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Abstract

Many agencies release datasets and statistics about
groups of individuals that are used as input to a
number of critical decision processes. To con-
form with privacy and confidentiality requirements,
these agencies are often required to release privacy-
preserving versions of the data. This paper studies
the release of differentially private datasets and an-
alyzes their impact on some critical resource allo-
cation tasks under a fairness perspective. The paper
shows that, when the decisions take as input differ-
entially private data, the noise added to achieve pri-
vacy disproportionately impacts some groups over
others. The paper analyzes the reasons for these
disproportionate impacts and proposes guidelines
to mitigate these effects. The proposed approaches
are evaluated on critical decision problems that use
differentially private census data.

1

Statistics about groups of individuals are often used as inputs
to critical decision processes. The U.S. Census Bureau, for
example, releases data that is then used to allocate funds and
distribute critical resources to states and jurisdictions. These
decision processes may determine whether a jurisdiction must
provide language assistance during elections, establish vac-
cine distribution plans, and allocate funds to school districts.
The resulting decisions may have significant societal, eco-
nomic, and medical impacts for participating individuals.

In many cases, the released data contain sensitive informa-
tion whose privacy is strictly regulated. For example, in the
U.S., the census data is regulated under Title 13, which re-
quires that no individual be identified from any data released
by the Census Bureau. In Europe, data release is regulated
according to the General Data Protection Regulation, which
addresses the control and transfer of personal data. As a
result, such data releases must necessarily rely on privacy-
preserving technologies. Differential Privacy (DP) has be-
come the paradigm of choice for protecting data privacy, and
its deployments include data products related with the 2020
release of the U.S. Census Bureau [Abowd, 2018].
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Although DP provides strong privacy guarantees, it may in-
duce biases and fairness issues in downstream decision pro-
cesses, as shown empirically in [Pujol ef al., 2020]. Since at
least $675 billion are being allocated based on U.S. census
data, the use of differential privacy without a proper under-
standing of these biases and fairness issues may adversely
affect the health, well-being, and sense of belonging of many
individuals. Indeed, the allotment of federal funds, appor-
tionment of congressional seats, and distribution of vaccines
should ideally be fair and unbiased. Similar issues arise in
several other areas including election, energy, and food poli-
cies. The problem is further exacerbated by the recent recog-
nition that commonly adopted DP mechanisms for data re-
lease may introduce unexpected biases on their own, indepen-
dently of a downstream decision process [Zhu et al., 2021].

This paper builds on these observations and provides a step
towards a deeper understanding of the fairness issues aris-
ing when differentially private data is used as input to sev-
eral resource allocation problems. One of its main results is
to prove that several decision problems with significant so-
cietal impact (e.g., the allocation of educational funds and
the decision to provide minority language assistance on elec-
tion ballots) exhibit inherent unfairness when applied to a dif-
ferentially private release of the census data. To counteract
this negative results, the paper examines the conditions under
which decision making is fair when using DP, and techniques
to bound unfairness. The paper also provides a number of
mitigation approaches to alleviate unfairness on such decision
making problems. More specifically, the paper makes the fol-
lowing contributions: (1) It formalizes the notion of bounded
fairness for decision making subject to privacy requirements.
(2) It characterizes decision making problems that are fair or
admits bounded fairness. In addition, it investigates the com-
position of decision rules and how they impact bounded fair-
ness. (3) It proves that several decision problems with high
societal impact induce inherent biases when using a differen-
tially private input. (4) It examines the roots of the induced
unfairness by analyzing the structure of the decision making
problems. (5) It proposes several guidelines to mitigate the
negative fairness effects of the decision problems studied.

To the best of the authors’ knowledge, this is the first study
that attempt at characterizing the relation between differen-
tial privacy and fairness in decision problems. All proofs are
reported in [Fioretto ef al., 2021].
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Figure 1: Diagram of the private allocation problem.

2 Preliminaries: Differential Privacy

Differential Privacy [Dwork et al., 2006] (DP) is a rigorous
privacy notion that characterizes the amount of information
of an individual’s data being disclosed in a computation.

Definition 1. A randomized algorithm M : X — R with
domain X and range R satisfies e-differential privacy if for
any output O C R and datasets x, x’ € X differing by at most
one entry (written x ~ x’)

PriM(z) € O] < exp(e) PrIM(z’) € O]. 1

Parameter € >0 is the privacy loss, with values close to 0 de-
noting strong privacy. Intuitively, DP states that any event oc-
cur with similar probability regardless of the participation of
any individual data to the dataset. DP satisfies several proper-
ties including immunity to post-processing, which states that
the privacy loss of DP outputs is not affected by arbitrary
data-independent post-processing [Dwork and Roth, 2013].

A function f from a dataset € X to a result set R C R”
can be made differentially private by injecting random noise
onto its output. The amount of noise relies on the notion of
global sensitivity Ay = maxgq || f(2)— f(x')|l1. The Laplace
mechanism [Dwork et al., 2006] that outputs f(x) + 1, where
71 € R" is drawn from the i.i.d. Laplace distribution with 0
mean and scale As/e over n dimensions, achieves e-DP.

3 Problem Setting and Goals

The paper considers a dataset x € X C R¥ of n entities, whose
elements x; = (x;1,. .., x1x) describe k measurable quantities
of entity i € [n], such as the number of individuals living in
a geographical region i and their English proficiency. The
paper considers two classes of problems:

e An allotment problem P : X X [n] — R is a function that
distributes a finite set of resources to some problem entity.
P may represent, for instance, the amount of money allotted
to a school district.

e A decision rule P : X X [n] — {0, 1} determines whether
some entity qualifies for some benefits. For instance, P may
represent if election ballots should be described in a minor-
ity language for an electoral district.

The paper assumes that P has bounded range, and uses the
shorthand P;(x) to denote P(x, i) for entity i. The focus of the
paper is to study the effects of a DP data-release mechanism
M to the outcomes of problem P. Mechanism M is applied
to the dataset & to produce a privacy-preserving counterpart
& and the resulting private outcome P;(Z) is used to make
some allocation decisions. Figure 1 provides an illustrative
diagram.

Because random noise is added to the original dataset x,
the output P;(£) incurs some error. The focus of this paper is
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Figure 2: Disproportionate Title 1 Funds Allocation in NY.

to characterize and quantify the disparate impact of this error
among the problem entities. In particular, the paper focuses
on measuring the bias of problem P;

Bp(M, ) = Bz p) [PA(E)] - Pi(), 2

which characterizes the distance between the expected
privacy-preserving allocation and the one based on the
ground truth. The paper considers the absolute bias |B|, in
place of the bias Bi, when P is a decision rule. The distinc-
tion will become clear in the next sections.

The results in the paper assume that M, used to release
counts, is the Laplace mechanism with an appropriate finite
sensitivity A. However, the results are general and apply to
any data-release DP mechanism that add unbiased noise.

4 Motivating Problems

This section reviews two Census-motivated problem classes
that grant benefits or privileges to groups of people [Pujol et
al., 2020].

Allotment problems The Title I of the Elementary and Sec-
ondary Education Act of 1965 [Sonnenberg, 2016] distributes
about $6.5 billion through basic grants. The federal allotment
is divided among qualifying school districts in proportion to
the count x; of children aged 5 to 17 who live in necessitous
families in district i. The allocation is formalized by

Xi -4

(Zie[n] Xi ai) ’

where T = (x;)ie[n) 1s the vector of all districts counts and q;
is a weight factor reflecting students expenditures.

Figure 2 illustrates the expected disparity errors arising
when using private data as input to problem P, for vari-
ous privacy losses €. These errors are expressed in terms of
bias (left y-axis) and USD misallocation (right y-axis) across
the different New York school districts, ordered by their size.
The allotments for small districts are typically overestimated
while those for large districts are underestimated. Translated
in economic factors, some school districts may receive up to
42,000 dollars less than warranted.

Decision Rules Minority language voting right benefits are
granted to qualifying voting jurisdictions. The problem is for-
malized as

def

Pl (x)

xspe
>0.05vx”>10*|A =
i xi

For a jurisdiction i, x{, x;”, and x;”* denote, respectively,
the number of people in i speaking the minority language of

M, def xfp
P/ (x) — >0.0131.
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Figure 3: Disproportionate Minority Language Voting Benefits.

interest, those that have also a limited English proficiency,
and those that, in addition, have less than a 5™ grade educa-
tion. Jurisdiction i must provide language assistance (includ-
ing voter registration and ballots) iff PIM () is True.

Figure 3 illustrates the decision error (y-axis), correspond-
ing to the absolute bias IBLM(M, x)|, for sorted x, consider-

ing only true positives' for the Hispanic language. The figure
shows that there are significant disparities in decision errors
and that these errors strongly correlate to their distance to the
thresholds. Similar issues were also observed in [Pujol er al.,
2020].

5 Fair Allotments and Decision Rules

This section analyzes the fairness impact in allotment prob-
lems and decision rules. The adopted fairness concept cap-
tures the desire of equalizing the allocation errors among en-
tities, which is of paramount importance given the critical so-
cietal and economic impact of the motivating applications.

Definition 2. A data-release mechanism M is said fair
w.r.t. a problem P if, for all datasets x € X,

BL(M,x) = BL(M,z) Vi, je[n.

That is, P does not induce disproportionate errors when tak-
ing as input a DP dataset generated by M. The paper also
introduces a notion to quantify and bound the mechanism un-
fairness.

Definition 3. A mechanism M is said a-fair w.r.t. problem P
if, for all datasets x € X and all i € [n],

EL(P,M, ) = max [Bo(M, x) - By(M, )| < a,

J€ln]

where fg is referred to as the disparity error of entity i.

Parameter « is called the fairness bound and captures the fair-
ness violation, with values close to 0 denoting strong fairness.
A fair mechanism is also O-fair.

Note that computing the fairness bound « analytically may
involve computing the expectation of complex functions P.
Therefore, in the analytical assessments, the paper recurs to
a sampling approach to compute the empirical expectation
E[Pi(®)] = # 2 jelm] P;(&’) in place of the true expectation in
Equation (2). Therein, m is a sufficiently large sample size
and &/ is the j-th outcome of the application of mechanism
M on dataset x.

'This is because misclassification, in this case, implies poten-
tially disenfranchising a group of individuals.
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5.1 Fair Allotments: Characterization

The first result characterizes a sufficient condition for the al-
lotment problems to achieve finite fairness violations. The
presentation uses H P; to denote the Hessian of problem P;,
and Tr(-) to denote the trace of a matrix. In this context, the
Hessian entries are functions receiving a dataset as input. The
presentation thus uses (H P;);;(x) and Tr(H P;)(x) to denote
the application of the second partial derivatives of P; and of
the Hessian trace function on dataset x.

Theorem 1. Let P be an allotment problem which is at least
twice differentiable. A data-release mechanism M is a-fair
w.rt. P for some @ < oo if there exist some constant values
c;l (i € [n], j,I € [k]) such that, for all datasets x € X,

(HP)j(x) = ¢}, (i €n] j,l €[k

The above shed light on the relationship between fairness and
the difference in the local curvatures of problem P on any
pairs of entities. As long as this local curvature is constant
across all entities, then the difference in the bias induced by
the noise onto the decision problem of any two entities can be
bounded, and so can the (loss of) fairness.

The following corollaries illustrate the restrictions on the
problem structure needed to satisfy fairness.

Corollary 1. If P is a linear function, then M is fair w.r.t. P.

Corollary 2. M is fair w.r.t. P if there exists a constant ¢
such that, for all dataset x,

Tr(HP)(x) = ¢ (i € [n]).

5.2 Fair Decision Rules: Characterization

The next results bound the fairness violations of a class of
indicator functions, called thresholding functions, and dis-
cusses the loss of fairness caused by the composition of
boolean predicates, two recurrent features in decision rules.
The fairness definition adopted uses the concept of abso-
lute bias, in place of bias in Definition 3. Indeed, the ab-
solute bias IB;I corresponds to the classification error for
(binary) decision rules of P;, i.e., Pr[P;(£) # P;(x)]. The
results also assume M to be a non-trivial mechanism, i.e.,
|B§3(M, x)| < 0.5Vi € [n]. Note that this is a non-restrictive
condition, since the focus of data-release mechanisms is to
preserve the quality of the original inputs, and the mecha-
nisms considered in this paper (and in the DP-literature, in
general) all satisfy this assumption.

Theorem 2. Consider a decision rule P(x) = 1{x; > {} for
some real value €. Then, mechanism M is 0.5-fair w.r.t. P;.

This is a worst-case result and the mechanism may enjoy a
better bound for specific datasets and decision rules. It is
however significant since thresholding functions are ubiqui-
tous in decision making over census data.

The next results focus on the composition of Boolean pred-
icates under logical operators. The results are given under the
assumption that mechanism M adds independent noise to the
inputs of the predicates P; and P, to be composed, which is
often the case. This assumption for P, and P, is denoted by
P' 1 P?. Future work will aim at generalizing this results to
broader assumptions.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Theorem 3. Consider predicates P' and P* such that P' 1.P?

and assume that mechanism M is ay-fair w.r.t. PF(ke{1,2}).
Then M is a-fair for predicates P' vV P*> and P' A P? with

a=(1+B'+ar+B ~ (a1 + B Y2+ BY)-B'B),

where Ek and B* are the maximum and minimum absolute
biases for Mw.r.t. P* (for k = {1,2}).

The result above bounds the fairness violation derived by the
composition of Boolean predicates under logical operators.
The extended version of this work also include a surpris-
ing, positive compositional fairness result regarding predi-
cates composed under a XOR operator [Fioretto et al., 2021].

6 The Nature of Bias

The previous section characterized conditions bounding fair-
ness violations. In contrast, this section analyzes the reasons
for disparity errors arising in the motivating problems.

6.1 The Problem Structure

The first result is an important corollary of Theorem 1. It
studies which restrictions on the structure of problem P are
needed to satisfy fairness. Once again, P is assumed to be at
least twice differentiable.

Corollary 3. Consider an allocation problem P. Mechanism
M is not fair w.r.t. P if there exist two entries i, j € [n] such
that Tr(H P;)(x) # Tr(H P;)(x) for some dataset x.

The above implies that fairness cannot be achieved if P is a
non-convex function, as is the case for all the allocation prob-
lems considered in this paper. A fundamental consequence
of this result is the recognition that adding Laplacian noise
to the inputs of the motivating example will necessarily in-
troduce fairness issues. For instance, consider PF and notice
that the trace of its Hessian

Xi 2 jeln] a? —4ai (Z_iE[n] xjaj)
(2 jetn xjaj)3

is not constant with respect to its inputs. Thus, any two entries
i, j whose x; # x; imply Tr(H PF) # Tr(H Pf ). As illustrated
in Figure 2, Problem P’ can introduce significant disparity
errors. For e = 0.001,0.01, and 0.1 the estimated fairness
bounds are 0.003, 3x 107>, and 1.2x 107° respectively, which
amount to an average misallocation of $43,281, $4,328, and
$865.6 respectively. The estimated fairness bounds were ob-
tained by performing a linear search over all n school districts
and selecting the maximal Tr(H Pf ).

b}

Tr(HPF) = 2q

Ratio Functions The next result considers ratio functions
of the form P;({x,y))=*/y with x, yeR and x<y, which occur
in the Minority language voting right benefits problem PIM .
In the following M is the Laplace mechanism.

Corollary 4. Mechanism M is not fair w.r.t. Pi({x,y)) = ¥/y
and inputs x, y.

Figure 4 (left) provides an illustration linked to problem
PY. Tt shows the original values ~”/» (blue circles) and
the expected values of the privacy-preserving counterparts
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(red crosses) of three counties; from left to right: Loving
county, TX, where x"/x = 4/s0 = 0.05, Terrell county, TX,
where *"/x* = 30/600 = 0.05, and Union county, NM, where
xPle = 160/3305 = 0.0484. The length of the gray vertical
line represents the absolute bias and the dotted line marks a
threshold value (0.05) associated with the formula Pf"’ . While
the three counties have (almost) identical ratios values, they
induce significant differences in absolute bias. This is due to
the difference in scale of the numerator (and denominator),
with smaller numerators inducing higher bias.

Thresholding Functions As discussed in Theorem 2, dis-
continuities caused by indicator functions, including thresh-
olding, may induce unfairness. This is showcased in Fig-
ure 4 (center) which describes the same setting depicted in
Figure 4 (left) but with the red line indicating the variance
of the noisy ratios. Notice the significant differences in error
variances, with Loving county exhibiting the largest variance.
This aspect is also shown in Figure 3 where the counties with
ratios lying near the threshold value have higher decisions er-
rors than those whose ratios lies far from it.

6.2 Predicates Composition

The next result highlights the negative impact coming from
the composition of Boolean predicates. The following im-
portant result is corollary of Theorem 3 and provides a lower
bound on the fairness bound.

Corollary 5. Let mechanism M be ay-fair w.r.t. to problem
P¥ (k € {1,2}). Then M is a-fair w.r.t. problems P = P' v P?
and P = P' A P2, with a > max(a,, a).

Figure 4 (right) illustrates Corollary 5. It once again uses the
minority language problem P¥. In the figure, each dot repre-
sents the absolute bias IB;M (M, x)| associated with a selected
county. Red and blue circles illustrate the absolute bias intro-
duced by mechanism M for problem P'(x*?) = 1{x*? > 10%}
and P?(x*P, x*P¢) = 1{% >(0.0131} respectively. The selected
counties have all similar and small absolute bias on the two
predicates P! and P>. However, when they are combined us-
ing logical connector V, the resulting absolute bias increases
substantially, as illustrated by the associated green circles.

The extended version [Fioretto et al., 2021] also analyzes
an interesting difference in errors based on the Truth values
of the composing predicates P! and P?, and shows that the
highest error is achieved when they both are True for A and
when they both are False for V connectors. This may have
strong implications in classification tasks.

6.3 Post-Processing

The final analysis of bias relates to the effect of post-
processing the output of the differentially private data release.
In particular, the section focuses on ensuring non-negativity
of the released data. The discussion focuses on problem P
but the results are, once again, general.

The section first presents a negative result: the application

. def
of post-processing operator m»¢(z) = max({, z) to ensure that

the result is at least £ induces a positive bias which, in turn,
can exacerbate the disparity error of the allotment problem.
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Figure 4: Unfairness effect in ratios (left), thresholding (middle) and predicates disjunction (right)

Theorem 4. Let X = x + Lap(A), with scale 1 > 0, and X =
>¢(X), with € < x, be its post-processed value. Then,

{—x
A

Lemma 4 indicates the presence of positive bias of post-
processed Laplace random variable when ensuring non-
negativity, and that such bias is Bi(M,z) = E[£] — x; =
exp(%) < 42 for £ < x;. As shown in Figure 2 the effect
of this bias has a negative impact on the final disparity of
the allotment problem, where smaller entities have the largest
bias (in the Figure £ = 0).

Discussion The results highlighted in this section are both
surprising and significant. They show that the motivating al-
lotment problems and decision rules induce inherent unfair-
ness when given as input differentially private data. This is
remarkable since the resulting decisions have significant soci-
etal, economic, and political impact on the involved individu-
als: federal funds, vaccines, and therapeutics may be unfairly
allocated, minority language voters may be disenfranchised,
and congressional apportionment may not be fairly reflected.
The next section identifies a set of guidelines to mitigate these
negative effects.

E[x] = x+ g exp( ).

7 Mitigating Solutions

7.1 The Output Perturbation Approach

This section proposes three guidelines that may be adopted to
mitigate the unfairness effects presented in the paper, with fo-
cus on the motivating allotments problems and decision rules.

A simple approach to mitigate the fairness issues discussed
is to recur to output perturbation to randomize the outputs of
problem P;, rather than its inputs, using an unbiased mech-
anism. Injecting noise directly after the computation of the
outputs P;(x), ensures that the result will be unbiased. How-
ever, this approach has two shortcomings. First, it is not
applicable to the context studied in this paper, where a data
agency desires to release a privacy-preserving dataset & that
may be used for various decision problems. Second, com-
puting the sensitivity of the problem P; may be hard, it may
require to use a conservative estimate, or may even be impos-
sible, if the problem has unbounded range. A conservative
sensitivity implies the introduction of significant loss in ac-
curacy, which may render the decisions unusable in practice.

7.2 Linearization by Redundant Releases

A different approach considers modifying on the decision
problem P; itself. Many decision rules and allotment prob-
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Figure 5: Linearization by redundant release: Fairness and errors.

lems are designed in an ad-hoc manner to satisfy some prop-
erty on the original data, e.g., about the percentage of popula-
tion required to have a certain level of education. Motivated
by Corollaries 1 and 2, this section proposes guidelines to
modify the original problem P; with the goal of reducing the
unfairness effects introduced by differential privacy.

The idea is to use a linearized version P; of problem P;.
While many linearizion techniques exists [Rebennack and
Krasko, 20201, and are often problem specific, the section fo-
cuses on a linear proxy PiF to problem Pf that can be obtained
by enforcing a redundant data release. While the discussion
focuses on problem Pf , the guideline is general and applies
to any allotment problem with similar structure.

Let Z = }; a;x;. Problem Pf () = aixi/z is linear w.r.t. the
inputs x; but non-linear w.r.t. Z. However, releasing Z, in
addition to releasing the privacy-preserving values &, would
render Z a constant rather than a problem input to PF". To do
so, Z can either be released publicly, at cost of a (typically
small) privacy leakage or by perturbing it with fixed noise.
The resulting linear proxy allocation problem P! is thus lin-
ear in the inputs .

Figure 5 illustrates this approach in practice. The left
plot shows the fairness bound « and the right plot shows the
empirical mean absolute error % Iy |P(x*) — P(&™)|, ob-
tained using m = 10* repetitions, when the DP data & is ap-
plied to (1) the original problem P, (2) its linear proxy P,
and (3) when output perturbation (denoted M°") is adopted.
The number on top of each bar reports the fairness bounds,
and emphasize that the proposed remedy solutions achieve
perfect-fairness. Notice that the proposed linear proxy solu-
tion can reduce the fairness violation dramatically while re-
taining similar errors. While the output perturbation method
reduces the disparity error, it also incurs significant errors that
make the approach rarely usable in practice. The extended
version [Fioretto et al., 2021] also discuss a solution based
on a piecewise linear proxy function for the more complex
decision rule P,

It is important to note that the experiments above use a
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Figure 6: Modified post-processing: Unfairness reduction.

data release mechanism M that applies no post-processing. A
discussion about the mitigating solutions for the bias effects
caused by post-processing is presented next.

7.3 Modified Post-Processing

This section introduces a simple, yet effective, solution to
mitigate the negative fairness impact of the non-negative post-
processing. The proposed solution operates in 3 steps: It first
(1) performs a non-negative post-processing of the privacy-
preserving input X to obtain value X = m>,(¥). Next, (2) it
computes ¥r = X— —7—. Its goal is to correct the error in-
troduced by the post-processing operator, which is especially
large for quantities near the boundary ¢£. Here T is a temper-
ature parameter that controls the strengths of the correction.
This step reduces the value X by quantity - jf ;- The effect of
this operation is to reduce the expected value E[x] by larger
(smaller) amounts as x get closer (farther) to the boundary
value ¢. Finally, (3) it ensures that the final estimate is indeed
lower bounded by ¢, by computing X = max(xr, ).

The benefits of this approach, called &, are illustrated in
Figure 6, which show the absolute bias |B;)F| for the Title 1
fund allocation problem that is induced by the original mech-
anism M with standard post-processing 7o and by the pro-
posed modified post-processing for different temperature val-
ues T. The figure illustrates the role of the temperature 7 in
the disparity errors. Small values 7 may have small impacts
in reducing the disparity errors, while large 7' values can in-
troduce errors, thus may exacerbate unfairness. The optimal
choice for T can be found by solving the following:

T* = argmin ( max [E[&7] — | — min [E[£7] — x|), (3)
T x>0 x>(

where £7 is a random variable obtained by the proposed 3
step solution, with temperature 7. The expected value of &
can be approximated via sampling. Note that naively finding
the optimal 7" may require access to the true data. Solving
the problem above in a privacy-preserving way is beyond the
scope of the paper and the subject of future work. The reduc-
tions in the fairness bound a for problem P’ are reported in
Figure 7 (left), while Figure 7 (right) shows that this method
has no perceptible impact on the mean absolute error.

7.4 Fairness Payment

Finally, this section focuses on allotment problems, like P*,
that distribute a budget B among n entities, and where the
allotment for entity i represents the fraction of budget B it
expects. Differential privacy typically implements a postpro-
cessing step to renormalize the fractions so that they sum to 1.
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This normalization, together with nonnegativity constraints,
introduces a bias and hence more unfairness. One way to
alleviate this problem is to increase the total budget B, and
avoiding the normalization. This section quantifies the cost
of doing so: it defines the cost of privacy, which is the in-
crease in budget B* required to achieve this goal.

Definition 4 (Cost of Privacy). Given problem P, that dis-
tributes budget B among n entities, data release mechanism
M, and dataset x, the cost of privacy is:

B* = Y- |Bp(M, )| X B
with I~ = {i : BL(M,x) < 0}.
Figure 8 illustrates the cost of privacy, in USD, required to
render each county in the state of New York not negatively
penalized by the effects of differential privacy. The figure
shows, in decreasing order, the different costs associated with
a mechanism P’ (m5(#)) that applies a post-processing step,

one PF(&) that does not apply post-processing, and one that
uses a linear proxy problem PF(&).

8 Conclusions

This paper analyzed the disparity arising in decisions grant-
ing benefits or privileges to groups of people when these deci-
sions are made adopting differentially private statistics about
these groups. It first characterized the conditions for which al-
lotment problems achieve finite fairness violations and bound
the fairness violations induced by important components of
decision rules, including reasoning about the composition of
Boolean predicates under logical operators. Then, the paper
analyzed the reasons for disparity errors arising in the mo-
tivating problems and recognized the problem structure, the
predicate composition, and the mechanism post-processing,
as paramount to the bias and unfairness contribution. Finally,
it suggested guidelines to act on the decision problems or
on the mechanism (i.e., via modified post-processing steps)
to mitigate the unfairness issues. The analysis provided in
this paper may provide useful guidelines for policy-makers
and data agencies for testing the fairness and bias impacts of
privacy-preserving decision making.
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