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Abstract
We study the pairwise organ exchange problem
among groups motivated by real-world applications
and consider two types of group formulations. Each
group represents either a certain type of patient-
donor pairs who are compatible with the same set
of organs, or a set of patient-donor pairs who re-
side in the same region. We address a natural re-
search question, which asks how to match a maxi-
mum number of pairwise compatible patient-donor
pairs in a fair and individually rational way. We first
propose a natural fairness concept that is applica-
ble to both types of group formulations and design
a polynomial-time algorithm that checks whether
a matching exists that satisfies optimality, individ-
ual rationality, and fairness. We also present sev-
eral running time upper bounds for computing such
matchings for different graph structures.

1 Introduction
Due to a shortage of organs harvested from deceased donors,
living donations have become a significant approach to saving
the lives of patients who suffer from serious organ dysfunc-
tion. One issue with living donations is that the organs from
willing donors may be medically incompatible with the in-
tended patients. This problem can be partially overcome by
organ exchange, which allows patients to swap their donors
with others to obtain compatible organs [Roth et al., 2004].
Since transplant operations are usually conducted simultane-
ously, a fixed upper bound is always imposed on the length of
the exchange cycles. Pairwise organ exchange, which is the
most common form in real-life, involves two pairs of patient
and donor [Roth et al., 2005]. The design of organ exchange
market has attracted considerable attention from both the eco-
nomics and computer science fields [Abraham et al., 2007;
Bertsimas et al., 2013; Dickerson et al., 2014; Hajaj et al.,
2015; Dickerson and Sandholm, 2017; Dickerson et al., 2019;
Ergin et al., 2020; Freedman et al., 2020].

In this paper, we study the organ exchange problem from
a different perspective. We concentrate on a pairwise organ
exchange market where all the patient-donor pairs are parti-
tioned into disjoint groups. Dividing patient-donor pairs into
groups is motivated by applications. Next we describe two

types of group formulations that have surfaced in recent liter-
ature.

In the first type, a group of agents represents a certain type
of patient-donor pairs where patients are compatible with the
same set of organs in the market. For instance, Dickerson
et al. [2017] introduced a new model for kidney exchange
that classifies all participating patient-donor pairs into a fixed
number of types, based on a common set of attributes, e.g.,
blood type, tissue type, age, insurance, willingness to travel,
etc. Ergin et al. [2017] studied the dual-donor organ exchange
problem w.r.t. lung and liver exchanges. They consider a
simplified model for theoretical analysis and grouped patient-
donor pairs by blood types without taking tissue type or size
compatibility into account.

In the second type, each group represents a set of patient-
donor pairs located in a certain area, formed geographically.
For instance, each group can represent a set of patient-donor
pairs in a certain hospital [Ashlagi et al., 2015]. Each group
can also represent a state or territory in the national kidney ex-
change market, e.g. the Australian Organ and Tissue Author-
ity [Mattei et al., 2017]. Or each group can represent a partic-
ular country in the European organ exchange program [Biró
et al., 2019].

Although dividing patient-donors into groups was previ-
ously proposed in the literature, scant attention was paid to
the fair allocation of patient-donor pairs among groups. One
exception [Biró et al., 2019] considered core allocations, i.e.,
outcomes that cannot be improved upon by a coalition of
agents. However, the core may be empty, and it is co-NP-
hard to check its existence. In contrast, we focus on the fol-
lowing research question: how can we design efficient algo-
rithms that match a maximum number of pairwise compatible
patient-donor pairs in a fair and individual rational way?

The contributions of this paper are summarized as follows.
First, we propose a straightforward fairness concept for or-
gan exchange among groups based on the notion of selection
ratio, which provides the flexibility to capture different ideas
such as egalitarianism and proportionality. Second, we intro-
duce a general polynomial-time algorithm that finds a match-
ing that satisfies maximality, individual rationality, and fair-
ness whenever it exists. Third, we provide several running
time upper bounds of computing such matchings for different
graph structures w.r.t. two forms of group formulations.
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2 Model
We consider a pairwise organ exchange problem by compat-
ibility graph G = (V,E) where each vertex v ∈ V repre-
sents a patient-donor pair. We assume that for each vertex,
the patient is incompatible with his donor, or they will con-
duct the transplant immediately rather than participating in
the exchange program [Roth et al., 2007].

Edge set E is specified as follows. There is an edge be-
tween two vertices, i, j ∈ V , if the donor of pair i is com-
patible with the patient of pair j and the donor of pair j is
compatible with the patient of pair i. Vertex set V is parti-
tioned into k disjoint sets where each set Vi ⊆ V represents a
group of patient-donor pairs. Let P = {V1, · · · , Vk} denote
the partition of vertices, i.e., Vi ∩ Vj = ∅ for any i 6= j and⋃

Vi∈P Vi = V .
Depending on whether all vertices within the same group

have the same set of neighbors, we consider two types of
compatible graph structures that correspond to two types of
group formulations. If all the vertices within the same group
have the same set of neighbors, then we refer to such graphs
as compatible graphs with identical neighbors.

A matching M in G is a set of edges without common ver-
tices, and a maximum matching is a matching that contains
the largest possible number of edges. Let M denote the set
of all possible matchings in G and let M∗ denote the set of
all maximum matchings in G. Given a matching M in G, let
|Mi| denote the number of matched vertices from group Vi.
For each group Vi, let max(Vi) = maxM∈M∗ |Mi| denote the
maximum bound of matched vertices from group Vi among
M∗, and let min(Vi) = minM∈M∗ |Mi| denote the minimum
bound of matched vertices from group Vi among M∗.

Let G[Vi] denote a subgraph of G only induced by ver-
tices from group Vi. Consider any maximum matching M ′

in subgraph G[Vi]. Let m̃in(Vi) = 2 · |M ′| denote the modi-
fied minimum bound of group Vi, which equals twice the size
of maximum matching M ′ in G[Vi]. Note that the modified
minimum bound of group Vi is the largest number of matched
pairs from group Vi if only exchanges between vertices within
group Vi are allowed. The modified minimum bound is criti-
cal to define individual rationality.

3 Desirable Properties
For our problem, an algorithm takes as input a compatibility
graph G, and outputs a matching M as the outcome. Next we
introduce three desirable properties that an outcome should
satisfy. The first property is optimality, which requires that
a matching must maximize the number of exchanges among
compatible patient-donor pairs.

Definition 1 (Optimality). Given a compatible graph G, a
matching M in G satisfies optimality if M is a maximum
matching in G.

The second property, individual rationality, requires that in
an individually rational matching M , the number of matched
pairs |Mi| of each group Vi not be less than its modified min-
imum bound m̃in(Vi). This property guarantees that each
group Vi will receive at least the same number of matched
pairs as that when group Vi conducts exchanges by itself.
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Figure 1: Given a matching M , for each group Vi, colored re-
gion represents |Mi| − δi and shaded region represents δi − |Mi|.
Height of each bar equals size |Vi| of each group.

Definition 2 (Individual Rationality). Given a compatibility
graph G = (V,E) and a partition P of vertices V , a match-
ing M in G satisfies individual rationality, if for each group
Vi ∈ P , we have |Mi| ≥ m̃in(Vi).

Note that for compatible graphs with identical neighbors,
individual rationality is trivially satisfied, because each group
forms an independent set and the modified minimum bound
is zero for each group.

Next we introduce an important notion called selection ra-
tio which is key to the definition of our third property fairness.
Let δi and δi denote the upper and lower bounds for group Vi
with δi ≥ δi. Intuitively, these two bounds represent two tar-
get quotas s.t. we expect the number of matched pairs from
group Vi to fall within the range of these two bounds.

Given a matching M , upper and lower bounds δi and δi,
selection ratio α(|Mi|, δi, δi) of group Vi is represented as a
fraction, where the numerator is the difference between the
number of matched pairs |Mi| from Vi in matching M and
the lower bound δi, and the denominator is the difference be-
tween upper bound δi and lower bound δi. Formally,

Definition 3 (Selection Ratio). Given a matching M in G,
two quotas δi and δi with δi ≥ δi, selection ratio of group Vi
w.r.t. δi and δi is

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

for δi > δi.

When δi = δi, we assume α(|Mi|, δi, δi) = −∞ if |Mi| < δi
and α(|Mi|, δi, δi) =∞ if |Mi| ≥ δi.

Selection ratio measures to what extent the number of
matched pairs |Mi| from group Vi surpasses lower bound δi
on the scale of the lower bound to the upper bound, as shown
in Figure 1. Note that it is flexible to choose upper and lower
bounds in the formula of a selection ratio, which allows us
to capture different reasonable ideas, e.g., egalitarianism and
proportionality. We discuss different choices of upper and
lower bounds in Section 4.

The third property, fairness among groups, requires that the
minimum selection ratio among all the groups be maximized
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among all matchings. This is a natural and unified fairness
concept for different compatibility graph structures.

Definition 4 (Fairness among Groups). Given the set of all
matchings M in G, a partition P of vertices V and two vec-
tors of quotas δ = (δi)Vi∈P and δ = (δi)Vi∈P with δi ≥ δi
for each group Vi ∈ P , a matching M in G is fair (among
groups) w.r.t. δ and δ if it maximizes the minimal selection
ratio among all groups:

M ∈ arg max
M ′∈M

min
Vi∈P

α(|M ′i |, δi, δi)

W.L.O.G, we assume that δi ≥ δi for each group Vi ∈ P
for the rest of the paper.

4 Choice of Upper and Lower Bounds
In this section, we propose several choices of upper and lower
bounds and assign different names to the corresponding selec-
tion ratios summarized in Table 1.

4.1 Egalitarianism
For each group Vi, if we set δi = |V | and δi = 0 , then the
egalitarian-selection-ratio (Egalitarian) α(·) represents the
ratio between the number of matched pairs |Mi| from group
Vi and the total number of vertices |V |.

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi|
|V |

A fair matching w.r.t. Egalitarian tries to equalize the num-
bers of matched pairs among all groups. Note that another
positive constant can be chosen as δi instead of |V |.

4.2 Proportional to Group Sizes (Group-Size)
For each group Vi, if we set δi = |Vi| and δi = 0, then the
group-size-selection-ratio (Group-Size) α(·) represents the
ratio between the number of matched pairs |Mi| from group
Vi and its group size |Vi|.

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi|
|Vi|

A fair matching w.r.t. Group-Size tries to ensure that for each
group, the number of matched pairs |Mi| from group Vi is
proportional to its group size |Vi|.

4.3 Proportional to Maximum Bounds (Maximum)
For each group Vi, if we set δi = max(Vi) and δi = 0, then
the maximum-bound-selection-ratio (Maximum) α(·) repre-
sents the ratio between the number of matched pairs |Mi|
from group Vi and its maximum bound max(Vi).

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi|

max(Vi)

A fair matching w.r.t. Maximum tries to ensure that for each
group, the number of matched pairs |Mi| from group Vi is
proportional to its maximum bound max(Vi).

Upper bound Lower bound
Egalitarian |V | 0

Group-Size |Vi| 0

Maximum max(Vi) 0

Minimum min(Vi) + 1 0

Max-Min max(Vi) min(Vi)

Max-M-Min max(Vi) m̃in(Vi)

Table 1: Different Choices of Upper and Lower Bounds

4.4 Proportional to Minimum Bounds (Minimum)
For each group Vi, if we set δi = min(Vi)+1 and δi = 0, then
the minimum-bound-selection-ratio (Minimum) α(·) repre-
sents the ratio between the number of matched pairs |Mi|
from group Vi and its minimum bound min(Vi) plus 1.

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi|

min(Vi) + 1

A fair matching w.r.t. Minimum tries to ensure that for each
group, the number of matched pairs |Mi| from group Vi is
proportional to its minimum bound min(Vi) plus 1. Note that
we consider minimum bound min(Vi) plus 1 to avoid the case
that min(Vi) = 0. Similarly, we can replace minimum bound
min(Vi) by modified minimum bound m̃in(Vi).

4.5 Proportional to the Range of Maximum and
Minimum Bounds (Max-Min)

For each group Vi, if we set δi = max(Vi) and δi = min(Vi),
then the maximum-minimum-selection-ratio (Max-Min) α(·)
represents the ratio between the number of matched pairs
|Mi| from group Vi minus its minimum bound and the dif-
ference between its maximum and minimum bounds.

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi| −min(Vi)

max(Vi)−min(Vi)

A fair matching w.r.t. Max-Min tries to ensure that for each
group Vi, the number of matched pairs |Mi| from group Vi
minus its minimum bound is proportional to the difference
between its maximum and minimum bounds.

4.6 Proportional to the Range of Maximum and
Modified Minimum Bounds (Max-M-Min)

For each group Vi, if we set δi = max(Vi) and δi = m̃in(Vi),
then the maximum-modified-minimum-selection-ratio (Max-
M-Min) α(·) represents the ratio between the number of
matched pairs |Mi| from group Vi minus its minimum bound
and the difference between its maximum and modified mini-
mum bounds.

α(|Mi|, δi, δi) =
|Mi| − δi
δi − δi

=
|Mi| − m̃in(Vi)

max(Vi)− m̃in(Vi)

A fair matching w.r.t. Max-M-Min tries to ensure that for each
group, the number of matched pairs |Mi| from group Vi mi-
nus its modified minimum bound is proportional to the differ-
ence between its maximum and modified minimum bounds.
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5 Compatibility between Optimality,
Individual Rationality and Fairness

In this section, we discuss whether a matching always ex-
ists that satisfies optimality, individual rationality and fair-
ness w.r.t. the different choices of upper and lower bounds
in Table 1. The results are different for compatibility graphs
with identical and different neighbors, as summarized in The-
orem 1 and Theorem 2.

Theorem 1. For compatibility graphs with identical neigh-
bors, a matching always exists that satisfies optimality, indi-
vidual rationality, and fairness w.r.t. any choice of upper and
lower bounds in Table 1.

Proof. Given a compatibility graph G with identical neigh-
bors, let M ′ denote any fair matching w.r.t. any choice of
upper and lower bounds in Table 1. If M ′ is not a maximum
matching in G, by Berge’s theorem [Berge, 1957], then an
augmenting path p must exist w.r.t. M ′ such that we can up-
date M ′ to be a new matching M ′ ⊕ p in which the edges
from p \M ′ are added while those from M ′ ∩ p are removed.
Note that the vertices that are matched inM ′ remain matched
in new matching M ′ ⊕ p. Eventually we can obtain a maxi-
mum matching M by iteratively finding all augmenting paths
w.r.t. M ′, and for each group Vi, the number of matched pairs
|Mi| in M is at least as large as the number of matched pairs
|M ′i | in M ′. Then the minimum selection ratio in matching
M remains the same as in M ′; otherwise M ′ cannot be a fair
matching. By the definition of fairness, the maximum match-
ing M is also a fair matching.

Next we show that matching M also satisfies individual
rationality. Recall that we assume all patient-donor pairs in
each vertex are incompatible, which indicates that there is
no edge between two vertices from the same group. Thus
for each group Vi, its modified minimum bound m̃in(Vi) is
always 0. Then for any maximum matching M ′ and for each
group Vi, min(Vi) ≤ |Mi| ≤ max(Vi) holds. Since m̃in(Vi)
= 0 ≤ min(Vi), then any maximum matching in G is also
individually rational. This completes the proof.

Theorem 2. For compatibility graphs with different neigh-
bors, a matching always exists that satisfies optimality, indi-
vidual rationality and fairness w.r.t. Max-M-Min. Fairness
w.r.t. any other choice of upper and lower bounds in Table 1
is incompatible with optimality and individual rationality.

Proof. Next we show that given a compatibility graphGwith
different neighbors, fairness w.r.t. Max-M-Min is compatible
with optimality and individual rationality. Let M denote any
fair matching w.r.t. Max-M-Min in G. If M is not a max-
imum matching, then we can update M to be a maximum
matching as discussed in the proof for Theorem 1. For the
sake of contradiction, suppose M does not satisfy individual
rationality. Then there must exist a group Vi such that |Mi|
< m̃in(Vi) and therefore its selection ratio α(·) is negative
(including where m̃in(Vi) = max(Vi)).

Now consider another matching M∗ obtained as follows.
For each group Vi, letOi denote a maximum matching in sub-
graph G[Vi] only induced by vertices from group Vi. Match-

ing M∗ =
⋃

Vi∈P Oi is the combination of each maximum
matchingOi in each corresponding subgraphG[Vi]. Then for
each group, |M∗i | = m̃in(Vi) holds, which satisfies individ-
ual rationality. However, this leads to a contradiction where
matchingM maximizes the minimal selection ratio among all
the groups. Thus the assumption is wrong, and a maximum
and fair matching w.r.t. Max-M-Min also satisfies individual
rationality.

We prove the second part of Theorem 2 by a counterexam-
ple in the Appendix due to space limitation.

6 Algorithm Design
In this section, we present a general algorithm that computes
a matching that achieves optimality, individual rationality and
fairness w.r.t. the different choices of upper and lower bounds
in Table 1. The algorithm works for compatibility graphs
with both identical and different neighbors and yields either
a matching satisfying three properties whenever one exists or
a NO-instance otherwise, as described in Algorithm 2.

6.1 Computing a Fair Matching
Next we describe the first step of Algorithm 2 that computes
a fair matching w.r.t. some choice of upper and lower quotas
in Table 1, as described in Algorithm 1.

To develop a good intuition of how Algorithm 1 works, we
postpone the following two technical details later: i) Some
choices of upper and lower bounds require the maximum
and minimum bounds of all groups. ii) Algorithm 1 itera-
tively invokes Algorithm Γ that solves the following problem
of Matching with Quotas. Intuitively, Algorithm Γ checks
whether a matching M exists s.t. for each group Vi, the num-
ber of matched pairs |Mi| is not smaller than some target
quota λi. We design efficient algorithms regarding these two
issues in Section 7.

Matching with Quotas

Input: A compatibility graph G, a partition P of
vertices V , a vector of targets λ = (λi)Vi∈P .

Question: Whether a matching M in G exists s.t. for
each Vi ∈ P , λi ≤ |Mi| holds.

The basic idea of Algorithm 1 is to apply a binary search to
find the maximal selection ratio α such that a matching exists
where each group has a weakly larger selection ratio than α.
Algorithm 1 takes as input a compatibility graph G, a vector
of upper bounds δ = (δi)1···k and a vector of lower bounds
δ = (δi)1···k. During the process of Algorithm 1, we track
three variables, α, α`, and αu, representing the current, the
lower, and the upper selection ratios respectively. In the ini-
tialization step, we set lower selection ratio α` to 0 and set
upper selection ratio αu to 1. For each group Vi, we initialize
its target quota λi to 0. During each round of Algorithm 1,
first, compute current selection ratio α = (α` +αu)/2. Then
for each group Vi, calculate its target quota λi w.r.t. α, by
rounding up value dα·(δi−δi)+δie. Then we check whether
a matching M exists s.t. for each group Vi, |Mi| ≥ λi holds
through Algorithm Γ. If so, then update lower selection ratio
α` to be α to search for a larger selection ratio in the range
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Algorithm 1 Computing a fair matching w.r.t. δ and δ

Input: G, δ = (δi)Vi∈P , δ = (δi)Vi∈P
Output: a fair matching M w.r.t. δ and δ

1: Initialize a lower selection ratio α` = 0 and a upper se-
lection ratio αu = 1

2: Initialize a target quota λi = 0 for each group Vi
3: while some target λi exists whose value is different from

the last round do % including the initial round
4: Set current selection ratio α = (α` + αu)/2
5: for each group Vi do
6: Compute target quota λi corresponding to α
7: λi ← dα · (δi − δi) + δie
8: if a matching M in G exists s.t. for each Vi ∈ P , we

have |Mi| ≥ λi then % Using Algorithm Γ
9: α` ← α % Search between α and αu

10: else
11: αu ← α % Search between α` and α
12: return a matching M

[α, αu] in the next round; otherwise, update upper selection
ratio αu to be α to search for a smaller selection ratio in
the range [α`, α] in the next round. Repeat these procedures
whenever some target λi exists whose value is different from
the last round; otherwise Algorithm 2 terminates.

Theorem 3. Given a compatibility graph G and a choice of
upper and lower bounds in Table 1, Algorithm 1 yields a fair
matching in polynomial time.

6.2 Computing a Maximum, Individually Rational
and Fair Matching

Next we give a high-level description of Algorithm 2 that ver-
ifies the existence of a matching that achieves optimality, in-
dividual rationality and fairness w.r.t. some choice of upper
and lower bounds in Table 1.

The input consists of a compatibility graph G and two vec-
tors of quotas δ and δ. The first step computes a fair match-
ing M ′ through Algorithm 1. We use α to denote the min-
imal selection ratio among all groups. The second step em-
ploys Algorithm Γ to check whether a fair and individually
rational matching M exists s.t. for each group Vi, we have
max(dα · (δi − δi) + δie, m̃in(Vi)) ≤ |Mi|. In the final step,
if a fair and individually rational matching M exists, then we
update M to be a maximum matching. Otherwise, no such
matching exists.

Theorem 4. Given a compatibility graph and some choice
of upper and lower bounds in Table 1, Algorithm 2 finds a
matching that satisfies optimality, individual rationality and
fairness whenever it exists in polynomial time.

7 Running Time Upper Bounds
This section is devoted to the two remaining technical details
in Section 6: i) how to compute the maximum and minimum
bounds for each group and ii) how to design Algorithm Γ.
We present different polynomial-time algorithms for different
compatibility graph structures and summarize all the results

Algorithm 2 Checking existence of a matching satisfy-
ing optimality, individual rationality, and fairness w.r.t. δ
and δ

Input: G, δ = (δi)Vi∈P , δ = (δi)Vi∈P
Output: a matching M that is maximum, individually ratio-

nal and fair w.r.t. δ and δ
1: Compute a fair matching M ′ in G w.r.t. δ and δ and let α

denote the minimal selection ratio among all groups %
using Algorithm 1

2: if a matching M exists s.t. for each group Vi, we have
max(dα · (δi − δi) + δie, m̃in(Vi)) ≤ |Mi| % using
Algorithm Γ then

3: Update M to be a maximum matching.
4: return matching M
5: else
6: return NO-instance

on running time upper bounds in Table 2. Detailed proofs are
presented in the Appendix.

Note that given a compatible graph with identical neigh-
bors G = (V,E) with a partition P of vertices V , we can
create an equivalent and compact graph G′ = (V ′, E′) in
which each node Vi ∈ V ′ represents a group with capacity
b(Vi) = |Vi|, i.e., the size of group Vi. We can construct
such a compact representation graph G′ in polynomial time
and assume the input for any compatibility graph with iden-
tical neighbors is its compact representation. The details of
constructing compact graphs are presented in the Appendix.

7.1 Bipartite Graphs with Identical Neighbors
First, we consider the simplest model, bipartite compatibility
graphs with identical neighbors in which all groups form a bi-
partite graph and all vertices within each group have identical
neighbors [Ergin et al., 2017].

Theorem 5. Given a bipartite compatibility graph with iden-
tical neighbors, the maximum bounds of all groups can be
computed in time O(k2) where k is the number of groups.

Proof. (Sketch) Let NG(Vi) denote all neighboring vertices
of some vertex from group Vi in G. For each group Vi, its
maximum bound max(Vi) equals min(|Vi|, |NG(Vi)|) and
we can calculate the total number of its neighboring vertices
in O(k). Thus the total running time is O(k2).

Theorem 6. Given a bipartite compatibility graph with iden-
tical neighbors, the minimum bounds of all groups can be
computed in time O(k3.5) where k is the number of groups.

Identical Identical Different
Bipartite Non-bipartite Non-bipartite

Maximum O(k2) O(k2) O(|V | · |E|)
Minimum O(k3.5) O(|V | · |E|) O(|V | · |E|)
Algorithm Γ O(k3) O(k4 · log k) O(

√
|V | · |E|)

Table 2: Running time upper bounds where k, |V |, and |E| represent
numbers of groups, vertices, and edges in G
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Proof. (Sketch) LetM denote a maximum matching inG and
let M ′ denote a maximum matching in subgraph G[V \ Vi]
induced from all groups excluding group Vi. For each group
Vi, its minimum bound min(Vi) is |M | − |M ′|. Note that we
can compute a maximum matching in bipartite compact graph
G′ of G by the Hopcroft–Karp algorithm in time O(k2.5)
[Hopcroft and Karp, 1973]. Thus the total running time for
computing all minimum bounds is O(k3.5).

Theorem 7. Given a bipartite compatibility graph G with
identical neighbors and a vector of quotas λ = (λi)Vi∈P
where each element λi corresponds to one group Vi, check-
ing whether a matching M in G exists s.t. λi ≤ |Mi| holds
for each group Vi can be done in time O(k3) where k is the
number of groups.

Proof. (Sketch) We prove Theorem 7 by converting the prob-
lem of checking whether a matching M in G exists s.t. for
each group Vi, λi ≤ |Mi| holds into an equivalent network
flow problem with edge capacities in polynomial time, which
then can be solved in timeO(k3) [Malhotra et al., 1978].

7.2 Non-bipartite Graphs with Identical
Neighbors

Next we consider non-bipartite compatibility graphs with
identical neighbors in which all vertices within each group
have identical neighbors [Dickerson et al., 2017].

Theorem 8. Given a non-bipartite compatibility graph with
identical neighbors, the maximum bounds of all groups can
be computed in time O(k2) where k is the number of groups.

Proof. (Sketch) The same proof for Theorem 5 works.

Theorem 9. Given a non-bipartite compatibility graph G =
(V,E) with identical neighbors, the minimum bounds of all
groups can be computed in time O(|V | · |E|) where |V | and
|E| denote the numbers of vertices and edges in G.

Proof. (Sketch) Consider any maximum matchingM inG. If
an alternating path p exists that starts from some unmatched
vertex u ∈ V \ Vi and ends at some matched vertex v ∈
Vi w.r.t. M , then update M to be M ⊕ p by taking their
symmetric difference. Repeat this procedure until there is no
such alternating path w.r.t. M , and the minimum bound of
group Vi is |Mi|. For each group Vi, we can compute its
minimum bound in time O(|Vi| · |E|). The total running time
of computing all minimum bounds is O(|V | · |E|).

Theorem 10. Given a non-bipartite compatibility graph G
with identical neighbors and a vector of quotas λ = (λi)Vi∈P
where each element λi corresponds to one group Vi, checking
whether a matching M in G exists s.t. λi ≤ |Mi| holds for
each group Vi can be done in time O(k4 · log k) where k is
the number of groups.

Proof. (Sketch) We prove Theorem 10 by converting the
problem of checking whether a matching M in G exists s.t.
for each group Vi, λi ≤ |Mi| holds into an equivalent b-
matching problem in polynomial time, which then can be
solved in time O(k4 · log k) [Anstee, 1987].

7.3 Compatible Graphs with Different Neighbors
Next we consider compatibility graphs with different neigh-
bors where vertices from the same group may have different
neighbors [Mattei et al., 2017; Biró et al., 2019].

Theorem 11. Given a compatibility graph G = (V,E) with
different neighbors, the maximum bounds of all groups can
be computed in time O(|V | · |E|).

Proof. (Sketch) We use almost the same proof as that for The-
orem 9. The main difference is that for computing the max-
imum bound, we continue to seek an alternating path p that
starts from some unmatched vertex v ∈ Vi and ends at some
matched vertex u ∈ V \Vi w.r.t. M . Thus they have the same
running time O(|V | · |E|).

Theorem 12. Given a compatibility graph G = (V,E) with
different neighbors, the minimum bounds of all groups can be
computed in time O(|V | · |E|).

Proof. (Sketch) The same proof for Theorem 9 works.

Theorem 13. Given a compatibility graph G with different
neighbors and a vector of quotas λ = (λi)Vi∈P where each
element λi corresponds to one group Vi, checking whether a
matching M in G exists s.t. λi ≤ |Mi| holds for each group
Vi can be done in time O(

√
|V | · |E|).

Proof. (Sketch) Create a new graph G∗ by extending G =
(V,E) as follows. For each group Vi, add a new set of |Vi| −
λi vertices, denoted by V ′i . Each newly added vertex v′i ∈
V ′i is incident to all vertices of Vi. All newly added vertices⋃

Vi∈P V
′
i are incident to each other. If the total number of

vertices is odd, then add one more vertex v∗ that is incident to
all newly added vertices

⋃
Vi∈P V

′
i . There exists a matching

M in G s.t. λi ≤ |Mi| holds for each group Vi if and only
if induced graph G∗ has a perfect matching M∗. We can
check whether G∗ admits a perfect matching by computing
a maximum matching in time O(

√
|V ∗| · |E∗|) [Micali and

Vazirani, 1980] where |V ∗| and |E∗| are linear in the numbers
of |V | and |E|.

8 Conclusion
We studied the pairwise organ exchange problem among
groups motivated by real-world organ allocation markets. We
proposed a new and straightforward fairness concept and in-
troduced a general polynomial-time algorithm that computes
a matching that satisfies three desirable properties including
optimality, individual rationality, and fairness. An interesting
future direction is how to design a fair and efficient algorithm
for exchange among groups by relaxing the assumption of
pairwise exchanges.
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