be immediately viewed as an
instance of CMM.

Synthetic Datasets. Modelled on the real-world datasets,
we synthetically generate large instances and compare the
performance of our algorithms to the optimal algorithm im-
plemented using a matching Integer Linear Program. The
synthetic datasets are generated as follows. Datasets labelled
‘large’ have 500 courses, and 20 departments with 10,000
students in each department. The datasets labelled ‘small’
have 300 courses, and 20 departments with 2,000 students
in each department. The students have a degree that is cho-
sen uniformly at random between 3 and 10 in the ‘dense’
datasets and between 3 and 5 in the ‘sparse’ datasets. Stu-
dents choose their courses randomly based on a non-uniform
probability distribution. This distribution is defined by as-
signing a random ‘popularity’ value to each course. We ob-
serve this feature in the real-world dataset, where all courses
are not equally popular. We also experiment without this fea-
ture, and obtain similar results.
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| Dataset | f-approx |  A-approx | OPT |
Real-1 | 18715 (0.92) | 1899.8 (0.93) | 2035 (1)
Real-2 | 1988.6 (0.92) | 2014.0 (0.93) | 2170 (1)
Real-3 | 1938.6 (0.92) | 1936.7 (0.92) | 2107 (1)

Table 1: Comparison of (average) solution values on the real-world
datasets. Relative values are in parentheses.

| Dataset | %-approx | A-approx | OPT |
Real-1 | 039 (1.23) | 0.11 (4.29) | 048 (1)
Real-2 | 0.43(1.03) | 0.11 (3.89) | 0.44 (1)
Real-3 | 0.33(1.23) | 0.10 (3.90) | 0.40 (1)

Table 2: Comparison of (average) running-times in seconds on the
real-world datasets. Relative speedups are in parentheses.

We compare our performance and running-time with the
optimal solution obtained by solving the standard Match-
ing ILP augmented with the constraints for each class. All
running-times include the time taken for file I/O. The solu-
tion values and running-times were averaged over 10 runs.
Though our algorithms are deterministic, these implementa-
tions utilize some randomness because of the use of hash-
tables. Observe that since we have two laminar families of
classes, Theorem 1 and Theorem 2 provide theoretical guar-
antees of only % and % respectively. However, the perfor-
mance of the algorithms on both real-world and random data
are close to optimal. All our tables provide absolute val-
ues of the solution value and running-time of the algorithm
from Theorem 1 (column %-approx) and algorithm from The-
orem 2 (column A-approx), as well as the relative value or
relative speedup in comparison to that of the Matching ILP
(column OPT).

4.1 Observations

Tables 1, 2 provide the solution values and running times for
real-world instances and Tables 3, 4 provide the same for the
synthetic datasets. In both these datasets, both of our algo-
rithms output solutions with value at least 90% of the opti-
mum value. This seems to suggest that both real-world or
random settings are ‘easier’ than the worst-case instances for
our algorithms. Furthermore, we believe that the significantly
improved running-time more than makes up for loss of 10%
in the output value. The biggest speedups are observed in
the ‘large’ datasets, where our algorithms achieve speedups
of 15x and 30x respectively. This is expected because the
ILP takes time exponential in the size of the graph.

5 Conclusion

In this paper we gave approximation algorithms for the CMM
problem in various offline and online settings. Improv-
ing these approximation factors or showing matching lower
bounds are natural open questions. There are existing al-
gorithms that break the 1 — 1/e barrier for online bipartite
matching without group fairness constraints such as [Feld-
man et al., 2009]; obtaining similar bounds for online CMM
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| Dataset | %-approx |  A-approx | OPT |
large- | 239552 239566.4 (0.97) | 247537 (1)
dense 0.97)
large- | 212600.1 211885.1 (0.97) | 218622 (1)
sparse | (0.97)
small- | 72676.4 72821.5 (0.93) | 78279 (1)
sparse | (0.93)
small- | 75887.7 76133.4 (0.95) | 79827 (1)
dense (0.95)

Table 3: Comparison of (average) solution values in the synthetic
datasets. Relative values are in parentheses.

| Dataset | 4-approx | A-approx | OPT |
large-dense | 5.68 (14.41) | 2.90 (28.21) | 81.99 (1)
large-sparse | 4.67 (15.14) | 2.19 (32.19) | 70.73 (1)
small-sparse | 1.55 (3.00) | 0.46 (10.07) 4.68 (1)
small-dense | 1.73 (5.39) | 0.58 (16.14) 9.37 (1)

Table 4: Comparison of (average) running-times in seconds in the
synthetic datasets. Relative speedups are in parentheses.

is also an interesting open problem.
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