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Abstract
Vitality indices form a class of centrality measures
that assess the importance of a node based on the
impact its removal has on the network. To date,
theoretical analysis of this class is lacking. In this
paper, we show that vitality indices can be charac-
terized using the axiom of Balanced Contributions
proposed by Myerson in the coalitional game the-
ory literature. We explore the link between both
fields and show an equivalence between vitality in-
dices and induced game theoretic centralities based
on the Shapley value. Our characterization allows
us to easily determine which known centrality mea-
sures are vitality indices.

1 Introduction
Centrality measures, methods that identify the most impor-
tant nodes in a network, are one of the most widely used
tools of network analysis. Apart from the always popular
degree, closeness, betweenness and eigenvector centralities
introduced a few decades ago, more than a hundred other
methods have been proposed in the literature. Given this, it
is becoming more and more complicated to determine which
measure should be used in a specific application at hand. The
high-level goal of this paper is to deepen the understanding
of centrality measures which is essential to make an informed
choice.

Centrality measures are based on various ideas and factors
taken into account in nodes’ evaluation. Distance-based cen-
tralities, such as closeness centrality, assess the importance of
a node by looking at the distance to other nodes in a graph.
Medial centralities, such as betweenness centrality, look how
often a node is an intermediary in the network. In turn, feed-
back centralities, such as eigenvector centrality, define the im-
portance of a node recursively as a function of the importance
of its neighbors. Apart of these three classes, Brandes and Er-
lebach [2005] in their book characterize also vitality indices,
random-walk based centralities and current-flow centralities.

In this paper, we focus on vitality indices. Centrality mea-
sures from this class look at the impact the removal of the
node has on the quality of the network. More specifically, a
centrality measure is a vitality index if there exists some in-
variant function that assesses the quality of a network such

that the centrality of a node equals the difference between
the value of a graph with and without the node. In result,
vitality indices are a good tool to identify elements whose
removal would damage the network the most. This is, for ex-
ample, the case in covert network analysis where the focus
is typically on the key leaders to be eliminated from the net-
work [Everton, 2009; Ressler, 2006]. As written by Everett
and Borgatti [2010], the idea behind vitality indices “has been
in use—knowingly or not—for several decades”.

While vitality indices form a natural class of centralities,
its theoretical analysis is lacking. In this paper, we lay down
the theoretical foundations of vitality indices and study their
relationship to other classes of centralities.

Our first result is the axiomatic characterization of vital-
ity indices. Specifically, we show that a centrality measure is
a vitality index if and only if it satisfies an axiom called Bal-
anced Contributions. This axiom states that the impact of one
node on the centrality of the second node is the same as the
impact of the second node on the centrality of the first one.

Balanced Contributions was originally proposed by Myer-
son [1980] in coalitional game theory literature. By exploring
the link between game theory literature and centrality analy-
sis, we get that vitality indices are equivalent to a natural sub-
class of game-theoretic centralities: induced game-theoretic
centralities based on the Shapley value. This result sheds a
new light on the vitality indices and provides a new approach
to defining invariant functions.

Furthermore, we study the connection between vitality in-
dices and other classes of centrality measures. Our axiomatic
characterization allows us to easily determine which known
centrality measures are vitality indices (note that, in general,
the answer “no” requires proving that there exist no invariant
function that results in this specific measure). For distance-
based centralities we show that only degree centrality (up to a
scalar modification) is a vitality index. Furthermore, we show
that out of the most important medial and feedback centrali-
ties only flow betweenness centrality [Freeman et al., 1991] is
a vitality index. Our results show that vitality indices, while
they coincide with game-theoretic centralities, form an al-
most independent class of centrality measures.

Our work belongs to a line of research that focus on the
axiomatic approach to centrality analysis [Boldi and Vigna,
2014; Bloch et al., 2016]. So far, however, vitality indices
have not been analyzed (see Related Work for details).
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2 Preliminaries
In this paper, we consider undirected, unweighted simple
graphs. However, we note that the main results, including
Theorems 3 and 5, easily translate to directed and weighted
graphs.

A graph is a pair G = (V,E) where V is the set of nodes
andE is the set of unordered pairs of nodes called edges. The
set of all possible graphs will be denoted by G.

An edge {u, v} is said to be incident to u and v. The set of
all edges incident to v in G is denoted by Γv(G). Two nodes
u, v are called adjacent if they are connected by an edge, i.e.,
if {u, v} ∈ E. If node u is adjacent to node v, then it is called
a neighbor of v. The set of neighbors of node v is denoted by
Nv(G). A node is isolated if it has no neighbors.

For a set of nodes S ⊆ V , a subgraph induced by S, de-
noted by G[S], is a graph over set S that contains all edges
from G that connect nodes from S. Formally: G[S] =
(S, {{u, v} ∈ E : u, v ∈ S}).

A path is a sequence of nodes p = (v0, . . . , vk) such that
every two consecutive nodes are adjacent. If vi = u for some
i ∈ {0, . . . , k}, then we write that u ∈ p which means that
path p goes through node u. The length of a path is the num-
ber of edges that it goes through, i.e., the length of the se-
quence of nodes minus one. The set of shortest paths between
u and v in G is denoted by Πu,v(G).

The distance between two nodes is the length of a shortest
path that starts in one node and ends in the other node. For
two nodes u, v, we denote the distance between them in graph
G by distu,v(G). We assume that distv,v(G) = 0 for every
v ∈ V and distu,v(G) =∞ if there is no path between u and
v in G.

A graph is connected if there exists a path between any
two nodes. If not, the graph is disconnected and consists of
several connected parts, called (connected) components. For-
mally, a component of a graph is a set of nodes S that contains
all nodes adjacent to nodes from S. The set of all components
of graph G is denoted by K(G).

For two nodes, u, v, the flow from u to v in a graph is the
maximal number of edge-disjoint paths between u and v. We
denote it by flowu,v(G). Intuitively, the flow is the number of
units (e.g., of information) that can be transferred from u to
v under the assumption that each edge can transfer only one
unit. If the graph is connected, then clearly flowu,v(G) ≥ 1
for every u, v ∈ V . For notational convenience, we assume
that flowu,v(G) = 0 if u 6∈ V or v 6∈ V . The total flow
in graph G, denoted by flow(G), is the sum of flows between
any pair of nodes in a graph: flow(G) =

∑
u,v∈V flowu,v(G).

For a node or an edge x we will denote by G−x the graph
obtained from G by removing x. We will also use the Iverson
bracket: [γ] = 1 if statement γ is true and [γ] = 0, otherwise.

2.1 Centrality Measures
A centrality measure F is a function that for every graphG =
(V,E) and for its every node v ∈ V assigns a real value,
denoted by Fv(G). This value represents the importance of
a node in a graph, referred to as the centrality of the node.
We denote by FΣ(G) the sum of centralities of all nodes in
graph G. Also, for notational convenience, we will assume
that Fv(G) = 0 if v 6∈ V .
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Figure 1: Graph G = (V,E) and five graphs considered in cal-
culation of flow betweenness centrality. We have FBv1(G) = 8,
FBv2(G) = FBv3(G) = FBv4(G) = 11 and FBv5(G) = 4.

The most famous centrality measures are as follows:

Degree centrality [Freeman, 1977] assesses a node by the
number of its incident edges: Dv(G) = |{u ∈ V :
{u, v} ∈ E}|.

Closeness centrality [Bavelas, 1950] evaluates how central
a node is by looking at the sum of distances to all
other nodes in a graph: Cv(G) = 1/

∑
u∈V distu,v(G).

Closeness centrality is defined only for connected
graphs.

Betweenness centrality [Freeman, 1977] evaluates the role
of a node as an intermediary by looking how often it is
on the shortest paths between other nodes: Bv(G) =∑

u,w∈V \{v} |{p ∈ Πu,w(G) : v ∈ p}|/|Πu,w(G)|.
Here, we assume that pairs of nodes u,w for which
Πu,w(G) = ∅ are not taken into account.

2.2 Vitality Indices
In this paper, we concentrate on vitality indices:

Definition 1. A centrality measure is a vitality index if there
exists an invariant function f : G → R such that for every
G = (V,E), v ∈ V :

Fv(G) = f(G)− f(G− v).

We assume that f(∅, ∅) = 0.

An invariant function can be any method that assesses the
quality of the network. It may be the Wiener index, i.e., the
sum of distances between all pairs of nodes in a graph, or
simply the number of edges in a graph. In such a case, we
will obtain the degree centrality: if we take f(V,E) = |E|,
then f(G)− f(G− v) = Dv(G). Hence, degree centrality is
a vitality index.

Another important vitality index is an alternative to be-
tweenness centrality based on a notion of flow in a graph.

Flow betweenness centrality [Freeman et al., 1991]
determines the role of a node as an intermediary
by the amount of flow the node is responsible for:
FBv(G) = flow(G)− flow(G− v).

See Figure 1 for an illustration. We discuss an alternative
definition of flow betweenness centrality in Section 6.
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3 Axiomatic Characterization
In this section, we provide a characterization of the vitality
indices.

We begin by introducing the notion of a contribution of one
node to the centrality of another node. The contribution of
node u to the centrality of node v measured with F in graph
G, denoted by ∆F

u,v(G), is defined as follows:

∆F
u,v(G) = Fv(G)− Fv(G− u).

Example 1. Consider again the graph from Figure 1 and
let us calculate the contribution of node v2 to the flow be-
tweenness centrality of node v1. If we remove node v2, the
flow in the graph will drop to 6: flow(G − v2) = 6. If
we now remove node v1 the flow will drop to 3. Hence,
FBv1

(G − v2) = 6 − 3 = 3 and since FBv1
(G) = 8

we get that ∆FB
v2,v1

(G) = 8 − 3 = 5. Now, let us calcu-
late the contribution of node v1 to the centrality of node v2.
Node v2 has centrality 11 and after node v1 is removed it
drops to 6, so we get that ∆FB

v1,v2
(G) = 11 − 6 = 5 and

∆FB
v2,v1

(G) = 5 = ∆FB
v1,v2

(G). All pairwise contributions for
the graph from Figure 1 are as follows:

∆FB
u,v (G) v1 v2 v3 v4 v5

v1 × 5 5 3 1
v2 5 × 6 8 1
v3 5 6 × 8 1
v4 3 8 8 × 4
v5 1 1 1 4 ×

As we can see, for every two nodes u, v the contribution
of u to the centrality of v is equal to the contribution of v
to the centrality of u. This property of a centrality is called
Balanced Contributions [Myerson, 1980].

Balanced Contributions: For every graph G =
(V,E) and two nodes u, v ∈ V :1

Fu(G)− Fu(G− v) = Fv(G)− Fv(G− u).

See Figure 2 for an illustration. Balanced Contributions was
originally proposed as a fairness and stability condition of
a payoff division in coalitional games. We will introduce
coalitional games in the next section. In a nutshell, if the
centrality is interpreted as a payment or an award of a node,
then Balanced Contributions states that every two nodes have
the same negotiating power by posing the same threat against
each other.

It is easy to verify that every vitality index satisfies Bal-
anced Contributions. Let F be a vitality index based on in-
variant function f and take an arbitrary graph G = (V,E)
and nodes u, v ∈ V . We have:
Fu(G)−Fu(G−v)=f(G)−f(G−u)−f(G−v)+f(G−u−v)

Fv(G)−Fv(G−u)=f(G)−f(G−v)−f(G−u)+f(G−u−v)

Since both expressions on the right-hand side are equal, this
implies that the expressions on the left-hand side are also
equal. Hence, Balanced Contributions is satisfied.

1We note that Balanced Contributions appears in the literature
also in a weaker version in which only incident edges of a node
are removed, but not the node itself: Fu(G) − Fu(G − Γv(G)) =
Fv(G) − Fv(G − Γu(G)) [Skibski et al., 2018; Sosnowska and
Skibski, 2017].

u

w2w1

u v

w2w1

v

w2w1

G− v G G− u

∆F
v,u(G) ∆F

u,v(G)

Figure 2: The axiom of Balanced Contributions states that
∆F

v,u(G)=Fu(G)−Fu(G− v)=Fv(G)−Fv(G−u) = ∆F
u,v(G).

Our main result, however, is stronger: in what follows we
will prove that a centrality measure satisfies Balanced Con-
tributions if and only if it is a vitality index. In other words,
not only vitality indices satisfy Balanced Contributions but if
a centrality measure satisfies Balanced Contributions, then it
must be a vitality index.

To this end, we begin with the following lemma.

Lemma 1. If F satisfies Balanced Contributions, then for
every graph G = (V,E) and node v ∈ V it holds:

Fv(G) =
∑

S⊆V,v∈S

FΣ(G[S])− FΣ(G[S]− v)

|S|
(|V |
|S|
) . (1)

Lemma 1 provides a formula for every centrality that sat-
isfies Balanced Contributions. However, to show that every
centrality measure that satisfies Balanced Contributions is a
vitality index we need to find an invariant function f : G →
R. The following lemma specifies this function.

Lemma 2. If F satisfies Balanced Contributions, then for a
function f : G → R defined as follows:

f(G) =
∑
S⊆V

FΣ(G[S])

|S|
(|V |
|S|
) . (2)

we have Fv(G) = f(G) − f(G − v) for every graph G =
(V,E) and node v ∈ V .

Lemma 2 implies the characterization of vitality indices.

Theorem 3. A centrality is a vitality index if and only if it
satisfies Balanced Contributions.

Theorem 3 can easily be proved using Lemma 2. We note,
however, it is also possible to prove it indirectly using results
of Myerson [1980] and Hart and Mas-Colell [1989] from the
coalitional game theory literature.

Balanced Contributions is a strong property. In particular,
it is easy to verify that it implies Fairness that states that re-
moving an edge from the graph decreases the centrality of
both its endpoints equally [Myerson, 1977]. Both proper-
ties are desirable in some settings, but may not be intuitive
in others. For example, Balanced Contributions and Fair-
ness have been argued to be a reasonable requirement when
nodes are assessed by their role in keeping the network con-
nected [Skibski et al., 2018]. However, in social networks, a
link between two people may be more profitable for the per-
son with the lower social standing. Theorem 3 implies that
if Balanced Contributions does not fit a specific application,
then vitality indices do not fit this application either.
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4 Game-Theoretic Perspective
Balanced Contributions was originally proposed by Myer-
son [1980] in a setting of coalitional games. In this section,
we introduce coalitional games which gives an additional in-
sight on vitality indices and explain the origins of formulas
from Lemmas 1 and 2.

A coalitional game is a pair (N, f) where N is the set of
players and f : 2N → R is a characteristic function that as-
signs a real value to every subset of players (with f(∅) = 0).
In coalitional games, a subset of players is called a coalition.
The set of all possible games will be denoted by CG.

Given this, a value of a game is a function ϕ that for each
player i ∈ N in a game (N, f) assigns a payoff, denoted by
ϕi(N, f). This payoff is interpreted as the fair or expected
share of the value of the grand coalition of all players: f(N).
Arguably, the most popular such value is the Shapley value
(SV) defined as follows [Shapley, 1953]:

SVi(N, f) =
∑

S⊆N,i∈S

f(S)− f(S \ {i})
|S|
(|N |
|S|
) . (3)

The value f(S ∪{i})− f(S) is called the marginal contribu-
tion of player i to coalition S. This formula has the following
interpretation: Assume that players form a grand coalition by
entering one by one in a random order. As a player enters,
she receives a payoff that equals its marginal contribution to
the group of players that she joins. Now, the Shapley value is
the expected payoff of a player over all possible orders.

Shapley [1953] proved that the Shapley value is the unique
value that satisfies four axioms: Efficiency, Symmetry, Ad-
ditivity and Null-Player. However, many more axiomatiza-
tions have been proposed in the literature. In particular, My-
erson [1980] proved that the Shapley value is the only value
that satisfies Efficiency and Balanced Contributions. Further-
more, Hart and Mas-Colell [1989] showed that the Shapley
value is the only value that satisfies Efficiency and Potential:
an axiom that states the value of a player is a difference in the
assessment of a game with and without a player for some as-
sessment function. Our results from Section 3 can be consid-
ered a translation of the equivalence of both axiomatizations
for the setting of centrality measures.

By comparing Equations (3) and (1) we see that the for-
mula from Lemma 1 presents the Shapley value of some
game. Formula from Lemma 2 is the potential of the same
game. Using Theorem 3 we get the following observation.
Corollary 4. A vitality index F in graph G = (V,E) is the
Shapley value of a game (V, f) defined as f(S) = FΣ(G[S])
for every S ⊆ N .

Corollary 4 shows a different view on vitality indices: if we
fix not an invariant function, but the desirable sum of centrali-
ties, then the vitality index is equal to the Shapley value of the
resulting game, i.e., a fair division of this sum between nodes.
This is the idea behind game-theoretic centralities: measures
based on coalitional game theory. A game-theoretic central-
ity first assesses every subset of nodes in a graph. Such an
assessment forms a coalition game in which the role of each
player/node is evaluated using the value of the game.

Formally, a game-theoretic centrality is a composition of
two functions F = ϕ ◦ r, where ϕ is a value of the game

that the centrality is based on and r : G → CG is a repre-
sentation function that maps an arbitrary graph G = (V,E)
to a coalition game (V, rG); hence, Fv(G) = (ϕ ◦ r)v(G) =
ϕv(V, rG). If ϕ is the Shapley value, then we say that the
centrality is Shapley-value based (SV-based). Note that this
definition does not impose any restrictions on r. In particular,
rG(S) may depend not only on G[S]. Examples of game-
theoretic centralities include:
Connectivity centrality [Amer and Giménez, 2004]:

SVv(V, rCN
G ), where rCN

G (S) = [G[S] is connected].
Attachment centrality [Skibski et al., 2019]:

SVv(V, rAG), where rAG(S) = 2(|S| − |K(G[S])|).
Michalak et al.’s centrality [Michalak et al., 2013]:

SVv(V, rMG ), where rMG (S) = |S ∪
⋃

v∈S Nv(G)|.
Corollary 4 implies that every vitality index is a game-

theoretic centrality. The opposite, however, it not true: not
every game-theoretic centrality is a vitality index. In what
follows, we indentify a subclass of all game-theoretic cen-
tralities which is equivalent to vitality indices. Specifically, a
game-theoretic centrality is called induced if rG(S) depends
solely on G[S] for every graph G = (V,E) and set S ⊆ V
[Skibski et al., 2018]. Now, the following theorem shows that
there is a one-to-one correspondence between vitality indices
and SV-based induced game-theoretic centralities.
Theorem 5. A centrality measure is a vitality index if and
only if it is an SV-based induced game-theoretic centrality.

Connectivity and attachment centralities are induced,
hence they are also vitality indices. Michalak et al.’s cen-
trality is not induced and it is not a vitality index.

Theorem 5 shows equivalence between vitality indices and
SV-based induced game-theoretic centralities. Both these
classes evaluate a node by looking at its contribution to some
function (invariant function or the sum of centralities) that as-
sesses the quality of a graph. However, there is a significant
difference in both approaches: vitality indices look only at
the marginal contribution to the whole graph, while game-
theoretic centralities consider marginal contributions to all
induced subgraphs that contain the node in question. As a
result, both functions (invariant function and the sum of cen-
tralities) have different roles and can be different.

In particular, Everett and Borgatti [2010] argued that an
invariant function should be sufficiently sensitive to node
removal—otherwise, the centrality will not be meaningful.
For example, the clique number of a graph is not a good
invariant function, as it may not change at all if there is
more than one maximal cliques in a graph. The same can
be said about simple functions that assess the connectivity
of a graph such as f(G) = [G is connected] or f(G) =
2(|V | − |K(G)|). Both these invariant functions would iden-
tify cut-vertices and the second function would also highlight
nodes which removal is more damaging to the network. How-
ever, if the graph is 2-connected, all nodes would have equal
centralities. In contrary, such insensitive functions are a good
candidate for the sum of centralities and are used by connec-
tivity and attachment centralities. In such manner, the role
of keeping the network connected is measured in a way that
takes into account the contribution to all possible subgraphs.
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invariant function f sum of centralities FΣ

|E| degree 2|E|
flow(G) flow betw.

∑
v∈V (flow(G)−flow(G−v))∑

S⊆V
[G[S] is connected]

|S|
(|V |
|S|

) connectivity [G[S] is connected]∑
S⊆V

2(|V |−|K(G[S])|)

|S|
(|V |
|S|

) attachment 2(|V | − |K(G)|)

Table 1: Examples of invariant functions and the corresponding sum
of centralities.

Table 1 contains examples of invariant functions and the
corresponding sum of centralities for several vitality indices.

5 Distance-Based Centralities
Distance-based centralities form a large and widely used class
of centrality measures. These centralities try to assess how
close the node is to the center of a graph. To this end, they use
the distances to other nodes as the source of this information.

Formally, let distv(G) be the list of distances from v to
other nodes in graph G sorted increasingly:

distv(G) = (distv,u1(G), distv,u2(G), . . . , distv,u|V |−1
(G))

where (u1, . . . , u|V |−1) is the list of nodes from V \{v} such
that distui

(G) ≤ distuj
(G) for every 1 ≤ i ≤ j < |V |.

For example, for graph G from Figure 3 we have distv(G) =
(1, 2, 2, 3). A centrality measure F is a distance-based cen-
trality if there exists a function d such that

Fv(G) = d(distv(G)).

Out of standard centrality measures described in the prelim-
inaries both degree and closeness centralities are distance-
based. Apart from them, there is a number of other distance-
based centralities proposed in the literature:
Decay centrality [Jackson, 2005]:

Yv(G) =
∑

u∈V \{v} δ
distu,v(G) for some δ ∈ (0, 1).

Harmonic centrality [Rochat, 2009]:
Hv(G) =

∑
u∈V \{v} 1/distu,v(G).

K-step reach centrality [Borgatti et al., 2013]:
Rv(G) = |{u : distu,v(G) ≤ k}|.

Note that all of them are defined also for disconnected graphs
assuming that 1/∞ = 0 and δ∞ = 0 for δ ∈ (0, 1).

In what follows, we show that among all distance-based
centralities proposed in the literature only degree centrality
is a vitality index. More precisely, if a distance-based cen-
trality is a vitality index, then it is a linear function of degree
centrality.

To this end, we begin by showing that the distance-based
centrality of a node does not change if we remove all edges
except for its incident edges.
Lemma 6. If a distance-based centrality F is a vitality index,
then for every graph G = (V,E) and node v ∈ V :

Fv(G) = Fv(V,Γv(G)).

Let us illustrate the proof on graph G from Figure 3. Let
L1 = {w1} and L2 = {w2, w3} be sets of nodes at distance 1
and 2 from v, respectively. Now, let us construct two graphs

G = G′ − u

v w1

w2

w3 w4

G′

v w1 w2

w3

w4

u

G′′ − u

v w1 w2

w3

w4

G′′

v w1 w2

w3

w4

u

Figure 3: Sample graphs for the proof of Theorem 8. The impact of
removing v on the centrality of u is the same in G′ as in G′′. This
implies that the impact of removing u on the centrality of v is also
the same in G′ as in G′′ which implies Fv(G) = Fv(G′′ − u).

G′, G′′ based on G. The first graph, G′, is obtained from G
by adding a new node u connected to v and all nodes from
L1 and L2. The second graph, G′′, is obtained from G′ by re-
moving all edges between nodes from L1 and L2. In this way,
all shortest paths between v and any other node go through u.

Both graphs were constructed in a way that distv(G′) =
distv(G′′) and distu(G′) = distu(G′′). This implies that:

Fv(G′) = Fv(G′′) and Fu(G′) = Fu(G′′).

Consider graphs obtained from G′ and G′′ by removing
node v. Since u is connected to all nodes from L1 and L2,
distance from u to any node (other than v which is removed)
is the same in graph G′ − v as in graph G′′ − v. Hence,
we get that distu(G′ − v) = distu(G′′ − v) which implies
Fu(G′ − v) = Fu(G′′ − v) and

Fu(G′)− Fu(G′ − v) = Fu(G′′)− Fu(G′′ − v).

We know that F is a vitality index, which from Theorem 3
means that it satisfies Balanced Contributions. By applying
Balanced Contributions for both sides we get:

Fv(G′)− Fv(G′ − u) = Fv(G′′)− Fv(G′′ − u).

Since Fv(G′) = Fv(G′′) and G′ − u = G we get that
Fv(G) = Fv(G′′ − u). In graph G′′ − u node v is connected
only with nodes from L1 and these nodes are not connected
with nodes from L2. Hence, we see that distv(G′′ − u) =
distv(V,Γv(G)) which concludes the proof.

Lemma 6 implies that we can concentrate only on graphs in
which all edges are incident to the studied node. By focusing
on such graphs and using Balanced Contributions we prove
the following result.
Lemma 7. If a distance-based centrality F is a vitality index,
then there exists a constant a ∈ R such that:

Fv(V,Γv(G)) = Fv(V, ∅) + a · |Γv(G)|.
Combining both lemmas we get the main theorem.

Theorem 8. A distance-based centrality F is a vitality index
if and only if there exists a ∈ R and b1, b2, · · · ∈ R such that

Fv(G) = a ·Dv(G) + b|V |

for every graph G = (V,E) and v ∈ V . In particular, decay,
harmonic and k-step reach centralities are not vitality indices.

As a centrality measure is a function from all possible
graphs, b1, b2, . . . are (possibly different) constants that cor-
respond to graphs with 1, 2, . . . nodes. We note that Everett
and Borgatti [2010] already showed that closeness centrality
is not a vitality index.
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6 Medial & Feedback Centralities
The class of medial centralities consists of measures that as-
sess the role of a node in connecting other nodes in a graph.
As we will show out of popular centralities from this class
only flow betweenness centrality is a vitality index. Since
there is no consensus on the definition of medial centralities
in the literature, we cannot provide a more general result as
we did in the case of distance-based centralities.

The most popular medial centrality is betweenness central-
ity. There are two well-known alternatives: stress central-
ity and already introduced flow betweenness centrality. Be-
low, we introduce and discuss its popular alternative defini-
tion more consistent with other medial centralities.
Stress centrality [Shimbel, 1953]: Sv(G) =∑

u,w∈V \{v} |{p ∈ Πu,w(G) : v ∈ p}|.
Flow betweenness centrality (alt. definition) [Freeman et

al., 1991]: FB∗v(G) =
∑

u,w∈V \{v}(flowu,w(G) −
flowu,w(G− v)).

In what follows we show that betweenness and stress cen-
tralities as well as flow betweeness centrality (alt. definition)
are not vitality indices. To this end, we will use graphG from
Figure 2 which was designed specifically to serve as a coun-
terexample in these proofs. In this graph, node u is on the
shortest path between nodes v and w1, hence it gains from
the fact that v is in the graph. In turn, node v is not an inter-
mediary between any nodes as both its neighbors are directly
connected, so its benefit from node u is lower.
Proposition 9. Betweenness, stress and flow betweenness
(alt. definition) centralities are not vitality indices.

The last class of centralities that we discuss is the class of
feedback centralities. Such centrality measures assess the im-
portance of a node based on the number and the importance
of its neighbors. This method usually leads to a system of re-
cursive equations. The simplest feedback centrality is degree
centrality. Other prominent examples are:
Eigenvector centrality [Bonacich, 1972]: Ev(G) = 1/λ ·∑

{u,v}∈E Eu(G), where λ is the largest eigenvalue
of an adjacency matrix. This equation does not im-
ply a unique solution, so we additionally assume that∑

v∈V Ev(G) = 1.

PageRank centrality [Page et al., 1999]: PRv(G) = a ·∑
{u,v}∈E

PRu(G)
|Γu(G)| + b, where a ∈ (0, 1) and b ∈ R.

As it turns out, these two centralities are not vitality in-
dices. Intuitively, we see from the definitions that a more im-
portant node has a higher impact on the centralities of other
nodes. However, removing a node may affect the whole struc-
ture of a graph, so a more precise argument is required.

To show that eigenvector and PageRank centralities are not
vitality indices we will consider a graph from Figure 4. In
this graph, node v is the most central one, as it is connected
to all nodes except for u. Removing node u from the graph
does not affect the position of v much. In turn, node u is the
least central, but if we remove v, then all nodes, including u,
will become equally important.
Proposition 10. Eigenvector and PageRank centralities are
not vitality indices.

vu

w1 w2

w3

. . .wn

Figure 4: A sample graph used in Proposition 10.

7 Related Work
The class of vitality indices has been formally defined by
Brandes and Erlebach [2005]. The authors analyzed how
closeness centrality and stress centrality can be redefined in
order to fit the definition of vitality indices. Everett and Bor-
gatti [2010] analyzed vitality indices in which the invariant
function is the sum of centralities of all nodes in a graph for
popular centralities and studied the decomposition of such
centralities into endogenous and exogenous parts.

Our work belongs to a line of research that focus on
the axiomatic approach to centrality analysis [Boldi and Vi-
gna, 2014; Bloch et al., 2016; Skibski et al., 2018]. How-
ever, so far, vitality indices have not been analyzed. Here,
a lot of work is focused on feedback centralities [Altman
and Tennenholtz, 2005; Wąs and Skibski, 2020]. Also, ax-
iomatic characterizations of the class of distance-based cen-
tralities were proposed [Garg, 2009; Skibski and Sosnowska,
2018]. There is also an increasing number of papers on game-
theoretic centralities [Skibski et al., 2019; Istrate et al., 2020;
Becker et al., 2020]. Our Theorem 5 provides also an ax-
iomatic characterization of SV-based induced game-theoretic
centralities. Skibski et al. [2018] provided similar axiomati-
zations for game-theoretic centralities, but focused on axioms
that do not change the set of nodes. In particular, Balanced
Contributions considered there is weaker than our definition
as it considers removing all edges incident to a node, but not
the node itself.

8 Conclusions
In this paper, we provided an axiomatic characterization of
vitality indices. Building upon this, we explored a connec-
tion with coalitional game theory and showed equivalence
between vitality indices and Shapley-value based induced
game-theoretic centralities. We also proved that out of the
most popular centrality measures only degree and flow be-
tweenness centralities are vitality indices.

In our future work, we plan to further explore the class of
vitality indices and link to coalitional game theory. In par-
ticular, it would be interesting to analyze what restrictions on
the invariant function are imposed by the desirable properties
of the resulting vitality index. Another idea is testing how
effective are vitality indices in applications in which central-
ities are used to identify nodes which removal damages the
network the most, e.g., in the centrality attack literature.
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