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Abstract
We study the Japanese Residency Matching Pro-
gram (JRMP) in which hospitals are partitioned
into disjoint regions and both hospitals and regions
are subject to quotas. To achieve a balanced distri-
bution of doctors across regions, hard bounds are
imposed by the government to limit the number of
doctors who can be placed in each region. How-
ever, such hard bounds lead to inefficiency in terms
of wasted vacant positions. In this paper, we pro-
pose two suitable algorithms to reduce waste with
minimal modification to the current system and
show that they are superior to the algorithm cur-
rently deployed in JRMP by comparing them theo-
retically and empirically.

1 Introduction
Real-life matching markets often pertain to different forms
of constraints [Kamada and Kojima, 2017a; Sun, 2020]. For
instance, diversity concerns are pervasive in school choice
where students are associated with a set of types and schools
impose quotas on each type [Abdulkadiroğlu and Sönmez,
2003; Ehlers et al., 2014; Kurata et al., 2017; Gonczarowski
et al., 2019]. Another example is refugee resettlement, where
refugee families have multi-dimensional requirements that in-
volve several services such as housing, education, and job op-
portunities [Aziz et al., 2018].

In this paper, we focus on a particular form of distributional
constraints motivated by the Japanese Residency Matching
Program (JRMP) that was established in 2004. It aims to pro-
vide training for new medical school graduates at hospitals.
For the past decade, more than 1000 hospitals and around
10000 doctors have annually participated in JRMP1.

Due to the shortage of doctors in rural areas, in 2008 the
Japanese government introduced regional quotas to limit the
number of doctors who can be placed in different regions.
To ensure that the number of doctors matched to a region
does not exceed its regional quota, a target capacity (a.k.a
an artificial-cap), which is usually smaller than its real ca-
pacity, is also imposed on each hospital2. The Artificial-Cap

1https://www.jrmp.jp
2https://www.mhlw.go.jp/seisaku/2009/08/04.html

Deferred Acceptance algorithm (ACDA), which is currently
deployed by JRMP, works in the same way as the original
Deferred Acceptance algorithm, except that each hospital is
subject to its target capacity. However, such rigid target ca-
pacity may lead to a waste of vacant positions. For instance,
consider a hospital with a real capacity of six and a target ca-
pacity of four. Suppose six doctors apply, two of whom can-
not be matched due to the target capacity, even if the regional
quota has not been filled.

The objective of our research is to solve the inefficiency
issue with minimal modification to the current system. We
propose an effective and simple approach to reduce vacant
positions. The basic idea is that each hospital is “divided”
into two dummy hospitals such that one dummy hospital has
the target capacity and a larger weight, and the other dummy
hospital has the remaining capacity (i.e., real capacity minus
target capacity) and a smaller weight. When the number of
doctors who apply for hospitals in a particular region exceeds
its regional quota, the region first fills the vacant positions of
the dummy hospitals with a larger weight, and then considers
the dummy hospitals with a smaller weight.

The contributions of this paper are summarized as follows.
First, we introduce a new model of matching with regions that
incorporates weights over hospitals. It covers many applica-
tions that aim to optimize and allocate resources in a balanced
way, such as school admissions. Second, we propose a class
of algorithms called Generalized Deferred Acceptance with
Regions (GDA-R) that provides a new framework for match-
ing models with regions. Furthermore, we propose two par-
ticular implementations based on the GDA-R framework for
JRMP. Third, we theoretically and empirically compare our
new algorithms with ACDA and show that they provide an
effective and simple approach to solve the inefficiency issue
and are reasonable alternatives to ACDA.

2 Related Work
Kamada and Kojima [2015] first studied the inefficiency issue
in JRMP and proposed a possible solution that treats the tar-
get capacities as soft bounds such that hospitals are allowed
to accept more doctors than their target capacities as long as
regional quotas are respected. Their approach equalizes the
numbers of doctors matched to hospitals when the target ca-
pacities are fulfilled, by requiring hospitals to take rounds to
choose doctors one by one until regional quotas are reached.
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However, since this approach disadvantages larger capacity
hospitals, especially for JRMP where hospital capacities vary
widely, the solution may not be adequate [Kamada and Ko-
jima, 2020]. This algorithm, which can be considered as a
special implementation of GDA-R, is discussed in the Ap-
pendix.

Some existing algorithms are designed for matching with
regional quotas [Goto et al., 2015; 2016; 2017a; Hamada et
al., 2017] that work for some particular setting. In contrast,
we propose a novel class of algorithms (GDA-R) to provide
a new framework for matching with regions. Other papers
are more mathematical and focus on an abstract and a general
class of constraints, e.g., constraints that can be represented
as a substitute choice function [Hatfield and Milgrom, 2005;
Hatfield and Kojima, 2008], an M-convex set [Kojima et al.,
2018]. Although representing these two models in an abstract
model is possible, how to encode such constraints and prefer-
ences as a choice function in an abstract model is not obvious
and deserves further exploration.

3 Model
In this section, we introduce a new model of matching with
regional quotas that incorporates weights over hospitals. We
choose the classical hospital-doctor setting for our illustra-
tion, although our model can be extended to many matching
markets outside the context of hospital-doctor matching. An
instance IR of matching with regional quotas is composed of
a tuple (D, H , qH , R, δ, Y , �D, �H , �R, W ).

Let D and H denote two sets of doctors and hospitals. A
capacity vector qH = (qh)h∈H consists of each hospital h’s
capacity qh, which is the maximum number of doctors that
it can accommodate. There is a set of regions R where each
region r ∈ R is a subset of hospitals, i.e., r ⊆ H . We as-
sume all hospitals are partitioned into disjoint regions as in
JRMP s.t. for any two different regions, ri, rj ∈ R, we have
ri ∩ rj = ∅. Let δ = (δr)r∈R denote a vector consisting of
each region’s maximum quota δr which limits the number of
doctors who can be distributed to hospitals within region r.

Let Y ⊆ D×H denote a set of available contracts, where
each contract (d, h) is a doctor-hospital pair denoting that
doctor d is matched to hospital h. Given any Y ⊆ Y , let
Yd = {(d, h) ∈ Y | h ∈ H} be the set of contracts involving
doctor d, let Yh = {(d, h) ∈ Y | d ∈ D} be the set of contracts
involving hospital h, and let Yr =

⋃
h∈r Yh be the set of con-

tracts involving region r. We follow the model of matching
with contracts [Hatfield and Milgrom, 2005] for two reasons.
First, it allows us to describe more complicated regional pri-
orities over doctor-hospital pairs instead of doctors, as we will
explain below. Second, it allows us to concisely describe our
concepts and algorithms.

An outcome is a set of contracts Y ⊆ Y . An outcome Y
is feasible for IR with respect to regional quotas if i) for each
doctor d, we have |Yd| ≤ 1, ii) for each hospital h, |Yh| ≤ qh
holds, and iii) the outcome Y respects regional quotas, s.t.
for any region r, we have |Yr| ≤ δr.

Let �D= {�d}d∈D be a preference profile of all doctors.
Each doctor d has a preference ordering �d over Yd ∪ {∅}
where ∅ is a null contract indicating that doctor d is un-

matched. For any two contracts x, y ∈ Yd ∪ {∅}, x �d y
means that doctor d prefers contract x to contract y. Let�H=
{�h}h∈H denote a priority profile of hospitalsH where each
hospital h has a priority ordering �h over Yh ∪ {∅}.

3.1 Regional Priorities
We assume that each region r also imposes a regional prior-
ity ordering �r over Yr ∪ {∅}. Let �R= {�r}r∈R denote a
priority profile of regions R. Regional priority is used to de-
termine which doctors should be matched when the number
of applicants exceeds the regional quota [Aziz et al., 2019].
Imposing a global ordering is a common way to break ties
in the literature of two-sided matchings. The regional prior-
ity orderings in JRMP can be derived from academic perfor-
mances or a lottery.

Given a hospital h ∈ r, the priority ordering �r of region
r is consistent with the priority ordering �h of hospital h if
for any two contracts x, y ∈ Yh, x �h y implies x �r y.
The assumption of consistency is reasonable, because the re-
gional priority orderings are determined by policy makers.
The following is a natural way of generating consistent prior-
ity orderings. A region prefers (d, h) to (d′, h′) if the rank of
(d, h) at hospital h is strictly higher than the rank of (d′, h′)
at hospital h′. If the ranks are the same, then ties are broken
by a strict ordering over hospitals [Goto et al., 2016].

Note that the two new algorithms we designed for JRMP
do not require an assumption of consistency, although they
become equivalent under consistency.

3.2 Weights over Hospitals
The main difference from previous models on matching with
regional quotas is that each region r additionally assigns a
weight w(h) to each hospital h ∈ r to quantify the impor-
tance of hospital h to region r. Let W = {w(h)}h∈H denote
the set of weights.

The intuition of weights over hospitals is that, when more
doctors apply to hospitals in region r than its regional quota
δr, region r gives higher precedence to hospitals with larger
weights and lower precedence to those with smaller weights.
In other words, region r attempts to fill the vacant positions
of hospitals with larger weights whenever possible. If ties oc-
cur, then it chooses the contract with higher regional priority
based on �r.

4 Desirable Properties
In this section, we describe several desirable properties and
propose some new concepts on fairness and non-wastefulness
that address weights over hospitals.

A contract (d, h) is acceptable to doctor d and hospital h
if (d, h) �d ∅ and (d, h) �h ∅ hold. We assume that for
any h ∈ r, if a contract (d, h) ∈ Yh is acceptable to hos-
pital h, then it is also acceptable to region r. An outcome
Y ⊆ Y is individually rational if each contract (d, h) ∈ Y
is acceptable to both doctor d and hospital h. W.L.O.G., we
can assume that all contracts in Y are acceptable to hospitals
(by removing unacceptable contracts from Y ). Then, we can
ensure individual rationality in our proposed mechanisms in
which doctors only choose from acceptable contracts.
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For our model, an algorithm takes an instance IR as input
and yields a set of contracts Y . An algorithm is strategy-proof
for doctors if no doctor can be matched with a better contract
by misreporting his preferences.

Note that a stable outcome is no longer guaranteed to ex-
ist because of regional quotas [Kamada and Kojima, 2017b].
We decompose stability into two properties, fairness and non-
wastefulness, which are commonly considered in the liter-
ature of two-sided matching problems [Goto et al., 2016;
Kurata et al., 2017; Aziz et al., 2019; 2020]. Prior to our
new fairness and non-wastefulness concepts with respect to
weights over hospitals, we first introduce some notation to
simplify the representation.

Given a feasible outcome Y and contract (d, h) /∈ Y with
h ∈ r, we use the following function α(Y, (d, h), r) to quan-
tify the importance of the contract (d, h) to region r.

α(Y, (d, h), r) =

{
w(h) if |Yh| < qh
−∞ otherwise

(1)

Function α(Y, y, r) returns the weight w(h) of hospital h if
it still has a vacant position and otherwise returns negative
infinity.

4.1 Non-wastefulness under Regional Weights
Next we propose a new non-wastefulness concept in Defini-
tion 1 w.r.t regional priorities and weights. Definition 1 can
be decomposed into two properties non-wastefulness across
regions and non-wastefulness within the same region, which
are formally described in the Appendix.
Definition 1 (Non-wastefulness under Regional Weights).
Given a feasible outcome Y , doctor d claims a vacant po-
sition of hospital h at region r under regional weights, if new
outcome Y ∪{(d, h)}\Yd is feasible and one of the following
three conditions holds:
• i) Yd = ∅;
• ii) Yd = (d, h′) and h′ /∈ r;
• iii) Yd = (d, h′), h′ ∈ r and for outcome Y ′ = Y \ Yd, we

have either α(Y ′, (d, h), r)> α(Y ′, (d, h′), r) or α(Y ′,
(d, h), r) = α(Y ′, (d, h′), r) and (d, h) �r (d, h′).

A feasible outcome is non-wasteful under regional weights if
no doctor claims a vacant position.

The first two conditions of Definition 1 correspond to non-
wastefulness across regions. Doctor d is matched outside of
region r in the outcome Y (including the case of being un-
matched), and transferring doctor d to hospital h in region r
does not violate the feasibility requirement.

The third condition corresponds to non-wastefulness within
the same region. Doctor d is matched to hospital h′ at region
r in outcome Y and he prefers another hospital h to h′ within
the same region r. The contract (d, h) is given higher prece-
dence over Yd if for outcome Y ′ = Y \ Yd, either hospital
h has a larger weight than h′ or both contracts have identical
weight but contract (d, h) has higher regional priority.

Definition 1 is stronger than the original non-wastefulness
concept designed for classical two-sided matchings, because
we consider more possibilities for which a doctor can claim
a vacant position by taking account of the regional priorities
and weights.

4.2 Fairness under Regional Weights
Next we propose a new fairness concept in Definition 2 w.r.t
regional priorities and weights, which can be decomposed
into two properties fairness with same weight and fairness by
larger weight. They are formally presented in the Appendix.

Definition 2 (Fairness under Regional Weights). Given a fea-
sible outcome Y , doctor d with (d, h) �d Yd and h ∈ r has
justified envy toward doctor d′ with (d′, h′) ∈ Y and h′ ∈ r
under regional weights, if for outcome Y ′ = Y \ {(d′, h′)},
one of the following three cases holds:

• i) h = h′, (d, h) �h (d′, h′) and (d, h) �r (d′, h′);

• ii) h 6= h′, α(Y ′, (d, h), r) = α(Y ′, (d′, h′), r) and
(d, h) �r (d′, h′);

• iii) h 6= h′ and α(Y ′, (d, h), r) > α(Y ′, (d′, h′), r).

A feasible outcome is fair under regional weights if no doctor
has justified envy toward another doctor.

Note that conditions i) and ii) of Definition 2 correspond
to fairness with same weight and condition iii) corresponds to
fairness by larger weight. Condition i states that doctor d
prefers to be matched with the same hospital h as doctor d′,
and doctor d can “replace” doctor d′ if both hospital h and
region r give higher priority to contract (d, h) over (d′, h′).
For conditions ii) and iii), doctor d prefers to be matched
with hospital h than h′. Condition ii states that both con-
tracts (d, h) and (d′, h′) are tied in terms of importance, but
region r gives higher priority to contract (d, h) over (d′, h′).
Condition iii states that the contract (d, h) is more impor-

tant to region r than (d′, h′).

5 Algorithm Design
In this section, we propose a new class of algorithms called
“Generalized Deferred Acceptance with Regions” (GDA-R),
based on a two-stage process such that contracts proposed by
doctors are first shortlisted by hospitals and then further re-
fined by regions. It provides a new framework for matching
models with regional quotas and is a significant generaliza-
tion of the Generalized Deferred Acceptance algorithm that
works without regional quotas [Hatfield and Milgrom, 2005].

We also propose two particular implementations based on
the GDA-R framework for JRMP: Generalized Deferred Ac-
ceptance with Regions and Hospitals (GDA-RH) and Gener-
alized Deferred Acceptance with Regions Only (GDA-RO),
which differ only in how hospitals choose contracts.

5.1 GDA-R
Next we illustrate how GDA-R works at a high level. In ev-
ery iteration, each doctor first chooses his favorite contract
that remains available and each hospital selects a set of con-
tracts among all the proposals from doctors. Each region then
chooses a set of contracts among the set of contracts chosen
by hospitals. All contracts that are not selected by regions are
rejected and removed from the market. Repeat this procedure
until no more contracts are rejected.

Before proceeding to the formal description of GDA-R,
we introduce some notation to represent the procedure of
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Algorithm 1 Generalized Deferred Acceptance with Regions

Input: IR, ChD, ChH , ChR, a set of contracts Y
Output: An outcome Z ⊆ Y

1: Re← ∅, A← Y,B ← ∅, Z ← ∅
2: while A 6= Z do
3: A← ChD(Y \Re), B ← ChH(A), Z ← ChR(B)
4: Re← Re ∪ (A \ Z) % Update rejected contracts
5: return Z

Algorithm 2 Choice function Chr of region r

Input: An instance IR, a set of contracts Yr
Output: A set of contracts Z ⊆ Yr

1: Z ← ∅
2: Let Yr = Y 1

r ∪ ...∪Y kr s.t. ∀(d, h) ∈ Y ar , ∀(d′, h′) ∈ Y br
• w(h) = w(h′)⇒ a = b

• w(h) > w(h′)⇒ a < b

3: for each Y ar ∈ Yr, a ∈ [1, · · · , k] do
4: for (d, h) ∈ Y ar in descending ordering of �r do
5: if |Zr| < δr and |Zh| < qh then
6: Z ← Z ∪ {(d, h)}
7: return Z

selecting contracts. Given any Y ⊆ Y , let Chd(Y ) de-
note choice function of doctor d that selects his most pre-
ferred contract from Yd. Choice function Chh(Y ) of hospi-
tal h and choice function Chr(Y ) of region r select a set of
contracts from Yh and Yr. The choice function of a set of
agents is the union of each individual’s choice function, i.e.,
ChD(Y ) =

⋃
d∈D Chd(Y ). Armed with these choice func-

tions, we describe GDA-R in Algorithm 1.
It is not unique to define choice functions Chh(Y ) and

Chr(Y ), and each different method specifies one implemen-
tation of GDA-R algorithm. In this paper, we propose one
particular way to define Chr(Y ), as shown in Algorithm 2.
We consider two different ways to define Chh(Y ), and the
GDA-RO and GDA-RH algorithms differ only in their choice
function of hospitals.

5.2 Choice Function of Regions
Choice function Chr of region r in Algorithm 2 works as fol-
lows. First, divide all contracts Yr = Y 1

r ∪ Y 2
r ... ∪ Y kr into

disjoint groups based on hospitals’ weights s.t. for any two
contracts (d, h) ∈ Y ar , (d

′, h′) ∈ Y br , i) if two hospitals h
and h′ have the same weight, then two contracts belong to the
same group; ii) if hospital h has a higher weight than hospital
h′, then contract (d, h) belongs to the group with a smaller
superscript a. Region r first selects contracts from group Y 1

r ,
followed by Y 2

r and so on. For each group Y ar , region r se-
lects contracts based on its regional priority �r without ex-
ceeding its regional quota and the hospital capacity.

The intuition of Algorithm 2 is that regions assign weights
to hospitals to quantify their importance in terms of achieving
a balanced outcome. When the number of applicants exceeds
the regional quota, then the region determines which doctors
should be chosen in a reasonable way to fill the vacant po-

Algorithm 3 Choice function Chh of hospital h

Input: An instance IR, a set of contracts Y
Output: A set of contracts Y ′ ⊆ Y

1: Y ′ ← ∅
2: for y = (d, h) ∈ Y in descending ordering of �h do
3: if |Y ′h| < qh then
4: Y ′ ← Y ′ ∪ {y}
5: return Y ′

sitions of hospitals with larger weights whenever possible.
When ties occur, the region chooses the contract with a higher
regional priority.

5.3 Choice Functions of Hospitals
Next we introduce the choice function of hospitals employed
in GDA-RH, which works as follows. Each hospital selects
contracts one by one based on its priority ordering �h until
the number of contracts reaches its capacity qh, as described
in Algorithm 3, which is equivalent to its counterpart in the
classical Deferred Acceptance algorithm.

We can define another choice function Ch∗h of hospital h
that chooses all contracts proposed by doctors without reject-
ing any contract (even if the number of proposals exceeds
hospital’s capacity). Formally, given any Yh, Ch∗h(Yh) = Yh.
Choice function Ch∗h is used in Generalized Deferred Accep-
tance with Regions Only (GDA-RO).

5.4 Comparison of GDA-RH and GDA-RO
Although GDA-RH is more natural and appropriate for taking
hospitals’ choices into account, it satisfies fewer properties
than GDA-RO. On the other hand, we present GDA-RO for
theoretical interest, because it satisfies all the desirable prop-
erties. In addition, GDA-RO is equivalent to GDA-RH under
a reasonable assumption of consistency.

We formalize these results through the following theorems.
We also compare GDA-RH, GDA-RO and ACDA in Table 1.
Detailed proofs are provided in the Appendix.

Theorem 1. The GDA-RO algorithm is strategy-proof for
doctors and yields a non-wasteful and fair outcome under re-
gional weights.

Theorem 2. The GDA-RH algorithm yields an outcome that
is non-wasteful across regions and fair by larger weights.

(General priority domain) GDA-RO GDA-RH ACDA

Non-wastefulness under regional weights 3 7 7

Non-wastefulness within same region 3 7 7

Non-wastefulness across regions 3 3 7

Fairness under regional weights 3 7 7

Fairness with same weight 3 7 7

Fairness by larger weights 3 3 7

Strategyproofness for doctors 3 7 3

Table 1: Properties satisfied by GDA-RO, GDA-RH, and ACDA un-
der general priority domain
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Theorem 3. When the priority orderings of hospitals and re-
gions are consistent, both GDA-RO and GDA-RH return the
same outcome.

6 Example of JRMP
Next we illustrate how to apply GDA-RO and GDA-RH to
JRMP through Example 1. Recall for ensuring that the sum
of doctors matched to one region does not exceed its regional
quota δr, a target capacity qh is imposed on each hospital
with

∑
h∈r qh ≤ δr [Kamada and Kojima, 2015].

Example 1. Consider the following market with four doctors
and two hospitals located at one region r. In the priority
ordering of region r, only acceptable contracts are listed:

D = {d1, d2, d3, d4}, H = {h1, h2}, R = {r},
qh1 = 2, qh2 = 3, qh1

= 1, qh2
= 2, δr = 3,

�di : (di, h1) �di ∅ for i in [1, 2, 3],
�d4 : (d4, h2) �d4 ∅,
�h1

: (d3, h1), (d1, h1), (d2, h1), (d4, h1),
�h2

: (d3, h2), (d4, h2), (d2, h2), (d1, h2),
�r: (d1, h1), (d2, h1), (d3, h1), (d4, h2).

The outcome yielded by ACDA is {(d3, h1), (d4, h2)}. How-
ever, the regional quota is not fulfilled and one position at
hospital h1 is wasted.

Next we illustrate how GDA-RO and GDA-RH work. Re-
call that GDA-R requires weights over hospitals as part of
the input, and we first divide each hospital into two dummy
hospitals with different capacities and weights, where one
dummy hospital has the target capacity and a larger weight,
and the other dummy hospital has the remaining capacity and
a smaller weight (see Figure 1). The subscripts of dummy
hospitals correspond to their original hospitals and the su-
perscripts indicate their weights.

h1
1 h0

1 h1
2 h0

2

Capacities

Dummies

h1 h2

1 1 2 1

�� @@ �� @@

Figure 1: Dummy hospitals with different capacities and weights

Then we create new contracts with respect to dummy hos-
pitals. For each doctor d, his preference ordering is modified
as follows. First, replace each contract (d, h) with (d, h1)
and insert another contract (d, h0) right after (d, h1). For
instance, �d1 : (d1, h

1
1), (d1, h

0
1). Each dummy hospital in-

herits the priority ordering from its original hospital, i.e.,
�h1

1
: (d3, h

1
1), (d1, h

1
1), (d2, h

1
1), (d4, h

1
1).

The outcome yielded by GDA-RH is {(d1, h
0
1), (d3, h

1
1),

(d4, h
1
2)} and the outcome yielded by GDA-RO is {(d1, h

1
1),

(d2, h
0
1), (d4, h

1
2)}. The detailed procedures of GDA-RH and

GDA-RO are presented in the Appendix.

During the GDA-RH and GDA-RO processes, each region
first attempts to fill the vacant positions of the dummy hos-
pitals with larger weights (corresponding to the target quo-
tas) and then considers all the dummy hospitals with smaller

weights (corresponding to the remaining quotas). This pro-
vides a simple and effective way to distribute doctors to un-
derserved regions with minimal modification to the current
system. This idea can be useful for other matching markets
in which the agents who play the role of regions have the au-
thority to interfere in the matching process.

7 Experiments
In this section, we empirically evaluate our newly designed
algorithms GDA-RH and GDA-RO. Since we have proved
that they satisfy some notion of non-wastefulness, our experi-
ments instead focus on the welfare of doctors. Note that their
welfare is also a major concern to JRMP, because it incen-
tivizes medical students to participate in the program. The
government annually announces the numbers of doctors who
are matched to their top k choices, and we use this method to
measure the performances of the algorithms.

As a benchmark, we chose Artificial-Cap Deferred Ac-
ceptance algorithm (ACDA) , which is currently deployed in
JRMP market and is commonly used as the baseline in the
literature on matching with regions [Fragiadakis et al., 2016;
Goto et al., 2016; 2017b; Hamada et al., 2017].

7.1 Setup
We consider a medium-sized market with |D| = 200 doc-
tors, |H| = 10 hospitals, and |R| = 2 regions. We assume all
hospitals have the same capacity and artificial-cap, and all re-
gions have the same number of hospitals and regional quotas.

In JRMP, the total quota of all the regions is around 11,000,
which equals the sum of all the artificial-caps of the hospi-
tals. The total number of doctors participating in the market
is about 100003. In the experiments, the artificial cap is set to
|D| / |H| ∗ 1.1 = 22, and the regional quota is set to |D| /
|R| ∗ 1.1 = 110 where the factor 1.1 simulates JRMP market.
Since we do not have access to the actual capacity of hos-
pitals, we use |D|/|H| ∗ ratio to determine the capacity of
each hospital, where a ratio is chosen from three reasonable
values: {1.2, 1.5, 2.0}.

The preference profiles of the doctors and the priority pro-
files of the hospitals and regions are generated by Mallows
Model (MM), which is commonly used to generate prefer-
ence and priority profiles when such information is unavail-
able [Lu and Boutilier, 2011]. Let Φ denote a set of possible
preference orderings. The Mallows Model is a distribution
over the permutations of Φ determined by two parameters: a
reference order σ ∈ Φ and a dispersion parameter θ ∈ (0, 1].
The probability of choosing a preference order �d is calcu-
lated:

Pr(�d |σ, θ) =
θd(�d,σ)∑

�d′∈Φ θ
d(�d′ ,σ)

where d(�d, σ) represents the Kendall distance, measured by
the number of inconsistent ordered pairs between �d and σ.
We exploit the PrefLib library to generate preference and pri-
ority profiles [Mattei and Walsh, 2013]. In this experiment, θ
takes three values from {0.2, 0.5, 0.8}.

3http://www.jrmp2.jp/toukei/2019/2019toukei.htm
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Figure 2: Comparison of three algorithms in terms of doctors’ welfare

Note that in our setting, the doctors consider all contracts
acceptable and the sum of all the artificial-caps exceeds the
total number of doctors. Thus no doctor is unmatched for all
three algorithms.

7.2 Experimental Results
There are two parameters in our experiments. Ratio deter-
mines the capacity of each hospital, and dispersion parame-
ter determines the preference and the priority profiles gener-
ated by the Mallows Model. There are totally nine different
settings, as shown in Figure 2. Next we summarize our ex-
perimental results.

The first observation is that for each algorithm, Mallows
Model’s dispersion parameter significantly affected the wel-
fare of the doctors. As the dispersion parameter increased,
doctors’ preferences became more diverse and they became
more likely to be assigned to their top choices.

The second observation is that the ratio parameter that de-
termines the capacity of each hospital played a minor role.
As the ratio became larger, the number of doctors who were
matched to their top k choices slightly increased.

The third observation is that, GDA-RH consistently out-
performed GDA-RO and ACDA for all the settings. Al-
though GDA-RO matched fewer students to their top three
choices than ACDA for ratio 1.2 and θ ≤ 0.5, it outper-
formed ACDA for ratio 2.0. When ratio was 1.5, GDA-RO
performed weakly better than ACDA except for the number
of top choices with θ = 0.5.

In summary, GDA-RH dominated the other two algorithms
in terms of doctors’ welfare, and GDA-RO performed bet-
ter than ACDA when the hospitals’ capacities exceeded the
artificial-caps (i.e., ratio 1.5 or more).

8 Conclusion
In this paper, we studied the Japanese Residency Matching
Program (JRMP), which suffers from inefficiency issues due
to target capacities imposed by the government. We derived
two algorithms, GDA-RO and GDA-RH, to reduce waste with
minimal modification to the current system. GDA-RO satis-
fies more desirable properties than GDA-RH, although GDA-
RH more effectively satisfies doctors’ welfare. These two al-
gorithms become equivalent under a reasonable assumption
of consistency.

In conclusion, our two new algorithms, GDA-RH and
GDA-RO, are suitable alternatives to ACDA for several rea-
sons. First, both algorithms satisfy at least one notion of non-
wastefulness while the ACDA algorithm leads to a waste of
vacant positions. Second, GDA-RH is beneficial for the wel-
fare of doctors, especially for real-life markets where doctors
have similar but not identical preference orderings (i.e., θ =
0.5). On the other hand, GDA-RO satisfies many more de-
sirable properties than ACDA and outperforms ACDA when
hospitals’ capacities exceed artificial-caps.

For the future work, one possible direction is to investigate
whether algorithms exist that have the merits of both GDA-
RO and GDA-RH based on the GDA-R framework.
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