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Abstract

The Nash social welfare (NSW) is a well-known
social welfare measurement that balances individ-
ual utilities and the overall efficiency. In the context
of fair allocation of indivisible goods, it has been
shown by Caragiannis et al. (EC 2016 and TEAC
2019) that an allocation maximizing the NSW is
envy-free up to one good (EF1). In this paper,
we are interested in the fairness of the NSW in a
budget-feasible allocation problem, in which each
item has a cost that will be incurred to the agent it is
allocated to, and each agent has a budget constraint
on the total cost of items she receives. We show
that a budget-feasible allocation that maximizes the
NSW achieves a 1/4-approximation of EF1 and
the approximation ratio is tight. The approxima-
tion ratio improves gracefully when the items have
small costs compared with the agents’ budgets; it
converges to 1/2 when the budget-cost ratio ap-
proaches infinity.

1 Introduction

Fairness and efficiency are two of the primary considerations
in public economics. Yet, these two objectives are often un-
aligned and even conflict with each other. The Nash social
welfare (NSW) — proposed by Nash as a solution for bar-
gaining problems [Nash Jr, 1950; Kaneko and Nakamura,
1979] — is a well-known social welfare function that bal-
ances individual utilities and the overall efficiency. In more
details, the NSW of a solution x is defined as the product of
the agents’ values v;(x) provided by this solution. As noted
in [Branzei et al., 2017], it can be viewed as a special case of
a family of functions known as generalized (power) means:

(30, vi(x)P) 7.

When p = 1, M),(x) defines the utilitarian social welfare, i.e.,
the average of all agents’ values; and when p — —oo, M, (x)
defines the egalitarian social welfare, i.e., the minimum value
received by an agent. The NSW corresponds to exactly the
limit of M), (x) when p — 0, i.e., ([T;cy vi(x)) Y™ Thus, it
serves a middle ground between the two other cases. A Max-
NSW allocation, i.e., an allocation that maximizes the NSW,
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M,(x)
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naturally leads to balanced values among the agents while it
also nudges the overall efficiency towards the maximum.

In the context of fair allocation of indivisible goods, it has
been shown by Caragiannis et al. [Caragiannis et al., 2016;
Caragiannis er al., 2019b] that a Max-NSW allocation is
envy-free up to one good (EF1); namely, it ensures that every
agent does not envy the bundle of any other agent by more
than one item.

1.1 Our Results

In this paper, we study the fairness of the NSW in a budget-
feasible allocation problem. In this problem, every item j has
a cost of ¢; that will be incurred to the agent that it is allocated
to, and every agent ¢ has a budget B; > 0 that can be used to
pay for the additive cost of the bundle .S of items she receives,
ie., c¢(S) = EjeS ¢; < B;. An allocation (X1, ---, X,) is
a collection of disjoint subsets of items, whereby X; is the
bundle of items allocated to agent i, yielding value v;(X;)
for this agent. In our model, we assume that unused budget
cannot be converted to an agent’s value. This is true in many
real-world applications, e.g., when the cost is the processing
time of a job while the value is the payment for finishing the
job. With this assumption our model also subsumes the model
proposed by Biswas and Barman [Biswas and Barman, 2018],
where all items have size 1. An allocation is budget-feasible
if ¢(X;) < B; forall i, i.e., every agent can afford the cost in-
curred by this allocation. Accordingly, a Max-NSW feasible
allocation is the optimal solution to the following problem.

ien Vi(Xi
s Thien vilXa)
subjectto (X1, -, X,,) is budget-feasible.

Note that since allocations are subject to budget constraints,
it is not always possible to allocate all items. The unallocated
items are assumed to be allocated to a charity who has unlim-
ited budget. Indeed, it is not hard to see that a Max-NSW allo-
cation is Pareto-optimal (PO), i.e., we cannot hope to further
improve some agent’s utility without hurting the other agents.
Here we do not consider the charity as an agent. This immedi-
ately implies that no agent has any incentive to exchange her
bundle with any subset of unallocated items that fits within
her budget. An interesting question is whether some agent
would wish to exchange her bundle with other agents.
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To answer this question, we adapt the classic EF (envy-
free) notion to the budget-feasible setting. In our EF no-
tion, an agent ¢ envies another agent j if there is a subset
of items allocated to agent j that costs at most B; and gives
agent ¢ a strictly higher value. The EF1 notion can be defined
similarly: agent 7 envies agent j for more than one item if
there is a subset of X that costs at most B; and gives i a
strictly higher value even after removing agent 7’s most valu-
able item from this subset. An allocation is said to be EF
(resp., EF1) if no agent envies any other agent (resp., for more
than one item). We show that, unlike the setting without bud-
get constraints, a Max-NSW allocation is no longer always
EF1. However, it remains a good approximation of EF1. Our
main contributions are summarized by the following two re-
sults, where we call an allocation «-EF1 is it achieves an «
approximation of EFI, for @ € [0, 1].

Main Result 1. A Max-NSW allocation is %-EF1 and PO.

We also show that the approximation ratio we proved can-
not be improved. Specifically, we construct an instance for
which a Max-NSW allocation is exactly 1/4-EF1. We ob-
serve that this instance requires some items to have very high
costs compared with the agents’ budgets, i.e., the budget-cost
ratio is k = min; ; % = 1. This motivates our study of the
large budget case where & is large. Interestingly, we find that
the approximation guarantee improves gracefully with x and
eventually converges to 1/2 when x goes to infinity.

Main Result 2. A Max-NSW allocation is (1 — Kfﬁ)-EF 1.

2
Note that instances with large budget are also a typical
setting of the bin packing problem that has received con-
siderable interest in the literature [Feldman et al., 2010;
Devanur et al., 2011; Molinaro and Ravi, 2012; Kesselheim et
al., 2014]. We remark that when x goes to infinity our model
does not degenerate to the one without budget constraints,
because the number of items can increase to infinity as well.
This is why the approximation ratio does not converge to 1 as
in the setting without budget constraints.

Technical Novelty. We remark that deriving the above re-
sults requires techniques very different from those employed
in previous work. The approach of Caragiannis et al. [Cara-
giannis et al., 2016; Caragiannis et al., 2019b] for proving
the EF1-ness of Max-NSW allocations is by contradiction:
if a Max-NSW allocation were not EF1, then by reallocating
some items, the NSW could be improved. In our setting, such
reallocations need to conform to the budget constraints. We
may need to discard some items when reallocating items to
an agent. Thus, applying the same argument requires a larger
difference between the agents’ values. Indeed, this is why
the Max-NSW allocation is only approximately EF1 in our
setting, instead of being exactly EF1. Our analysis for the
second main result is more challenging. We observe that if
the items are divisible, then any Max-NSW allocation must
be 1/2-EF1. To convert the analysis to the indivisible case,
we show that in the divisible analysis at most a constant num-
ber of items are fractionally allocated. Then it suffices to give
a rounding scheme for a small number of fractional items. A
main challenge arises when we have to deal with fractional
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items with large values. We resolve this issue by using a fine-
tuned classification of items into heavy and light ones and ap-
plying different analyses depending on the class the majority
of the items belong to.

1.2 Related Work

The pioneering work of Caragiannis et al. [Caragiannis et al.,
2016; Caragiannis et al., 2019b] triggered a series of follow-
up interests in the fairness of the NSW. It is shown in [Biswas
and Barman, 2018] that with matriod constraints a Max-NSW
allocation is always EF1 if the agents have identical valua-
tions. More recently, Amanatidis et al. [Amanatidis et al.,
2020] proved that a Max-NSW allocation guarantees envy-
freeness up to any item (EFX) if there are at most two possi-
ble values for the goods. The fairness of NSW has also been
studied in the setting when the goods are public [Conitzer et
al., 2017; Fain et al., 2018]. Furthermore, the algorithm in
[Barman et al., 2018] showed that there is an allocation that
is simultaneously 1/1.45-approximate Max-NSW, Pareto op-
timal, and (1 — €)-approximate EF1. Similarly, the algorithm
in [McGlaughlin and Garg, 2020] computes an allocation that
is 1/2-approximate Max-NSW, proportional up to one item,
1/(2n)-approximate maximin share fair, and Pareto optimal
and can be found in polynomial time. No previous work has
considered the setting with budget constraints to the best of
our knowledge.

Our work is conceptually related to a line of work on fair
division that involves a charity in the models. In our budget-
feasible setting, unallocated items are assumed to be donated
to a charity. The concept of charity has also been used to
simplify analysis of EFX allocations as was in [Caragiannis
et al., 2016; Caragiannis et al., 2019b]. Caragiannis et al.
[Caragiannis et al., 2019a] also showed that there is an EFX
allocation on a subset of items that is a 1 /2-approximation of
Max-NSW over the original set of items. Similarly, Chaud-
hury et al. [Chaudhury et al., 2020] proved that by donating
no more than n — 1 items, there is an EFX allocation for the
remaining items and no agent envies the charity.

The complexity of computing a Max-NSW allocation
has been studied for various types of valuation functions
[Ramezani and Endriss, 2009; Darmann and Schauer, 2015].
The problem is APX-hard for additive valuation functions
[Nguyen er al., 2014; Lee, 2017]. There has been some ef-
fort towards designing efficient algorithms to compute ap-
proximate Max-NSW allocations [Nguyen and Rothe, 2014;
Cole and Gkatzelis, 2015; Cole et al., 2017]. The state-of-
the-art approximation ratio of NSW for additive valuations is
1.45 by [Barman et al., 2018].

2 Preliminaries

In our model, a set M of m goods will be allocated to a set [V
of n agents. Every item j € M has a cost ¢; > 0 and every
agent ¢ € NN has a budget B; > 0. Each agent ¢ has an addi-
tive valuation function v; : 2" — RT U {0} on the subsets
of items. Equivalently, we can express the valuation function
v; as a vector v; = (Vi1, -+ ,Vim), Where v;; € RT U {0}
denotes agent ¢’s value for item j. Upon receiving a sub-
set S C M of items, an agent 7 obtains an additive value
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v;(S) = >_jes vij; in addition, the allocation incurs an addi-
tive cost ¢(S) = 3 ¢; to agent 4, which needs to be paid
using her budget. We assume that the values for the items and
the cost of the allocation are not mutually convertible. For
example, the cost may represent the size of the items and the
budget represents the capacity of her knapsack, which cannot
be converted from the items’ values.

An allocation X = (Xo, X1, -+, X,,) is a partition of the
item set M into n + 1 bundles, where X; C M is the bundle
of items allocated to agent ¢ for each ¢ € N and X|, is the set
of unallocated items (recall that due to the budget constraints,
we cannot guarantee | J;_; X; = M). The unallocated items
can be thought of as a donation to a special agent 0, i.e., a
charity, who has an unbounded budget and value 0 for every
item (in the sense that she does not envy any other agents no
matter what they get). An allocation X is budget-feasible if

C(Xi) < Bi7 Vi € N.
In the remainder of this paper, we require every allocation
to be feasible. When we write “an allocation” we mean “a
feasible allocation” unless otherwise stated. For convenience,
for a set X and an element j, we will write X U {j} as X + j
and X \ {j} as X — j throughout the paper.
Definition 2.1 (Max-NSW). An allocation X* is a Max-
NSW allocation if it maximizes the Nash social welfare, i.e.,
[Lien vi(X]) > [Lien vi(Xi) for any allocation X. For
the case when the maximum NSW is zero, the Max-NSW al-
location is the one that (1) maximizes the number of agents
|S| that have non-zero values; (2) maximizes the NSW of the
induced problem instance on the subset of agents S.

In the budget-feasible setting, an agent cannot hope to take

a bundle that costs more than her budget. We adapt the EF
notion accordingly and define it as follows.
Definition 2.2 (EF). Forany « € [0, 1], an allocation X is -
approximate envy-free (a-EF) if for any two agents i,j € N
and any S C X; with ¢(S) < B, it holds that v;(X;) >
a - v;(S). When o = 1, X is also said to be EF.

This definition is consistent with the standard EF notion
when every agent’s budget is ¢(M). Since the items are indi-
visible, (approximate) EF is hard to achieve. One of the most
widely studied relaxed notion is envy-free up to one item.
Definition 2.3 (EF1). For any « € [0,1], an allocation X is
«-approximate envy-free up to one item («-EF1) if for any
two agents i,j € N and any S C X; with ¢(S) < B, there
exists j € S such that v;(X;) > a - v;(S — j). When o = 1,
X is also said to be EF 1.

Trivially, an allocation X = (M, {,...,0) (i.e., allocating
all items to the charity) is already EF and EF1. Apparently,
such an allocation is not efficient for the agents by any rea-
sonable measurement of efficiency. Therefore, we consider
Pareto optimality as a criterion for efficiency.

Definition 2.4 (PO). An allocation X is Pareto optimal (PO)
if there exists no allocation X' such that v;(X!) > v;(X;) for
alli € N and vj(X}) > v;(X;) for some j € N.

Note that in a PO allocation X no agent ¢ can improve her
value by exchanging items with the charity (subject to her
budget constraint), i.e., forany S C X;UX such that ¢(S) <
B;, it holds that Ui(Xq') > ’Uz(S)
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3 Max-NSW Allocation is 1-EF1 and PO

In this section, we present our first main result, which is stated
in the theorem below.

Theorem 3.1. A Max-NSW allocation X* is i-EFI and PO.

Before presenting the proof, we remark that the 1/4 ap-
proximation ratio is tight, even when agents have identical
valuation and budget. We present an instance for which a
Max-NSW allocation is not ¢-EF1, for any constant ¢ > 1/4.
Example 3.2. Let € > 0 be arbitrarily close to 0. Consider
the instance with two agents who have the identical valuation
v and budget B = 1. Let there be 1+% items, where vy = 1+
€c1=1v;=4e andc; =eforall j € {2,3,...,14—%}.

It can be verified that the allocation X* with XT = {1}
and X3 = {2,...,1+ 1} maximizes the NSW with v(X7) -
v(X3) = 4(1+e€). However, X* is not c-EF1, for any ¢ > 1,
because v(X7) Lre . w(X5 —j) forall j € X3.

= I1-9
j 12 1+1
v 14+¢€ 4e 4e
cj 1 € €

Next we proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1: We first show that we can assume
without loss of generality that the maximum NSW is non-
zero. If the maximum NSW is zero, let .S be the agents with
non-zero values in the Max-NSW allocation X*. It is not
difficult to verify that (i) any agent not in S does not envy the
charity (as otherwise we can increase the size of .S); (ii) any
agent not in S does not envy any other agent by more than one
item (again, otherwise we can increase the size of S); (iii) any
agent i € S does not envy any agent j ¢ S, because if agent
¢ has non-zero valuation on X; then the Max-NSW on S can
be improved. Hence it remains to argue the (approximate)
EF1-ness and PO among agents in S U {0}, which reduces to
the case when Max-NSW is not zero!.

It is trivial to see that X* is PO because if there is another
allocation that increases one agent’s value without decreasing
any other agent’s value, it must also increase the NSW, which
contradicts the maximum of NSW under X*. In what follows,
we prove that X* is i-EFl by contradiction. Suppose that a
Max-NSW allocation X* is not i—EFl, we show that there
exists another allocation X' with a strictly larger NSW, which
is a contradiction with X* being a Max-NSW allocation.

By assumption, there exist two agents, say 1 and 2, such
that agent 1 finds a set T C X such that ¢(T") < B; and

1}1(1—‘—]-)>4~U]_()(1)7 (1)

For ease of description, we rename the items in 7' as
{1,2,--- ,t} such that vy; < va j41 forany 1 < j < t. Let
T, ={jeT—t:jisodd} andTy = {j € T—t: jiseven}.
Note that we have one of the following two inequalities:
Vo (T1) < vy (Tg) < vy (T1 + t) (if ¢ is odd), or
UQ(TQ) < Ug(Tl) < U2(T2 + t) (if ¢ is even).

forallj € T.

!Similar arguments appeared in Caragiannis et al. [Caragiannis
et al., 2016; Caragiannis et al., 2019b].
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In other words, under the valuation of agent 2, if we assign
item ¢ to the bundle with smaller value, then the resulting
bundle has value at least that of the other bundle.

Now we can construct a new allocation X', where

o X! =X, foralli > 3,

e X1 =T, where | € argmaxyc(1,2) v1(71%),
o X}, = X5\ T, and

o X\ =XoUX;.

In other words, we first remove all the items originally allo-
cated to agent 1. Then we pick the bundle agent 1 prefers
in {T,T»}, and move items in this bundle from X5 to X;.
Note that under the valuation of agent 2, the items agent 2
loses have total value at most 3 - v2(7'). In addition, X' is a
feasible allocation as ¢(T}) < ¢(T") < By and ¢(X2 \ 1) <
¢(X3) < Bs. By Equation (1), we then have

vi(X]) > 30 (T —t) > 2 v (X).
Moreover,
v2(X3) = va(Xo) —v2(Th) > 5 - v2(X2).
Since v;(X]) = v;(X;) for all ¢ > 3, it follows that

[Lien vi(X7) > [Lien vi(Xi),

which contradicts the fact that X* is Max-NSW. [ |

Remark. While we assume that the valuation functions are
additive, our result holds with sub-additive valuation func-
tions as well (see the full version of the paper [Wu et al.,
2020)).

4 Improved Ratios with Large Budgets

We have shown that in general, the 1/4 approximation ratio
can not be improved. However, one observation is that in the
tight instance we presented (Example 3.2), the budgets are
such that By = By = 1 = max;ecys ¢;. In other words, an
agent’s budget may be exhausted by allocating only one item
to her. Interestingly, we find that when this is not the case, the
approximation ratio can be improved.

4.1 Warm-up Analysis

As a warm up, we show that if it takes at least two item to
exhaust the budget of any agent, then the approximation ratio
can be slightly improved to 2 ~ 0.273.

Lemma 4.1. Suppose that B; > 2 - ¢; for all agent i ¢ N

and item j € M. Then a Max-NSW allocation X* is 1—31—EF1.

Proof. Suppose for the sake of contradiction that a Max-
NSW allocation X* is not %—EFI. Without loss of gener-
ality, let agents 1 and 2 be the two agents that block X* from

3 _EF1. In other words, there exists T C X5 with

being 13-
¢(T) < Bj such that for any j € T, we have
vi(T —j) > 5 - v1(X1).

We use a similar approach to the proof of Theorem 3.1 and
partition T into three subsets 77, T, and {¢} such that

’L)Q(Tl) S UQ(TQ) S UQ(Tl U {t})
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Case 1: If there exists | € {1,2} such that v1(T;) > 2 -
v1(X1), we construct a new allocation X’ with X/ = X; for
all ¢ Z 3,X{ = n, Xé = XQ\Tl,andXé = X()UXl.
By this construction, we have that v1(X7) > 2 - v1(X71) and
UQ(Xé) < % . UQ(XQ); thus,

HieN vi(X]) > HieN vi(Xi),
which contradicts the fact that X* is a Max-NSW allocation.
Case 2: max{v1 (T1),v1(T2)} < 2-v1(X7). Since
Ul(Tl) + Ul(Tg) = Ul(Tl UTs) > % . ’Ul(Xl),

we have min{v; (T1),v1(T%)} > 2-v1(X1). Pick an arbitrary
I € argminge gy 2y c(Ty). Since ¢(T1)+c(T2) < By, we have
C(Tl) S % . Bl.

We construct a new allocation in which we allocate all the
items in 77 to agent 1, along with a sufficiently valuable por-
tion of items in X;. To ensure that the budget constraint is
not violated, we need the following result.

Claim 4.1. There exists X, C X, such that C(Xl) <
andvl(Xl) 2 % . ’Ul(Xl).

B

N[

Proof. 1f ¢(X1) < - By, we can let X, = X;. Note that
under this case, vq (Xl) = v1(X1). Now suppose ¢(X1) >
% - B1. We create a set 1" and let it be an empty set initially.
Then we add into T items in X; one at a time until ¢(7") >
% - B;. Let j be the last item added into T". We have

o(T) > % -Brand (T — j) < 5 - By.

Consider the partition of X into three sets: T — 5, {;j} and
X1 \T. Note that all three sets have cost at most %~Bl. Let X 1
be the set with maximum value (under v1) among T' — j, {j}
and X; \ T. Obviously, we have Ul(Xl) > % cv1(Xy). O

By the above claim, we can now construct a new allocation
X’ with X! = X, foralli > 3, X| = T)UX;, X; = X0\ T},
and X) = Xo U (X7 \ X1). This allocation is feasible since

(X)) =c(T)) +c(X1) < B+ B =B,
By construction, we have that

v1(X]) =v1(T}) + v1(X7)
>201(Xy) + 5 v (X) =2 v (Xy),

and vo(X35) > 3 - va(Xz). Therefore [T,cyvi(X]) >
[I;cn vi(X;), which is a contradiction. O

As we can see from the analysis, the improvement in the
approximation ratio comes mainly from the fact that when
reallocating items in 7; from X to X3, we are able to keep a
constant fraction of the items in X; (as in Claim 4.1).

It is natural to expect that if we are able to obtain an even
finer dissection of X;, we should be able to improve the ap-
proximation ratio even further. Indeed, this is the case. We
show that when all items are very small compared with the
budgets, the approximation ratio approaches 1/2. While the
idea is clear, as we will show in the following section, to ac-
complish the analysis is a highly non-trivial task.
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4.2 Large Budget Case

Let k = minjen je ML J Without loss of generality, as-

sume « is an integer; otherwme we round x down to the near-
est integer. In words, it takes at least x items to exhaust the
budget of any agent.

(3 )-

Theorem 4.2. The Max-NSW allocation X* is (3
EF1, where k = min;e N jem L%J
J

Observe that when xk — oo the approximation ratio (with
respect to EF1) approaches 1/2. Before we present the proof
of Theorem 4.2, we first show that the approximation ratio is
tight. In particular, we give an example with arbitrarily large
, for which a Max-NSW allocation is (3 + O(%))-EF1.

Example 4.3. Let there be two agents {1,2} with By =
Bs k. Let there be a set of 2k items M = M; U Mo,
with cost 1 each, where My = {1,2,... k} and M,
{k + 1,k +2,...,2k}. Let the valuations be vi; = 1 for
all j € My; vi; = 2 forall j € Ma; vo; = 0 forall j € My,
vy = 2 forall j € M> .

_5_
1/4

J 1 Kk k+1 2K
U1j 1 1 2 2
V2 0 0 2 2

Suppose that x < k items in My are allocated to agent 2
in a Max-NSW allocation, then it is optimal to allocate the
remaining k — x items in Moy together with x items in M,
to agent 1. The NSW is thus given by vi(X1) - v2(X2)
(26 — x) - 2z, which is maximized when © = k. That is,
X1 = My and X5 = Ms. Since for any j € X,

Ul(Xz—J)—Q(H—l) 2=l gy (X0),

the Max-NSW allocation is 57—~
tion ratio approaches 5 when K —> 0.

4.3 Proof of Theorem 4.2

Next we prove Theorem 4.2. For ease of notation we let k =
k1/4. Note that it suffices to consider the case when k > 20,
as otherwise the theorem follows from Theorem 3.1.

Definition 4.4 (Density). We define the denszty ofitemj € M

under the valuation of agent i € N as p;; = c”

1-EF1, and the approxima-

Lemma 4.5. Given two sets of items X and Y, both hav-
ing cost at most B, and a valuation function v, there exists a

subset of items Z C X UY with ¢(Z) < B and

oY)
B

1

w(Z) > (1 - ,74) o(X) +o(Y).

Proof. We prove by constructing the subset Z satisfying the
claimed properties. In particular, we compute a subset X' C
X with ¢(X’) < B —¢(Y), and

o(X) > (1- <2 — &) o(x).

Then the lemma follows immediately by setting Z = X' UY.

1
k*
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To ease the analysis, we assume without loss of generality
that ¢(X) = B. If ¢(X) < B then imagine that we include
into X many items with O value and arbitrarily small cost
until ¢(X) = B, which does not increase the value of X.

We construct X’ by repeatedly removing an item in X
with the smallest density (under valuation function v), until
¢(X') < B — ¢(Y). Since each item has cost at most ; by
definition of k, the total cost of items removed in this proce-
dure is at most c(Y) + &

Since the items removed are among those with the smallest
density, their average density is at most the overall density of
items in X ; the total value of items removed is at most

() + &) 55 = (G2 + &) 000,
Thus we have v(Z) = v(X') +v(Y) > (1 — % -
v(X) +v(Y), as claimed. O

As before, we prove by contradiction, and assume the allo-
cation is not (3 — 2)-EF1, say, between agents 1 and 2. We
show that this assumption leads to contradictions.

Let T C X5 with ¢(T') < Bj such that

v(T=5%)>(3-%) ~ulX)
= (24 52 - ua (X0, @)

where j* = arg max;er v2; is the item in T" with the maxi-
mum value under the valuation of agent 2.

Let T T — j*. For each item j € T, we refer to
v9;/v2(T) as the contribution of item j to set T under val-
uation of agent 2. The total contribution of items in T is 1.
Depending on the contributions of items, we partition T into
a set Ty, of heavy items and a set T; of light items:

Th::{jET

1 5

'UQJ
va(T) = K

}, and Ty :=T\ Ty

We first show that under the valuation of agent 1, the con-
tribution of heavy items must be small.

Claim 4.2. For all j € Ty, we have L

2

V25
V2 (T) :

vle
vi(T) —
We show that there exists an allocation (by reallo-

vl(%)

Proof. Suppose that there exists j € T}, such that

1 V2,

2 vz(éﬁ)‘
cating item 7) that achieves a strictly larger NSW, which is a
U2(T)

V2

contradiction. Let ¢ = By definition of heavy item,
we have ¢ < k3. Consider the allocation obtained by moving

item j from Th to X1. Since v9; < v+, we have
va(Xp) = (1= 555 ) - va(Xa)
V2j

> (1 - @7) va(Xs) > (1 - m) - ua(Xa).

)tvg*

Note that including j into X; may result in a violation of
the budget constraint of agent 1. To resolve this issue, we use
Lemma 4.5 with B = B, v =v;, X = X and Y = {j},
and let X = Z (as specified in Lemma 4.5). Since item j
has cost ¢; < we have

(1= 2&) - v1(X1) + vy

By
k49
v1(X7) >
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Recall that by assumption of the proof we have

L 'Ul(T).

V235

V2 (T)

vij = 5 o(T) - 5

By inequality (2), we have
n(X) > (1= Z+ 4 (24 25)) - w(x)

_?24) 01 (X))

where the last inequality holds since ¢ < k3.
Hence, we have v (X7) - v2(X5) > v1(X7) - v2(X32) and
[Licn vi(X{) > [I;cy vi(Xs), which is a contradiction. [

Let f = % be the total contribution of light items to T.
V2
By the above claim we have
vi(Ty) _ 1 vi(Tw) 1 ve(Th) 1 f
v (T) v1 (T) >1 2 (1) 2 3

In other words, under the valuation of agent 1, the light items

have a larger total contribution to T. Next, we show the fol-
lowing lemma (the proof of the lemma is included in the full
version [Wu et al., 2020]). Roughly speaking, we can parti-
tion the light items into k sets with about the same cost and
value.

Lemma 4.6. We can partition T; into k sets such that each
set'Y satisfies

0 (Y) < (f

k

4

+ i) ua), V)< (F+

We partition 77 into k sets as specified in Lemma 4.6, then

pick the one most valuable to agent 1 out of the & sets, and
reassign it to agent 1. Let Y be the set chosen. Note that

(%Jr )'Ul(T)
(%—i—gf) (2+%) ~v1(X1).

After losing set Y, the remaining value of agent 2 is

) - v2(X2), (3)

b

2

4

v2(X3) = v2(X2) —v2(YV) > (1 - % =

where the inequality holds by Lemma 4.6.

After acquiring set Y, agent 1 has the set of items X/
X7 UY, which might have a larger cost than B;. Similarly,
we use Lemma 4.5, with B = By, v = vy and X = X;. Let
X{ = Z be the set specified in Lemma 4.6.

As a result, the bundle agent 1 receives has value

v (X7)
>(1-G+ @+ 13+ e+ ) n)
= (1+ 4 R - ) ()

>(1+£+k%) 01 (X1), @)

where in the last inequality we use f > 0 and k& > 20.

470

Combining inequalities (4) and (3), we have

1 (X1)va(X5) f_ 4 f 9

W>(1—g—@)-(1+ﬁ+ﬁ)
=( - A @0 )
> (1= + 2+ ) >

It follows that [ [,y vi(X]) > [];cn vi(Xi), which is a
contradiction.

5 Discussion and Future Directions

We showed that in the presence of budget constraints a Max-
NSW allocation may not be EF1 but achieves a constant ap-
proximation of EF1. The tight approximation ratio is 1/4
and in the case of large budgets, the ratio improves with the
budget-cost ratio and converges to 1/2 when this ratio goes
to infinity. There are several directions for future work.

First, our results imply that in a budget-feasible setting,
a 1/4-EF1 allocation always exists and is compatible with
Pareto optimality, but it is not known whether an exact EF1
allocation always exists or not and this appears to be a non-
trivial problem. However, we do know that every PO alloca-
tion is at most 1/2-EF1: the hard instance can be obtained
by modifying Example 3.2 and making the value of the first
item to be 2. Second, the computation of maximum NSW in
our setting is an interesting question which we did not study
in this paper. Indeed, an APX-hardness for the complexity
of this problem can be readily established since the setting
without budget can be seen as a special case of our setting
(where every agent has budget ¢(M)). Thus, an natural task
is to design efficient approximation algorithms. Theorem 3.1
can be extended to show that an a-approximation of the Max-
NSW is also 3-EF1. Hence an approximation algorithm for
Max-NSW would also compute an approximate EF1 alloca-
tion. However, in the large budget case, an a-approximation
of the Max-NSW is not necessarily o - (% — KI—SM)-EFl (we
include a hard instance in our full version [Wu et al., 2020]).
Finally, while we focus on EF in this paper, it would also
be interesting to consider other fairness notions such as pro-
portionality and maximin share fairness and study whether a
Max-NSW allocation provides any fairness guarantee under
these notions.
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