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Abstract

In ad-hoc teamwork, an agent is required to cooper-
ate with unknown teammates without prior coordi-
nation. To swiftly adapt to an unknown teammate,
most works adopt a type-based approach, which
pre-trains the agent with a set of pre-prepared team-
mate types, then associates the unknown teammate
with a particular type. Typically, these types are
collected manually. This hampers previous works
by both the availability and diversity of types they
manage to obtain. To eliminate these limitations,
this work addresses to achieve ad-hoc teamwork
in a type-free approach. Specifically, we propose
the model of Entropy-regularized Deep Recurrent
Q-Network (EDRQN) to generate teammates auto-
matically, meanwhile utilize them to pre-train our
agent. These teammates are obtained from scratch
and are designed to perform the task with various
behaviors, therefore their availability and diversity
are both ensured. We evaluate our model on several
benchmark domains of ad-hoc teamwork. The re-
sult shows that even if our model has no access to
any pre-prepared teammate types, it still achieves
significant performance.

1 Introduction

Cooperating with unknown teammates without prior coordi-
nation is a well-recognized challenge in multi-agent systems,
known as ad-hoc teamwork [Stone et al., 2010]. For exam-
ple, consider a scenario where several agents are assembled
to participate in an impromptu soccer game. Due to limited
time, these agents cannot coordinate in advance to determine
each other’s division of work. However, only when they co-
operate effectively can the task be performed with high qual-
ity. In such scenarios, the agent is expected to cooperate with
some previously unknown teammates, but a prior coordina-
tion protocol among them does not exist. As agents prolif-
erate in the real world and their functions become more spe-
cialized, there will be an increasing number of scenarios that
require the agent to participate in such ad-hoc teamwork.
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One critical requirement for ad-hoc teamwork is to let the
agent swiftly adapt to an unknown teammate. To meet this re-
quirement, most existing works adopt a type-based approach
[Albrecht and Stone, 2018]. This approach pre-trains the
agent with a set of pre-prepared teammate types, then as-
sociates the unknown teammate with a particular type. In
this way, the agent can reuse the strategies learned from
past interactions with these available types. Typically, these
teammate types are collected manually [Barrett ez al., 2017;
Ravula et al., 2019]. This hampers most type-based works in
two aspects. First, a set of pre-prepared teammate types is not
always available. Since these teammates are task-specific, it
is likely that we are not able to obtain a set of qualified team-
mate types on a novel task. Second, even with some types
available, previous works provide little guarantees on the di-
versity of their behaviors. If an unknown teammate behaves
differently from any of our pre-prepared types, the effect of
those pre-trained strategies will be reduced.

To eliminate the aforementioned limitations, this work
addresses to achieve ad-hoc teamwork in a type-free ap-
proach (we use type-free to describe methods that do not re-
quire users to provide a pre-prepared set of teammate types).
Specifically, we propose the model of Entropy-regularized
Deep Recurrent Q-Network (EDRQN) (Section 4.1) to auto-
matically generate teammates from scratch. These teammates
are designed to perform the task with various behaviors, so
that our agent can learn to cooperate with a variety of them.
Compared with the type-based approach, the teammates gen-
erated by EDRQN share the following two properties:

1. Availability (Section 4.2): our model generates team-
mates from scratch and this process does not require any
domain expertise from the user. This ensures that our
teammates are available to a wide range of tasks, which
enriches our application on ad-hoc teamwork.

. Diversity (Section 4.3): we cover the diversified behav-
iors of teammates with an episodic-wise entropy regular-
izer. This allows our agent to cooperate with an infinite
number of potential teammates, rather than being limited
to a finite set of pre-prepared types.

The core contribution of this work is a type-free model to
generate teammates that are available and diverse on a wide
range of ad-hoc teamwork tasks. This frees us from the bur-
den of manually collecting a pre-prepared set of teammates,
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which are required for most type-based works. We demon-
strate the performance of our model on several benchmark
domains that are frequently adopted among ad-hoc teamwork
researches, including the pursuit domain and the half field of-
fense domain.

2 Related Work

This section discusses related works in the field of ad-hoc
teamwork. According to the dependency of a pre-prepared
set of teammate types, we divide relevant researches into two
categories: type-based ad-hoc teamwork and type-free one.

2.1 Type-Based Ad-Hoc Teamwork

Type-based approach is a widely adopted solution for ad-hoc
teamwork [Albrecht and Stone, 2018] since it can largely uti-
lize existing models to adapt to unknown teammates. A crit-
ical step of this approach is to determine the unknown team-
mate’s type with limited observations. To solve this, several
works [Barrett et al., 2011; Barrett et al., 2017] inferred the
teammate’s type with a posterior distribution and updated it
with Bayes’s law. In [Ravula er al., 2019], a change point de-
tection algorithm was proposed to detect the potential switch-
ing of teammate types. Recently, [Chen ef al., 2020] applied
attention mechanism to dynamically fuse the candidate types.
These methods all require the users to collect a prior set of
teammate types, of which the availability and diversity are
hard to guarantee. Instead, we generate these teammates from
scratch and let them perform the task with various styles, so
our model is not constrained by these limitations.

The workload of collecting teammate types has been al-
leviated in some works. For example, in [Albrecht et al.,
2015], the set of teammate types were generated with several
artificially designed rules. In [Mirsky et al., 20201, a coop-
erative tool fetching task was proposed, and the authors rep-
resented the teammate’s type with the tool’s location, which
determined the teammate’s strategy. However, these methods
are deeply tied to their domains, making them hard to apply
to a new task. Instead, our model’s process to generate team-
mates is fully task-independent.

2.2 Type-Free Ad-Hoc Teamwork

Although being rare, there exist some works that address ad-
hoc teamwork in a type-free manner. In [Wu ez al., 2011], the
authors predicted the teammate’s future action with its recent
plays and then performed online planning based on the pre-
diction. However, the planning requires a complete model of
the environment, which can be unavailable if the task is com-
plex. In [Canaan et al., 20191, the authors proposed a frame-
work to generate players for a card game named Hanabi.
However, this framework requires the user’s domain exper-
tise to locate the teammate in a behavior space [Mouret and
Clune, 2015], which can be hard to transfer to tasks other than
Hanabi. In [Hu er al., 2020], a problem termed zero-shot co-
ordination was proposed, which requires several agents (who
do not know each other) to cooperate within limited interac-
tions. The goal of [Hu et al., 2020] is closely related to that of
ad-hoc teamwork. However, they assume that all the agents
are optimized for the zero-shot setting, which does not apply
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to our scenario since the unknown teammate’s strategy can-
not be manipulated in ad-hoc teamwork. To our knowledge,
on ad-hoc teamwork, a universal type-free model to generate
teammates that are both available and diverse is still missing,
and we are the first attempt to fill this gap.

3 Preliminaries

This section provides preliminaries of our work. We first re-
view the framework of Partially Observable Stochastic Game
(POSG) [Hansen et al., 2004], which models the interaction
of ad-hoc teamwork with partial observation. Then, we in-
troduce the deep Q-learning and its variation deep recurrent
Q-learning, which together form the foundation of our model.

3.1 Partially Observable Stochastic Game

The Partially Observable Stochastic Game (POSG) is a suit-
able framework to model the interaction of ad-hoc team-
work, since in real-world an agent can rarely observe a full
state from the environment, and the cooperation requires each

agent to interact in a stochastic game. Specifically, a POSG
is defined as a tuple (Z, S, {Al} , {OZ} , P, R, ), where:

* 7 is the set of agents, denoted by i € {1,2,--- ,n}.

S is the set of state s for all the agents.

A’ is the set of action a’ for agent i (with a capacity of
N), and A = x;cz A" is the set of joint action a.

O" is the set of observation o’ for agent i, and O =
X 70" is the set of joint observation o.

P is the transition function, and P(sy, 0y |st, a;) is the
probability of transiting to state sy and receiving joint
observation oy when taking joint action a, at state s;.

R:S x A — Ris the reward function, which is shared
by all agents since we focus on cooperative tasks.

* v € (0, 1] is the discount factor for the future reward.

At every timestep ¢, each agent ¢ € Z receives a partial ob-
servation o} € O from the environment, based on which the
agent i determines an action a: € A’. The environment gen-
erates a reward 7, = R (s, a;) for all agents according to the
current state s; € S and the joint action a; € A. Then, it
transits to the next state s,y € S and outputs a joint observa-
tion oy € O with respect to the transition function P. The
goal of each agent is to learn a policy 7’ that maximizes the
team’s expected cumulative reward E [, v'r].

3.2 Deep Q-Learning

Q-Learning [Watkins and Dayan, 1992] is a model-free off-
policy algorithm to estimate the agent i’s expected cumula-
tive reward Q'(s;, a!) when performing action a! at state s;.
Specifically, for each state-action pair, the Q-value is updated
towards the received reward r; plus the maximal Q-value over
all actions a!, in the following state s

In a complex scenario, the state space can be infinitely large,
and it becomes infeasible to store the estimated Q-values for

Qi (St7 a;) =Tt ’YESt/ max Qi (St’7 ai’)
a7r

+/
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all state-action pairs [Yang et al., 2020]. Instead, a Deep Q-
Network (DQN) is proposed in [Mnih et al., 2015] to approx-
imate the Q-value. This network is parameterized with 8, and
the loss function is defined by minimizing the difference be-
tween the current Q-value and its target:

2
(St’aai/) - Qé (st,ai)>

minL(0) =E <rt + v max Q)

at,

3.3 Deep Recurrent Q-Learning

The output of DQN is fully conditioned on the current state
s¢, whose performance could be affected if the agent only
obtains a partial observation from the environment [Yang et
al., 2018; Meng et al., 2021]. Instead, Deep Recurrent Q-
Network (DRQN) [Hausknecht and Stone, 2015] makes use
of past observations to compensate for the unobserved in-
formation of the current state. Briefly, DRQN is a model
that replaces the decision layer of DQN with a recurrent net-
work [Hochreiter and Schmidhuber, 1997]. In DRQN, the Q-
value (o, a;) represents the expected cumulative rewards
for action a; given the observation o, (instead of the state s;).
Besides, this value is also conditioned on past observations
00:t—1, S0 that even if the information at timestep ¢ is missing,
the agent can still infer a proper action with past observations.

4 Method

This section provides the details of our method. We first de-
scribe our proposed EDRQN model in Section 4.1. Then, we
discuss the availability and diversity of teammates generated
by our model in Section 4.2 and 4.3 respectively.

4.1 The EDRQN model

An Episodic-wise Objective

Recall that our goal is to generate teammates who perform the
task with diversified behaviors, so that our agent can pre-train
with a variety of them. Regarding the teammate’s diversity, a
direct metric is the entropy of its policy. Thus, based on the
framework of POSG, we set the teammate’s objective as:

max E
ﬂ-i

Zytrt] st H(w) =H,, vt 1))
t

where ’Fl; represents the target entropy of agent ¢’s policy
at j-th episode (we use agent ¢ to formally denote the team-
mate). This target entropy changes on different episodes and
each value represents a specific type of teammate. Therefore,
our objective is made episodic-wise. Restricting the entropy
of an agent’s policy to a fixed value derives from maximum
entropy reinforcement learning (MaxEnt RL), which has been
previously applied to promote an agent’s multi-mode behav-
iors [Fox et al., 2016; Haarnoja et al., 2018]. However, to our
knowledge, no previous work has practiced to work with an
episodic-wise objective as we do. When considering ad-hoc
teamwork, a changing target entropy is essential, because it
allows our model to cover teammates with extremely differ-
ent styles of behaviors. For example, a nearly-zero 7—[; corre-
sponds to an (almost) deterministic policy, which represents
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Figure 1: An illustration of our proposed EDRQN model.

a prudent teammate who only picks the optimal action. In
contrast, a large H;'- corresponds to a stochastic policy, which
represents a teammate who chooses actions more casually. It
is clear that these teammates, with completely different styles
of behavior, cannot be represented with a common target en-
tropy. Thus, an episodic-wise objective is necessary.

Two Piled Networks
By using Q-values to represent the discounted cumulative re-
wards and then expressing Eq. 1 with its dual form, we can
reformulate our objective as:

min max E [Q’G (oi, af;)] + ai (7—[ (71';) — ’Fl;)

i
Qy ™

2

where ! is a Lagrange multiplier, and the entropy of policy
my is formed as a regularizer. Given ay, it can be proved that
the optimal policy is the following Boltzmann policy:

t (aﬂoi, ai) = softmax,; (Qé (oi, )/az) 3)

where we can notice that o tunes agent 4’s final policy (and
therefore its entropy) given Q-values. By inspecting the re-
lationships among o}, @}, o} and 7', we now introduce two
piled networks. The first network (marked with orange back-
grounds in Figure 1) represents the Q network, which takes
the current observation o! as input and then generates Q-
values for each action {a;,---,ay}. The second network
(marked with green backgrounds in Figure 1) represents the
ai network, which takes the Q-values as input and then out-
puts a proper result to tune the policy. These two networks are
both implemented with Gated Recurrent Units (GRU) [Cho ef
al., 2014] to make better use of previous observations to com-
pensate for the unobserved information of the current state.

A Closed-loop Target Entropy

One concern for the episodic-wise target entropy is that the
objective of Eq. 1 is erratic. With a same input, the objective
can be different for even two succeeding episodes, depending
on the gap between the sampled 'H; and H¢,. As aresult, the
model will be optimized to a teammate that averages all the
sampled targets, which is against our intention. To solve this,
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we let the sampled ’h_[; be a part of input for our two networks
(denoted with blue arrows in Figure 1), so that these networks
are aware of what objective they are dealing with at current
episode. This makes the target entropy closed-loop, since it
simultaneously appears in the input and output (the objective)
of our model during training.

Albeit its simplicity, there are several benefits to make the
target entropy closed-loop. First, conditioned on a given Hé-,
our objective now becomes unique, which helps stabilize the
training. Second, the varying target simulates an infinite va-
riety of teammate types. If teammates with similar target en-
tropies also behave alike, this setting can cover teammates
unseen before with the help of model’s generalization. These
benefits promote the diversity of our generated teammates.

The Optimization

Similar to [Haarnoja er al., 2018], we optimize our model
with the dual gradient descent, which alternates between the
optimization of @} and . Following MaxEnt RL, the opti-

mization of Q) is set as:
Meanwhile, we set the objective of o} as:

ap = argmin £ [H?—l (7" (aflo}, o)) — ’H;Hﬂ
B

where the expectation is taken over past interactions sampled
from a replay buffer. The training is conducted through self-
play. At the beginning of a new episode, each agent samples
an independent target entropy to simulate a specific type of
player. Then, these agents interact in the task and simultane-
ously update their models with past experiences. Please note
that each agent does not rely on the target entropy of other
agents. This ensures that our agent can work with a team-
mate whose target entropy is agnostic during the evaluation.

Qb (0},a}) « 1o + 1By, |afilog Y exp o (0. 2] (ZZ»’ 24)
. t/

K
at,

4.2 Availability of Teammates

Recall that a major limitation for most type-based works is
that they are based on a pre-prepared set of teammate types.
These teammate types are task-specific and typically require
the user to collect them manually. However, it is likely that
we cannot obtain such a pre-prepared set of qualified team-
mate types on a novel task, especially when the task we are
dealing with is complex. With EDRQN, this limitation is
eliminated. From Section 4.1 we can verify that with our
model, an infinite number of diversified teammates can be
generated from scratch through self-play. This process is con-
ducted automatically, with no requirement for the user’s do-
main expertise. These properties ensure that our generated
teammates are available on a wide range of ad-hoc teamwork
tasks, which free us from the burden of manually collecting a
pre-prepared set of teammate types.

4.3 Diversity of Teammates

Another uncertain factor for most type-based works is that
they provide little guarantees on the diversity of their col-
lected teammate types. This affects their application in prac-
tice, because if an unknown teammate behaves differently

475

(@

(b)

Figure 2: The experimental domains: (a) the pursuit domain; (b) the
half field offense (HFO) domain.

from all the pre-prepared types, the effect of all the agent’s
pre-trained strategies will be reduced. With EDRQN, the di-
versity of our generated teammates can be covered in two as-
pects. First, our episodic-wise objective in Eq. 1 enables the
generated teammate to simulate an infinite variety of behav-
iors. This claim is further supported in Section 5.2, where
we can quantitatively measure an agent’s diversity by its per-
formance on a specially designed task. Second, throughout
the experiment, our teammate adopts a stochastic Boltzmann
policy (Eq. 3), which also promotes its diversity by picking
not only the optimal action, but also those sub-optimal ones.

S Experiment

This section provides the experimental studies. We first intro-
duce the specifications of our benchmark domains, including
the pursuit domain and the half field offense (HFO) domain.
Then, we analyze our model’s performance on each domain.

5.1 Domain Specifications

Pursuit

The pursuit domain [Benda, 1986] (Figure 2a) has been fre-
quently adopted in the research of ad-hoc teamwork [Barrett
et al., 2011; Ravula et al., 2019], since this task cannot be
completed by a single agent, regardless of its ability. The
details of this domain vary in different works, but they all
revolve around a group of predators capturing one or more
moving preys with minimum timesteps. Typically, the world
is formed with a grid of cells. At each timestep, both the
predators and preys choose to either move to a neighboring
cell or stay in their current position. A prey is captured if it is
surrounded by a certain number of predators.

In our version of the pursuit domain, the world is a toroidal
world of size 28 x 28. This means that if an agent moves off
one end of the world, it comes back on the other end. There
are 2 predators (marked with orange balls in Figure 2a) in our
domain, and we are in control of one predator during the eval-
uation. Besides, there are 4 preys (marked with blue balls),
and their ranges of movement are limited to 4 separate 4 x 4
sub-grids (marked with light blue background). This setting
allows us to quantitatively measure the behavior diversity of
the agent, since each predator can be featured by the distri-
bution of different preys it captured. A prey does not move
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if it tries to run out of the boundary or a predator is at its
neighboring cells. If two agents run into a same cell, the col-
lision is solved randomly. To simulate a partial observation,
each predator is limited to observe the locations of itself, its
teammate and the nearest prey. The task is completed if two
predators are next to a prey within a maximal step of 300.
Otherwise, the task is considered failed.

Half Field Offense

The half field offense (HFO) domain [Hausknecht et al.,
2016] (Figure 2b) originates from the RoboCup 2D soc-
cer simulation league. This domain is challenging be-
cause it largely retains the complexity and uncertainty of the
RoboCup 2D soccer simulation league. Besides, it requires
high-level cooperation from the agents to score a goal, mak-
ing it one of the most suitable domains to evaluate the ad-hoc
teamwork [Barrett er al., 2017]. In this domain, a group of
offensive agents try to score a goal against a group of defen-
sive agents (including a goalie). The game ends when any of
the following criteria is reached: 1) the offensive team scores
a goal, 2) the defensive team captures the ball, 3) the ball is
kicked out of bounds, or 4) the game lasts for 500 simulation
steps (50 seconds).

Our setting in this domain follows the work of [Chen et al.,
2020]. In this game, two offensive agents (marked with or-
ange balls in Figure 2b) play against two defensive agents
(marked with a purple ball for the goalie and a blue ball
for the other defender), and we are in control of one offen-
sive agent during evaluation. Throughout the experiment, the
defensive team adopts the strategy provided by agent2d!.
During evaluation, our teammate is sampled from 10 inde-
pendent participants of the 2013 RoboCup 2D soccer simula-
tion league?. To simulate a partial observation, each agent is
limited to observe the current positions of all agents and the
ball. The remaining information (such as the direction and
speed of each agent, the opening angle to the goal) should be
inferred from the context. For each simulation step, the agent
picks a high-level action from {DRIBBLE, PASS, SHOOT} if
it is in control of the ball, otherwise it performs the default
MOVE action. These actions are provided by the HFO code-
base? to decrease the complexity of agent’s action space.

5.2 Evaluation on the Pursuit Domain

For the pursuit domain, we choose the PLASTIC model pro-
posed in [Barrett et al., 2017] to compare with our model,
which is a state-of-the-art work on this domain. PLASTIC
is a classic type-based model, whose implementation can be
divided into 3 steps: 1) learn a policy for each collected team-
mate type, 2) update beliefs over all types to pick the closest
one with respect to the unknown teammate’s behavior, and
3) select actions by the policy learned for the closest team-
mate type. We first train a set of 18 DQN agents via self-
play, which are all able to perform the task with over 95%
success rate. We choose DQN because it can be viewed as
EDRQN with a zero target entropy, whose diversity is con-
strained and therefore forms an ordinary teammate that can

"https://osdn.net/projects/rctools
2https://archive.robocup.info/Soccer/Simulation/2D/binaries
*https://github.com/LARG/HFO
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Figure 3: The success rate of each model on the pursuit domain
(higher is better), ordered by the agent’s baseline performance.

be encountered in reality. Then, for the first step of PLAS-
TIC, we sample a subset from these agents to simulate the
teammate types that are manually collected by the user, and
represent the learned policies for these teammates by those of
their partners during the self-play. The remaining two steps of
PLASTIC are performed by picking the optimal policy from
our candidate set in hindsight, which forms an upperbound of
PLASTIC (and many other type-based methods). Please note
that this implementation is infeasible in practice, because it
requires us to foresee the outcome of an unknown teammate’s
cooperation with all our pre-prepared policies before the task
begins. Nevertheless, it constitutes a challenging target for
our model to compare with.

Our comparison result is illustrated in Figure 3. For each
DQN agent i € [1,18] (indexed at the bottom-right corner
of each sub-figure), we let the remaining 16 agents (the ones
other than ¢ and its self-play partner) to form the whole set
of teammate types which the user can collect from. Since it
is costly for a user to obtain a teammate type in a real-world
scenario, we present the result of PLASTIC when the user is
limited to collect teammate types with a capacity of 1, 2, 4
and 8 (denoted as Ci4, C%s, Cig and C%y), respectively. We
also present the agent’s performance with its original part-
ner as a baseline. It can be observed that of all the 18 un-
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Scoring rate Teams in the pre-prepared sett

Teams not in the pre-prepared setf

(%) agent2d aut axiom  gliders  yushan legend ubc utaustin - warthog  yunlu
Baseline 65.812,5 75~3il.4 67.7i1,4 77-2i1.5 59‘1i1.3 60.4i1,4 63.2i3.3 64.4i3,0 48.7i1,7 59-5il‘]
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Table 1: The scoring rate (%) of each model on the HFO domain (higher is better). (f: This division only applies to PLASTIC and AATEAM.)
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Figure 4: The distribution of captured preys and its entropy for each
self-play teams on the pursuit domain. Higher entropy value sug-
gests better diversity.

known teammates, our EDRQN outperforms in 13 of them,
which is higher than the result of PLASTIC. Although the
performance of PLASTIC is improved along with more col-
lected types, this can be hard to achieve in practice because
as the task becomes more complex, the difficulty of obtaining
a qualified teammate type is also rising. Instead, our EDRQN
does not require such a pre-prepared set of types.

We further examine the diversity of our generated team-
mates by inspecting the distributions of their captured preys.
Figure 4 presents the heatmaps of preys captured by each pair
of self-play agents, together with the entropies of their distri-
butions. It can be observed that the entropies of our EDRQN
teams are higher than DQN teams on average. By inspect-
ing the distributions of captured preys, the results of EDRQN
teams are more even, which suggests that their ways to per-
form the task are more diverse than DQN teams. This prop-
erty enables our agent to cooperate with unknown teammates
of various types more smoothly.

5.3 Evaluation on the HFO Domain

On HFO domain, apart from the PLASTIC model, we addi-
tionally choose the AATEAM model proposed in [Chen et al.,
2020] for comparison. The AATEAM model is another type-
based approach, and its major difference with the PLASTIC
model is the way of picking the closest type. For AATEAM,
an attention mechanism is designed to fuse the prior beliefs
over all available teammate types. Nevertheless, these two
models both require the user to provide a set of pre-prepared
teammate types before the task begins. We follow the ex-
perimental setting of [Chen et al., 2020] and let the teams
of agent2d, aut, axiom, gliders and yushan be the
pre-prepared teammate types collected by the user, and let the
teams of legend, ubc, utaustin, warthogand yunlu
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be the unknown teammates that require our agent to cooperate
with in an ad-hoc teamwork setting. Note that this division
only applies to the type-based approach (herein the PLAS-
TIC model and the AATEAM model). From the perspective
of EDRQN, all the teammates are unknown (including teams
in the pre-prepared set) when we pre-train our model.

Our comparison result is presented in Table 1. The base-
line shows the performance of agents playing with their orig-
inal teammates. We can observe that among all the methods,
our model’s performance is competitive. For teams in the
pre-prepared set, our model is leading in 2 of the 5 teams,
which are also 2 best scores among these teams. This is non-
trivial, considering the fact that during the pre-training, all
these teams are accessible to PLASTIC and AATEAM, but
are unknown to our model. For teams not in the pre-prepared
set, the task becomes more challenging for type-based meth-
ods. As evidence, the average performance of PLASTIC
drops from 73.4% to 70.3%, and that of AATEAM drops
from 76.5% to 73.2%. Nevertheless, EDRQN is not affected
by this condition and leads in 4 of 5 teams, with an average
scoring rate of 77.3%. These teams are developed by inde-
pendent groups and therefore their strategies vary from each
other. However, our agent is able to respond properly to most
of them. This again shows that even if our model has no ac-
cess to any pre-prepared teammate types, it can still achieve
significant performance on complex tasks such as HFO.

6 Conclusion

This paper presents the proposed EDRQN model to achieve
ad-hoc teamwork in a type-free approach. By pre-training
agents with an episodic-wise objective through self-play, our
EDRQN model is able to generate teammates that perform the
task with various behaviors. This ensures that our teammates
are available and diverse to a wide range of tasks, which are
nontrivial to guarantee for most existing type-based works.
We evaluate our model on two representative domains of ad-
hoc teamwork. With detailed analyses, we show that even if
our model has no access to any pre-prepared teammate types,
it can still achieve significant performance. A natural exten-
sion of our work is to apply EDRQN on scenarios with more
teammates. This can be challenging because the interactions
are more complex now, and we leave it as a future work.
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