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Abstract
Many collective decision-making settings feature a
strategic tension between agents acting out of indi-
vidual self-interest and promoting a common good.
These include wearing face masks during a pan-
demic, voting, and vaccination. Networked pub-
lic goods games capture this tension, with networks
encoding strategic interdependence among agents.
Conventional models of public goods games posit
solely individual self-interest as a motivation, even
though altruistic motivations have long been known
to play a significant role in agents’ decisions. We
introduce a novel extension of public goods games
to account for altruistic motivations by adding a
term in the utility function that incorporates the
perceived benefits an agent obtains from the wel-
fare of others, mediated by an altruism graph.
Most importantly, we view altruism not as im-
mutable, but rather as a lever for promoting the
common good. Our central algorithmic question
then revolves around the computational complex-
ity of modifying the altruism network to achieve
desired public goods game investment profiles. We
first show that the problem can be solved using lin-
ear programming when a principal can fractionally
modify the altruism network. While the problem
becomes in general intractable if the principal’s ac-
tions are all-or-nothing, we exhibit several tractable
special cases.

1 Introduction
Individuals in a collective decision-making environment of-
ten experience the following type of scenario. Each individ-
ual can decide whether or how much effort to invest for the
common good; many others may benefit from the efforts, but
the cost of the investment is incurred by the individual. Ex-
amples of such scenarios include decisions whether or not
to wear a mask in a pandemic, vaccinate, or invest in secu-
rity. The outcomes of such scenarios are often highly sub-
optimal from a societal point of view: mask-wearing sugges-
tions are flaunted, societies remain undervaccinated, and se-
curity measures are not taken. At the heart of this breakdown
is that while individuals are “connected” in the sense that

their actions affect one another, they are often disconnected
“socially,” in the sense that they do not experience the util-
ity gain/loss of those affected by their actions. In economic
terms, actions have externalities on other players, which are,
by definition, not internalized.

Indeed, the outcomes of such scenarios tend to be signifi-
cantly different when the individuals form a more tightly knit
community. Within families, groups of friends, or small vil-
lages, individuals frequently take actions, at a cost to them-
selves, which primarily benefit others. Similarly, societies
with a stronger sense of “duty” towards fellow citizens tend
to witness more compliance in all of the above-mentioned ex-
amples. Not surprisingly then, campaigns to encourage indi-
vidual effort (e.g., “Wear a mask — save a life!”) tend to
appeal to notions of altruism and duty, attempting to get indi-
viduals to internalize some of their externalities, if only psy-
chologically.

If the goal of campaigns is to encourage altruistic behav-
ior, an important question is what type of campaign is most
effective. Should a principal, aiming to achieve a societally
desirable outcome, try to appeal to a generic sense of “duty
towards your fellow citizens,” try to strengthen the social
ties within a small neighborhood, or focus on building a few
strong ties between some key individuals? Can the ques-
tion of how best to build or change altruism in a society be
approached algorithmically, and are the resulting questions
tractable or intractable? This is the high-level question we
investigate in the present paper.

The question of how to build altruism networks is mean-
ingful in a variety of strategic settings. We focus on net-
worked public goods games [Bramoullé and Kranton, 2007;
Bramoullé et al., 2014; Feldman et al., 2013; Yu et al.,
2020], motivated by the real-world scenarios discussed ear-
lier (e.g., encouraging mask wearing). In networked public
goods games, the benefits of an individual’s effort are reaped
by those with whom the individual interacts, encoded by a
network on the individuals.1 Specifically, an individual’s util-
ity depends on 1) her own investment decision, and 2) the ag-
gregate investment from her direct neighbors in the network.

In most conventional models of games, including public
goods games, it is assumed that agents are driven solely by

1Public goods games can be viewed as the special case in which
the network is complete.
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their individual interests. This assumption is nearly always
violated in behavioral studies of public goods games [Led-
yard, 1997; Levine, 1998]. While there are many different
ways to model altruistic behavior, one natural way was pro-
posed by Ledyard [1997]: the utility of a player i is a linear
combination of an egocentric utility term, which is the direct
benefit to i, and an altruistic term, which is a sum of egocen-
tric utilities of other players j, weighted by the strength ai,j
of altruism that i feels for j. In most prior work of this kind,
ai,j was modeled as a constant for all players i and j. A more
general variation by Meier et al. [2008] considered an altru-
ism network in vaccination games, but assumed that the al-
truism graph is identical with the graph representing strategic
dependence, as well as that altruism weights are identical for
all edges. Naturally, many settings call for more fine-grained
models in which the weights can be different: for example,
parents typically care more about their children’s welfare than
that of strangers.

While the focus of past work on altruism in games has been
on its equilibrium effects, our point of departure is to consider
the altruism network itself as (partially) under the control of
a principal. In other words, we view altruistic motivations
as a lever that can be adjusted to promote the common good,
for example, through public outreach campaigns, community
meetings, and personal introductions. Specifically, we pro-
pose a model of modifying altruism networks, with the goal
of inducing a target investment profile by the agents. We con-
sider three variants of the altruism network: weighted, di-
rected, and undirected. We show that even for very complex
available actions, the problem can be solved efficiently us-
ing linear programming when the principal has fine-grained
control over the extent to which actions are taken. When the
principal can only control which actions are taken, the prob-
lem becomes NP-complete, even when each action affects
only a single edge in the altruism network. However, when
the altruism network is directed, we show that the problem is
tractable in a broad array of special cases by reductions to the
(tractable cases of) the KNAPSACK problem. We also lever-
age this connection to exhibit an FPTAS for the general case.
When the altruism network is undirected, the hardness results
apply even for much more restrictive special cases. How-
ever, we show that the problem is tractable when the benefits
from investment are linear and uniform, by a non-trivial re-
duction to the problem of NETWORK DESIGN FOR DEGREE
SETS (NDDS) introduced by Kempe et al. [2020], who also
showed that it can be solved in polynomial time.

Our problem of designing an altruism graph to achieve tar-
get equilibrium outcomes is, indeed, conceptually related to
Kempe et al. [2020], who study the problem of designing
the strategic network in networked public goods games. The
main rationale for shifting focus to designing altruism graphs
is that strategic networks are often difficult to change. For
example, in a pandemic, it is difficult to directly affect con-
tacts among individuals, as these are ultimately the products
of individual choices (e.g., even lockdowns may be ineffec-
tive if individuals are non-compliant, except through levels
of enforcement that are often viewed as unacceptable by the
population). In contrast, it can be significantly easier to try to
impact decisions indirectly by evoking altruistic motivations

in people. From a technical perspective, the problem of altru-
ism design impacts utilities linearly, in contrast to the design
of strategic networks; however, it is also distinct from the lin-
ear special case in Kempe et al. [2020], where the marginal
impact of each neighbor on a player’s utility is identical, in
contrast to altruism design, where these differ. An extended
version of the paper with complete proofs is available at:
https://arxiv.org/abs/2105.00505.

1.1 Related Work
Our work is related to four lines of research: graphical games,
altruism modeling, mechanism and market design, and net-
work design. Graphical games encode sparsity in the interde-
pendence of player utility functions using a graph [Kearns
et al., 2001; Shoham and Leyton-Brown, 2008], with net-
worked public goods games an important class of such mod-
els [Bramoullé and Kranton, 2007; Galeotti et al., 2010;
Grossklags et al., 2008; Yu et al., 2020]. A conventional as-
sumption in such games is that agents act to exclusively pro-
mote their own interest. However, considerable experimen-
tal evidence exists that even games with this payoff structure
elicit altruistic motivations among human subjects [Dong et
al., 2016; Levine, 1998]. This, in turn, led to a series of ap-
proaches to model altruism in a variety of games, including
public goods games, which are of direct interest here [Led-
yard, 1997; Dong et al., 2016], inoculation games [Meier et
al., 2008], routing games [Chen and Kempe, 2008], and con-
gestion games [Chen et al., 2011; Chen et al., 2014].

A typical way that altruism is captured in prior literature
is by either adding a social welfare term to utility func-
tions [Ledyard, 1997], or introducing a parameter that gov-
erns the extent to which agents care about their social network
neighbors [Meier et al., 2008]. Our model is distinct in that
it allows altruism to be relationship-dependent, a property we
model by an altruism network. Moreover, our goal is to mod-
ify an altruism network to achieve a target equilibrium (e.g.,
one that maximizes social welfare).

Mechanism and market design also aim to change the
parameters of a game to induce desirable equilibrium out-
comes [Nisan et al., 2007; Haeringer, 2018; Dughmi, 2017].
We introduce altruism network design as a novel lever for
aligning incentives with public good.

The last relevant line of research is network design. A
particularly related thread in network design is to study the
effects of network modification on equilibrium outcomes or
welfare [Kempe et al., 2020; Bramoullé and Kranton, 2007;
Galeotti et al., 2010]. Another related thread is to alter a net-
work in order to effect a variety of different outcomes for dif-
ferent types of games [Sheldon et al., 2010; Chen et al., 2016;
Ghosh and Boyd, 2006; Tong et al., 2012; Bredereck and
Elkind, 2017; Sina et al., 2015; Matteo Castiglioni, 2020;
Amelkin and Singh, 2019; Garimella et al., 2018].

2 Networked Public Goods Games and
Altruism

We study altruism in binary networked public goods games
(BNPGs), which are an important variant of public goods
games studied extensively in prior literature [Bramoullé and
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Kranton, 2007; Galeotti et al., 2010; Grossklags et al., 2008;
Suri and Watts, 2011; Dong et al., 2016; Kempe et al., 2020;
Yu et al., 2020]. We begin by formally describing BNPGs
and pure strategy Nash equilibria, the solution concept we fo-
cus on. We then discuss a natural model of altruism in games,
and its application to the specific case of BNPGs.

2.1 Binary Networked Public Goods Games

A binary networked public goods (BNPG) game is character-
ized by the following:

1. A simple, undirected, and loop-free graph H =
(V,EH) in which the nodes V = {1, 2, . . . , n} are the
agents/players, and the edges EH represent the interde-
pendencies among the players’ payoffs.

2. A binary strategy space {0, 1} for each player i. 2 We
interpret the choice of strategy 1 as investing in a public
good, while choosing 0 is interpreted as non-investment.
The action of player i is denoted by xi, and the joint pure
strategy profile of all players by x = (x1, x2, . . . , xm).
We use x−i to denote a strategy profile that omits player
i’s strategy.

3. A non-decreasing utility function Ui(xi,xN (H)
i

) for

each player i, where N (H)
i = {j | (i, j) ∈ EH} is

the set of i’s neighbors in the graph H .

As is common in the literature on public goods
games [Bramoullé and Kranton, 2007], we assume that each
player’s (egocentric) utility function Ui only depends on the
total investment by i’s network neighbors. To formalize this,
we define n(H,x)

i =
∑

j∈N (H)
i

xj as the number of i’s neigh-
bors who invest under x. We omit H , x, or both from this
notation when they are clear from the context. Each player
i’s utility function then has the following form:

Ui(x) = Ui(xi, n
(x)
i ) = gi(xi, n

(x)
i )− cixi. (1)

The second term (−cixi) captures the cost incurred by
player i from investing. As is standard in the public goods
games literature, each gi is assumed to be a non-negative and
non-decreasing function of both of its arguments, capturing
the positive externality that i experiences from her neighbors’
(and her own) investments. Observe that each function gi
can be represented using O(n) values, so the entire BNPG
game (including the graph structure) can be represented us-
ing O(n2) values.

We will consider pure-strategy Nash equilibria (PSNE) of
BNPGs. A pure strategy profile x∗ is a PSNE if for all i,
Ui(xi, n

(H,x)
i ) ≥ Ui(1 − xi, n(H,x)

i ). We write E(G) for the
set of all PSNEs of the game G.

2The public goods game literature extensively considers both bi-
nary and continuous decisions, and both are natural candidates for
considering network design. Here, we focus on binary strategies
due to their applicability to decisions such as vaccinations or mask
wearing.

2.2 Altruistic Motivations in BNPGs
A natural way to model other-regarding utilities is to define
a player’s utility as a linear combination of her egocentric
utility, defined by Equation (1), and the egocentric utilities of
other players.

To formalize this, we can think of the matrix A = (ai,j)i,j
as encoding an altruism network. This captures the central
motivation of our work, discussed in the introduction: that
the agents who are affected by the actions of i may not be the
same as the agents that i cares about.3 The resulting utility
function of a player i in our BNPG game model with altruism
is

U
(A)
i (x) = gi(xi, ni)− cixi +

∑
j∈N (H)

i

ai,jgj(xj , nj). (2)

We denote the BNPG with altruism network A by
BNPG(A).

We note two points about this model: First, the altruistic
term of player i’s utility does not include a term for the invest-
ment cost of player j, only the utility. This is inconsequential,
as investment decisions by j are not under i’s control, so from
i’s point of view, these cost terms are constants. Second, the
other-regarding terms have no component in which j’s utility
due to i’s egocentric payoff is recursively considered. Such
utilities may be harder to observe, and from a modeling per-
spective, they can be transformed into the case we study here;
see [Bergstrom, 1999].

In some of the results in later sections, we will specifically
want to stress the network aspect of altruism. In that case,
we will assume that we are given a (directed or undirected)
altruism graph G, and that ai,i = 1 for all i, ai,j = a for
all i, j for which G contains the edge (i, j), and ai,j = 0 for
all i, j for which G contains no edge. In other words, the
altruism strength of the edges of G is uniform. When G is
undirected, we will refer to the case as symmetric altruism;
when G is directed, we call it asymmetric altruism.

3 Modifying Altruism Networks
As discussed in the introduction, a major problem with pub-
lic goods situations is that equilibria can be far from opti-
mal because individuals may not fully internalize the impact
of their actions on others. Therefore, a principal who seeks
to steer the network to a better equilibrium might wish for
agents to consider others in their decisions. We consider sit-
uations in which the principal can increase or decrease the
salience of others in these settings, for example, through in-
troductions, advertising, or community meetings.4 We now
formally model this problem as modifying an altruism net-
work to achieve socially desired outcomes.

Our model is as follows. The principal aims to induce
a particular target investment profile x∗. This allows us to
cleanly capture a broad variety of design goals, such as max-
imizing welfare or achieving fairness, while focusing on the

3In the context of vaccination games, Meier et al. [2008] study
the special case in which the friendship network is the same as the
network of who may transmit a disease to whom.

4This is separate from, and in addition to, other channels, such
as rewarding or punishing certain actions.
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computational issues at the core of our specific problem of al-
truism design. To induce the outcome, the principal wants to
(minimally) modify the altruism network Ain to A such that
x∗ is a PSNE of the modified game BNPG(A).5

As implied by the preceding discussions, the principal may
have at his disposal a number of different actions, affecting
the altruism between different sets of pairs of agents, in posi-
tive or negative ways. For example, a general appeal to watch
out for one another may lead to a small increase in altru-
ism between many pairs of individuals; a community meeting
may lead to a stronger increase among a smaller subset, and
a personal introduction may introduce one strong edge. We
model such settings by assuming that there are K actions,
with K polynomial in n. Each action k has associated with
it a set S(k) of affected altruism edges, a cost γ(k) ≥ 0, and
a sign σ(k) ∈ {−1, 1}, which captures whether the action
strengthens or weakens the edges in S(k).6 The edge set is
encoded in the corresponding adjacency matrix M (k), with
entries m(k)

i,j which are 1 for (i, j) ∈ S(k) and 0 otherwise.
The costs γ(k) measure the monetary expense or effort/time
needed to implement the corresponding activity, per unit of
change in the altruism. The principal aims to solve the fol-
lowing problem:

Definition 3.1 (Altruism Network Modifications (ANM)).
Given: an altruism network Ain, target investment profile x∗,
and actions {S(1), . . . ,S(K)} with signs σ(k) and costs γ(k).
Goal: choose a non-negative vector v ∈ RK

≥0 of minimum
total cost

∑K
k=1 vkγ

(k) such that the modified game with new
altruism network

A = Ain +
K∑

k=1

vk · σ(k) ·M (k) (3)

has x∗ as a PSNE, i.e., x∗ ∈ E(BNPG(A)).

Here, v is a vector capturing how much the principal
spends on each of the available actions. We assume that the
different actions are cumulative in their effects on any of the
network’s edges, and (partially) cancel out when they have
opposite signs. Note that we could additionally truncate the
entries of A so that 0 ≤ A ≤ 1; this is not consequential for
our results, and we proceed with the slightly cleaner model
above. The principal’s spending on actions results in a modi-
fied altruism network, and his goal is to ensure that the target
action profile x∗ becomes one of the equilibria of the modi-
fied game. The principal wants to achieve this goal at mini-
mum cost (which is infinite if the problem is infeasible).

Since strategies are binary, a target profile x∗ can be equiv-
alently represented by the set of agents who invest under this
profile, I = Ix∗ = {i ∈ V | x∗i = 1}. Whether or not play-
ers invest can be completely characterized using a collection

5There may be other PSNE of the game. We implicitly assume
that the principal can suggest an equilibrium to the agents, who will
follow the suggestion unless it is in their best interest to deviate.

6Typically, a principal would be more likely to want to strengthen
the altruism network. However, one can easily imagine situations
and construct instances in which a weakening of the network is nec-
essary. We therefore aim for more generality in our model.

of inequalities. In these inequalities, what ultimately deter-
mines the decision is the agent’s marginal value from invest-
ing. This marginal value has two elements: first, the agent’s
own marginal benefit, ∆xi

gi(ni) := gi(1, ni)−gi(0, ni), and
second, the marginal benefit that i can obtain from altruism
towards j, which is ∆−j := gj(xj , nj) − gj(xj , nj − 1) for
agents i who invest, and ∆+

j := gj(xj , nj + 1) − gj(xj , nj)
for those agents i who do not. We further define θi :=
ci − ∆xi

gi(ni) for each agent i. We then obtain the follow-
ing equivalent characterization of a PSNE of BNPG(A), in
which a set I of players invest, and the rest do not:∑

j∈N (H)
i

ai,j∆
−
j ≥ θi if i ∈ I

∑
j∈N (H)

i

ai,j∆
+
j ≤ θi if i /∈ I,

(4)

with ai,j the strength of i’s altruism for j under A.
The marginal benefit functions ∆gi := (∆−i ,∆

+
i ) are im-

portant parameters in our model; they can be restricted by
putting limitations on gi, e.g., ∆gi is bounded by a polyno-
mial in n iff gi itself is. We consider three possible restric-
tions:
general gi: ∆−i and ∆+

i are arbitrary.

polynomial gi: When the gi are bounded by a polynomial in
n, ∆−i and ∆+

i are also bounded by a polynomial in n.

uniform linear and separable gi: When all gi are of the
form gi(xi, ni) = hi(xi) + ∆ · ni for some possibly
idiosyncratic function hi and some (common) constant
∆, then ∆−i = ∆+

i = ∆ for all i and all values of ni.

4 An LP for Fractional Modifications
We begin by considering the variant of the problem in which
the principal can spend fractionally on each action, i.e., v ∈
RK
≥0. In that case, the principal’s optimal strategy can be

found using a straightforward linear program. The decision
variables are simply the principal’s investments vk ≥ 0. For
ease of notation, we also define variables ai,j for the altruism
from i towards j resulting from the modifications. Given the
available actions and costs, the relationship between ai,j and
vk is exactly characterized by Equation (3), which is linear
in the vk. Next, notice that given the BNPG and the desired
PSNE x∗, the set I and all relevant constants in Equation (4)
(that is ∆−i ,∆

+
i , θi) can be immediately computed. There-

fore, we obtain the following linear program for finding the
optimal spending strategy for the principal:

Minimize
∑K

k=1 vk · γ(k) subject to
ai,j = ain

i,j +
∑K

k=1 vk · σ(k) ·m(k)
i,j for all i, j∑

j∈N (H)
i

ai,j∆
−
j ≥ θi for all i ∈ I∑

j∈N (H)
i

ai,j∆
+
j ≤ θi for all i /∈ I

vk ≥ 0 for all k.
(5)

Notice that we could fairly straightforwardly generalize the
LP to even deal with more general actions, namely, allowing
an action k to affect different edges in different ways by al-
lowing M (k) to have entries that are not all equal.
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5 Graph-Based Modifications
While there are contexts in which a principal can precisely
control the amount of effort invested in different actions, there
are many others in which actions take more of an all-or-
nothing nature. Indeed, many activities that increase altruism
through making harms to others more salient, such as com-
munity meetings or public health advertising campaigns (e.g.,
to promote mask-wearing), are naturally discrete (a 1-second
ad is not very effective) and, thus, have a discrete impact on
the altruism graph. This motivates the special case in which
all entries of v must be binary, corresponding to decisions
whether or not the principal will add/remove the edge sets
S(k). As we show presently that even if we restrict S(k) to
affect a single edge the problem now becomes NP-hard, we
devote the sequel to this special case, and seek to identify
what additional structure is sufficient to make the problem, or
its approximation, tractable.

When S(k) is a singleton (i, j), we can think of the input
as a graph Gin = (V,E in) (instead of a weighted network).
There is a cost γ(i,j) associated with each (directed or undi-
rected) node pair (i, j). If (i, j) ∈ Ein, then this is the cost
for removing (i, j); otherwise, it is the cost of adding (i, j).
Thus, implicitly, σ(i,j) = 1 if (i, j) /∈ Ein, and σ(i,j) = −1 if
(i, j) ∈ Ein. Adding/removing edges results in a new altru-
ism network G = (V,E). All off-diagonal non-zero entries
of the altruism network A then have the same altruism value
a, while all diagonal entries are set to 1.

We study two variants of this problem: 1) asymmetric al-
truism, that is, when the altruism graph is directed, and 2)
symmetric altruism, where it is undirected. Typically, both
will capture some important aspect of the real world: while
altruism often aligns with actual social or kinship ties, it can
also result from a general sense of responsibility or goodwill,
which may not be reciprocated.

5.1 Asymmetric Altruism
We begin by formally showing that in this setting, ANM is
in general intractable, even in the special case where we can
only add or remove individual edges, rather than subsets of
edges.
Theorem 5.1. ANM with asymmetric altruism is NP-
complete even when:

1. the sets S(k) are singletons and can only be added, i.e.,
σ(k) = 1 for all k,

2. the initial altruism network is empty, and
3. the target profile x∗ has all agents investing.
The proof is a direct reduction from the KNAPSACK prob-

lem and given in the Supplementary Material.
Next, we show that under mild additional assumptions, the

problem becomes efficiently solvable. The key observation
that enables our positive results is that for directed graphs,
adding or removing an edge i→ j only affects agent i’s altru-
istic behavior. This allows us to decompose the problem into
n independent subproblems only connected through a com-
mon budget constraint. Each subproblem can be naturally
modeled as a KNAPSACK problem, and so long as the KNAP-
SACK problems are individually solvable, so is the overall

problem. More specifically, we distinguish two cases, based
on whether i ∈ I.

• If i ∈ I, then the altruism edges originating with i
must ensure that

∑
j∈N (H)

i
ai,j∆

−
j ≥ θi. Let φi =∑

j∈N (H)
i

ain
i,j∆

−
j . If φi ≥ θi, then i will invest even

without adding any edges. Otherwise, the principal will
need to add edges out of i adding a total altruism term
of θi − φi; also, the principal will never want to re-
move edges out of i. Adding a directed edge i → j
can be thought of as putting an item with value a · ∆−j
and cost/weight γ(i,j) into a knapsack. Thus, the set of
“items” available to add to agent i is Pi = {j ∈ N (H)

i |
ain
i,j = 0}. The subproblem is then to select items from
Pi such that the total value is at least θi − φi while the
total weight is minimized.

• Similarly, if i /∈ I, then the altruism edges originating
with i must ensure that

∑
j∈N (H)

i
ai,j∆

+
j ≤ θi. Let

φi =
∑

j∈N (H)
i

ain
i,j∆

+
j . Analogously to the previous

case, the principal now wants to remove edges such that
the altruism is reduced by at least φi−θi (unless φi ≤ θi,
in which case nothing needs to be done). Again, this
problem can be modeled as a KNAPSACK problem. The
set of items available is Pi = {j ∈ N (H)

i | ain
i,j = 1}.

The directed edge i → j is modeled as an item with
value a ·∆+

j and cost/weight γ(i,j). The goal is to min-
imize the total weight subject to achieving total value at
least φi − θi.

It is well known [Kleinberg and Tardos, 2005; Vazirani,
2001] that the KNAPSACK problem can be solved in poly-
nomial time using Dynamic Programming when either the
weights or the values are bounded by a polynomial in the
number of items. Using standard rounding/scaling tech-
niques, this approach also yields an FPTAS. By leveraging
these algorithms, we obtain the corresponding results for our
problem.
General gi and Polynomial Edge Costs. When edge costs
are bounded by a polynomial in n, which corresponds to poly-
nomially bounded item weights in the KNAPSACK instances,
which are therefore polynomial-time solvable with Dynamic
Programming (DP). Applying DP for each agent i separately
then yields a minimum-cost overall solution. We obtain the
following:
Proposition 5.2. Under asymmetric altruism, the problem
ANM with general gi and polynomially bounded edge costs
is polynomial-time solvable.
Polynomial gi and General Edge Costs. When all the
gi are polynomially bounded, so are their differences, and
hence the (scaled) item values ∆+

j and ∆−j . Hence all the
values of the “items” are polynomially bounded. Tractabil-
ity then follows from the fact that the KNAPSACK problem
is polynomial-time solvable (using Dynamic Programming)
when item values are bounded by some polynomial in the
length of the input. Again, this allows an algorithm to solve
each subproblem in polynomial time, and then aggregate the
optimal solutions. This gives rise to the following proposi-
tion:
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Proposition 5.3. Under asymmetric altruism, the problem
ANM with polynomially bounded gi and general edge costs
is polynomial-time solvable.

An FPTAS for the General Case. Finally, we can leverage
the standard FPTAS for KNAPSACK to obtain an FPTAS for
ANM with general asymmetric altruism. Specifically, given
a parameter ε, one can run the FPTAS with that parameter for
each of the subproblems/agents i separately. The result for
each i will be a set of edges to add/remove such that i invests
iff x∗i = 1, and the total cost of the modifications is within
a factor (1 + ε) of optimal. Adding all of these costs shows
that the overall cost is within a factor (1 + ε) of optimal. We
obtain the following proposition:
Proposition 5.4. Under asymmetric altruism, consider ANM
with general gi and general edge costs. Given ε > 0, the
optimal cost B∗ can be approximated arbitrarily well, i.e.,
a solution of cost B ≤ (1 + ε)B∗ can be found, with an
algorithm which runs in time polynomial in n and 1/ε.

5.2 Symmetric Altruism
Next, we turn to the setting in which altruism is reciprocal or
symmetric: when an edge is added to the altruism network,
it affects both incident agents. While many graph-theoretic
questions are easier for undirected graphs than for directed
ones, the ANM problem becomes harder. Intuitively, the rea-
son is that while adding the edge (i, j) is very beneficial for
i, it may be less so for j; given the choice, adding a different
edge out of j may be preferable. Under the symmetric altru-
ism model, the principal does not have the fine-grained con-
trol of adding different edges out of i and j, and might have
to “waste” one direction of the edge. The resulting “side-
effects” of desirable edges must be more globally balanced.
Indeed, we show that even special cases that are polynomial-
time solvable in the asymmetric model become NP-hard in
the symmetric model.

Theorem 5.5. ANM with symmetric altruism is NP-complete
even when

• all the sets S(k) are singletons,
• all agents invest under the target equilibrium x∗,
• all gi are polynomially bounded,
• all edge costs γ(k) are 1, and
• the graph H is a clique.

The proofs of this and the remaining results are in the Sup-
plementary Material. Recall that for the asymmetric case,
even just one of uniform (or even just polynomially bounded)
edge costs and polynomially bounded gi is enough to obtain
tractability.

For the remainder of this section, we will focus on the spe-
cial case when all agents invest under the target equilibrium
x∗. This is because for more general target equilibria, even
deciding if there exists any altruism graph yielding this equi-
librium is NP-complete. In other words, even the decision
problem of a principal with infinite budget is NP-complete.
Theorem 5.6. ANM with symmetric altruism for arbitrary
target equilibria x∗ is NP-complete even when

• all the sets S(k) are singletons,
• all gi are polynomially bounded,

• all edge costs γ(k) are 0 (i.e., the principal’s budget is
infinite),

• the graph H is a clique.

Theorem 5.6 implies that no approximation guarantee can
be attained in polynomial time for ANM when x∗ is an arbi-
trary action profile. However, we remark that when all agents
invest under x∗, there is a straightforward polynomial-time
(2 + ε)-approximation algorithm: the algorithm applies the
FPTAS to the asymmetric version and adds a reciprocal edge
whenever a directed edge is added. This leads to a blowup of
a factor 2 compared to the FPTAS achieved in the asymmetric
setting.

Uniform Separable Linear Utility Functions. When the
agents have utility functions gi that are separable in the argu-
ments, and linear with common slope in the second argument
(we term these uniform separable and linear, or USL), the
marginal benefits are uniform and equal to a constant ∆, i.e.,
∆−i = ∆+

i = ∆ for all i and all values of ni. Such utility
functions are commonly studied in public goods games [Suri
and Watts, 2011]. We show that when the goal is for all play-
ers to invest, for USL utility functions and when all sets S(k)
are single edges, the problem becomes tractable, even with all
other parameters (edge costs, network structure, etc.) being
fully general.

Theorem 5.7. ANM with symmetric altruism is polynomial
time solvable when

• the utility functions gi are USL,
• the sets S(k) are singleton,
• the target equilibrium x∗ has all agents investing.

The proof of Theorem 5.7 (given in the Supplementary Ma-
terial) is through a non-trivial reduction to the MIN-COST
PERFECT MATCHING problem via a connection to another
related problem: NETWORK DESIGN FOR DEGREE SETS
(NDDS) [Kempe et al., 2020].

6 Conclusion
We consider how to change altruistic behavior of individu-
als so as to induce societally desirable outcomes. One major
contribution of our work is to separately capture the strate-
gic interdependencies and the altruistic behaviors of individ-
uals. We propose a model of modifying the altruism network,
with the goal of inducing a target investment profile by the
individuals. A series of corresponding algorithmic results are
exhibited, including hardness results even in very restrictive
scenarios (e.g., each modification only affects a single edge),
and tractability results in a broad array of special cases.
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