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Abstract

This paper proposes Characteristic Examples for
effectively fingerprinting deep neural networks,
featuring high-robustness to the base model against
model pruning as well as low-transferability to
unassociated models. This is the first work taking
both robustness and transferability into considera-
tion for generating realistic fingerprints, whereas
current methods lack practical assumptions and
may incur large false positive rates. To achieve
better trade-off between robustness and transfer-
ability, we propose three kinds of characteristic
examples: vanilla C-examples, RC-examples, and
LTRC-example, to derive fingerprints from the orig-
inal base model. To fairly characterize the trade-
off between robustness and transferability, we pro-
pose Uniqueness Score, a comprehensive metric
that measures the difference between robustness
and transferability, which also serves as an indi-
cator to the false alarm problem. Extensive ex-
periments demonstrate that the proposed charac-
teristic examples can achieve superior performance
when compared with existing fingerprinting meth-
ods. In particular, for VGG ImageNet models, us-
ing LTRC-examples gives 4x higher uniqueness
score than the baseline method and does not incur
any false positives.

1

With the rapid development of machine learning and artifi-
cial intelligence, the efforts and resources spent in developing
state-of-the-art machine learning models such as deep neu-
ral networks (DNNs) can be tremendous, and therefore it is
of utmost importance to be able to claim the ownership of a
well-trained model and its derived versions (e.g. pruned mod-
els). For instance, the cost of training current state-of-the-
art transformer based language model, GPT-3 [Brown and et
al., 20201, is estimated to be at least 4.6 million US dollars’.
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Imagine an unethical model thief purposely pruned the pre-
trained GPT-3 model and attempted to claim the ownership
of the resulting compressed model. The solution to the chal-
lenge of “how to protect intellectual property for DNN mod-
els and reliably identify model ownership?” is literally worth
million dollars.

Another motivating example is the surging trend of broad
usage of neural network models across applications in cloud-
based or embedded systems. For model owners deploying
a model on the cloud, it is essential for them to verify the
identity of the model to make sure that the model has not
been tampered or replaced. Towards this direction, exten-
sive research have been made to protect the IP of the neu-
ral network from different perspectives, which can be regard
as fingerprinting/watermarking using weights embedding and
image examples. However, most of these methods for DNN
IP protection require intervention in training phase, which
may cause performance degradation of the DNN (i.e., accu-
racy drop) and leave hidden danger of adversary to attack the
DNN (i.e., backdoor attacks). Meanwhile, existing works of-
ten overlook the false positive problem of the DNN (i.e., mis-
takenly claiming the ownership of irrelevant models), which
is of practical importance when designing fingerprints.

To better address the aforementioned limitations, this work
proposes a novel approach to fingerprinting neural networks
using Characteristic Examples (C-examples). Its advantages
lies in (i) its generation process does not intervene with the
training phase; and (ii) it does not require any realistic data
from the training/testing set. By applying uniform random
noise to the weights of the neural network with the combi-
nation of gradient mean descending technique, the proposed
C-examples achieve high-robustness to the resulting models
pruned from the base model where the fingerprints are ex-
tracted. When further equipped with a high-pass filter in the
frequency domain of image data during the generation pro-
cess, C-examples attain low-transferability to other models
that are different from the base model.

Below we summarize our main contributions.

* We propose a novel and practical fingerprinting method
called C-examples that achieves better robustness and trans-
ferability trade-off than current DNN fingerprinting meth-
ods without intervening with the training phase nor the
dataset. In particular, we develop three kinds of C-
examples: vanilla C-examples, RC-examples, and LTRC-
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examples to further improve fingerprinting performance.

To better evaluate the trade-off between robustness and
transferability, we propose a novel metric called Unique-
ness Score that quantifies the utility of fingerprinting. The
uniqueness scores of the proposed C-examples outperform
other fingerprinting methods by a large margin. Specifi-
cally, LTRC-examples gives 4x higher uniqueness score
than the baseline.

This is the first work that thoroughly considers the false
alarm problem in designing fingerprints. Our mechanisms
featuring high-robustness and low-transferability can sig-
nificantly decrease the false positive rate and achieve nearly
perfect AUC and F1-score with LTRC-examples.

2 Background and Related Work

2.1 IP Protection of Deep Neural Networks

Extensive research efforts have been done recently on the
DNN watermarking / fingerprinting methods for the DNN in-
tellectual property protection and model integrity verification.
These works can be classified as two main categories: (1)
DNN watermarking or fingerprinting by weights embedding;
(2) Watermarking or fingerprinting using image samples.

DNN watermarking following the first approach embeds
watermarks into the model weight parameters through train-
ing from scratch, retraining, distillation, and requires white-
box access to the model to be tested. Towards this approach,
Uchida et al. takes the first step to investigate the DNN wa-
termarking by embedding a watermark in model weight pa-
rameters, using a parameter regularizer [Uchida er al., 2017].
Later on Rouhani et al. propose an end-to-end IP protec-
tion framework that enables the insertion of digital water-
marks in the target DNN model before distributing the model
[Darvish Rouhani ef al., 2019]. Other works proposed by
Chen et al. [Chen et al., 2019] and Fan et al. [Fan and et al.,
2019] also contribute towards this approach.

The second approach extracts the watermarks by using a
set of image samples. This line of work includes embed-
ding watermarks in input gradients [Aramoon et al., 20211,
or watermarking by using DNN backdoor attacks [Gu et al.,
2017] to embed watermarks into the DNN model representa-
tion while using trigger images to test intellectual property
infringement [Adi et al., 2018; Guo and Potkonjak, 2018;
Namba and Sakuma, 2019]. Another direction is to extracts
adversarial examples [Le Merrer et al., 2019; Lukas ef al.,
2019] or sensitive examples [He et al., 2019] from a DNN as
its fingerprints. The main advantage of using adversarial ex-
amples is that it eliminates the need of training or re-training
and enables the black-box testing capability.

2.2 Frequency Components and Transferability

It has been exploited in the area of signal processing and im-
age compression that most of the critical content-defining in-
formation in natural images lies in the low end of the fre-
quency spectrum [Wallace, 1992]. Based on this explo-
ration, the relationship between frequency components of the
images and its transferability have been discussed recently
to generate adversarial examples as an attack to the neu-
ral networks with low frequency adversarial perturbations
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in order to achieve high-transferability [Guo et al., 2018;
Sharma et al., 2019]. Specifically, by utilizing the well-
known discrete cosine transform (DCT), Sharma et al. pro-
pose a systematic experiments to evaluate the effectiveness of
the low frequency adversarial perturbations by manipulating
specific frequency components. They show that the applica-
tion of using a low-pass filter in the frequency domain of the
perturbation can effectively improve the transferability thus
lead to higher attack success rate, the same phenomenon is
also discussed in [Guo et al., 2018].

3 Characteristic Examples for Neural
Network Fingerprinting

This section introduces our novel DNN fingerprinting
technique through generating Characteristic Examples (C-
examples). The proposed C-examples are significantly differ-
ent from widely-known adversarial examples [Szegedy and
et al., 2013; Goodfellow et al., 2014] causing model mis-
prediction. Instead, C-examples are data-free and aim to
achieve high-robustness for passing through pruned variants
of the base model and low-transferability for screening out
any other models different from the base model.

We consider three types of DNN models that are of inter-
est in C-examples. (I) Base Model: the pre-trained model to
fulfill some designated task, such as image classification. 2)
Pruned Models: the models pruned from the base model and
implemented on the edge devices for inference execution. 3)
Other Models: any other models that are neither () nor ).
For example, if VGG16 is the Base Model, then VGG19, the
ResNet family, etc. all belong to Other Models.

The proposed DNN fingerprinting framework is as follows:
The () Base Model is used to generate C-examples with la-
bels. Therefore C-examples have 100% accuracy on the Base
Model. Then C-examples are used as fingerprints to test the
models implemented on edge devices. A high accuracy is ex-
pected if the implemented model is (2); while a low accuracy
is expected if the implemented model is (3).

It is a non-trival task to design C-examples that are both ro-
bust to (2) Pruned Models and exhibiting low-transferability
on (3 Other Models. Adversarial example based other fin-
gerprinting methods [Le Merrer et al., 2019; He et al., 2019]
could not accomplish the above mentioned two objectives.
High-transferability of adversarial examples to both pruned
and variant models are regarded as an important property and
been widely used in evaluating the attack effectiveness. In the
context of adversarial examples, it is discussed in [Zhao et
al., 2019] that transferability of adversarial samples between
pruned and full models remains when the test accuracy of the
networks drops slightly. Extensive research also proposed to
improve the transferability of adversarial examples [Xie er
al., 2019; Guo et al., 2020]. However, adversarial examples
are not ideal fingerprints because their restricted assumptions
on high similarity to true data and the goal of invoking incor-
rect model predictions.

3.1 Proposed C-Examples

In this section, our main methods are introduced in the con-
text of image classification task by DNNs. We stress, how-
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ever, that the proposed approach can be generalized to other
types of tasks, data, and classification models. Let x €
R3XHXW denote a colored RGB image, where H and W are
the image height and width, respectively. We scale pixel val-
ues of x to [0, 1] for mathematical simplicity. Fy denotes the
Base Model, which outputs y = Fp(x) as a probability dis-
tribution for a total of M classes. The element y; represents
the probability that an input x belongs to the ¢-th class.

The Base Model Fy parameterized with 6 is pre-trained.
Then, C-examples are generated from Fy. If we are given
with a subset {l1,ls,...,lp} of P labels randomly chosen
from the labels of training dataset, then a set of n-optimal
C-examples X * can be characterized as:

X* = {(x, I)|Losss(x,1) < 7,% € [0, 1}"}. )

We set 1) to 1 x 107% in order to guarantee the convergence
of the generation. The Lossy(-) denotes the loss function of
Fy. A C-example x minimizing the loss for a specified label
I should satisfy the above constraint.

In order to be independent of data when extracting the base
model features, we simply use a random seed to generate a C-
example, and therefore the generated C-examples are distinct
from natural images for the human perception. A vanilla ver-
sion C-example is shown in Figure 3 (a).

We choose to use the projected gradient decent (PGD) al-
gorithm [Lin, 2007; Kurakin et al., 2016; Madry et al., 2018],
which has been widely used as a general approach for solv-
ing constrained optimization problems. Then the C-example
generation problem (1) can be solved with the PGD algorithm
as follows:

@

where ¢ is the iteration step index; %0 is the random starting
point; « is the step size; sign(+) returns the element-wise sign
of a vector; V(-) calculates gradients; and Clip(-) denotes
the clipping operation to satisfy the x € [0, 1]™ constraint.
In summary, the PGD algorithm generates a C-example by
iteratively making updates based on the gradients and then
clipping into the ¢.-ball ([0, 1]™).

x'*! = Clip (x' — « - sign(VxLosse(x",1))) ,

3.2 C-Examples with Enhanced Robustness

All the existing works [Le Merrer et al., 2019; He et al.,
2019] perform fingerprinting or watermarking for a neu-
ral network as it is. They can not differentiate the (be-
nign) model compression — an essential step in implement-
ing neural network models for on-the-edge inference exe-
cution, from other adversarial model perturbations. In our
work, we tackle this challenge by improving the robust-
ness of C-examples on (2) Pruned Models. It means that
the C-examples generated from the (I) Base Model should
also preserve a high test accuracy on (2) Pruned Models that
are derived from the (I) Base Model. To achieve this, we
propose an enhancement named Robust C-examples (RC-
examples) over the vanilla version proposed in Section 3.1,
by adding noise bounded by ¢ to the neural network parame-
ter 6 to mimic the model perturbation due to the model com-
pression procedure for its implementation on edge devices.
Here the loss is changed to Lossga, which similar idea of
adding noises to DNN models has also been applied as a de-
fense against adversarial example attacks [Liu et al., 2018;
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Figure 1: Saliency map of three color channels averaged over 1000
images from ImageNet demonstrating the absolute gradients of the
base model classification loss w.r.t. the frequencies obtained from
the DCT of input images.
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Figure 2: A System Diagram of Generating LTRC-example.

Wang ef al., 2019]. A presents the uniformly distributed
weight perturbations within [—4, ¢], and we set § as 0.001,
0.003, 0.005, 0.007 for ImageNet and 0.01, 0.03, 0.05, 0.07
for CIFAR-10, respectively, in the experiments.

Further Robustness Enhancement with Gradient Mean
(GM). Furthermore, motivated by the Expectation Over
Transformation (EOT) method [Athalye et al., 2018; Wang
et al., 2019] towards stronger adversarial attacks, the pro-
posed RC-examples can be further enhanced by calculat-
ing the mean of the input gradients in each iteration step.
When computing input gradient, we sample input gradients
for ¢ = 10 times and use the mean of gradients in each itera-
tion step of generating RC-examples.

3.3 RC-Examples with Low-Transferability

Besides enhancing the robustness of C-examples on (2)
Pruned Models, it is desirable to exhibit low-transferability
to 3 Other Models. In other words, the C-examples should
be able to distinguish the implemented inference model on
the edge device, if it is an 3) Other Model. Therefore, we
further improve the RC-examples proposed in Section 3.2
by enforcing low-transferability, i.e., we propose the Low-
Transferability RC-examples (LTRC-examples). In this
way, we can improve the capability of C-examples in detec-
tion for false positive cases, where positive means claiming
the model ownership as ours in IP protection.

The frequency analysis [Guo et al., 2018; Sharma et al.,
2019; Cheng et al., 2019] suggests that low frequency compo-
nents can improve transferability of adversarial examples. In-
spired by that, we propose to leverage high frequency compo-
nents to achieve C-examples with low-transferability. Specif-
ically, we apply a frequency mask on the Discrete Cosine
Transform (DCT) [Rao and Yip, 2014] to implement a high-
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pass filter in the frequency domain of the C-example.

As an important tool in signal processing, the DCT de-
composes a given signal into cosine functions oscillating at
different frequencies and amplitudes. For a 2D image, the
DCT performed as w = DCT(x) can transform the image x
into the frequency domain, and w; ;y is the magnitude of its
corresponding cosine functions with the values of 7 and j rep-
resenting frequencies, where smaller values mean lower fre-
quencies. The DCT is invertible, and the Inverse DCT (IDCT)
is denoted as x = IDCT(w). Note that here we apply DCT
and IDCT for different color channels independently.

For most ImageNet images, we found that the low-
frequency components are mostly salient for deep learning
classifiers. As shown in Figure 1, the low-frequency compo-
nents in the red area around (0,0) have a larger contribution
(with larger gradients) to the classification loss. Inspired by
this phenomenon that the low-frequencies play a more impor-
tant role in classifications and therefore are more transferable,
we believe that filtering out these components can effectively
lower the fingerprints transferability. To demonstrate this, we
design the high-pass frequency mask as shown in Figure 2,
where the high-frequency band size k controls the range of
the filtered low-frequency components. The frequency mask
is designed to be a 2D matrix with elements being either 0 or
1,ie., m € {0,1}7*W which performs element-wise prod-
uct with the DCT of C-example. At each iteration step to
generate the fingerprints, the high-pass mask sets the low-
frequency components to 0, i.e., Wi, =0 ifl<i+4+j<Ek,
while keeping the rest of the high-frequency components. On
ImageNet dataset with mask size H = W = 224 (H =
W = 32 for CIFAR-10 dataset), the high-frequency band
size k = 20 leads to § x 20%/224% ~ 0.4% of the frequency
components set to 0.

By using the high-pass frequency mask, the LTRC-
example at the (¢ + 1)-th iteration step can be derived by:

x'T = HighPass{Clip (x* — a - sign(VxLossota (x",1))) },
3)
where the HighPass filter is defined as:

HighPass(-) = IDCT(FrequencyMask(DCT(+))).  (4)

4 Performance Evaluation

4.1 Implementation Details

The experiments are conducted on machines with 8 NVIDIA
GTX 1080 TI GPUs. We adopt the widely used public image
datasets and models in the literature, including CNN model
for CIFAR-10 [Krizhevsky and others, 2009] and VGG-16
[Simonyan and Zisserman, 2015] model for ImageNet [Deng
et al., 2009] datasets, respectively.

Unless specified, the same set of hyper-parameters is used
for generating C-examples on the same dataset in our experi-
ments. To control the trade-off between robustness and trans-
ferability, we set the weight perturbation bound ¢ to 0.001,
0.003, 0.005, 0.007 separately for ImageNet dataset and 0.01,
0.03, 0.05, 0.07 for CIFAR-10 dataset. For each C-examples
generation method, 100 C-examples are generated (with ran-
domly picked target labels) with a total of 500 iteration steps
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(.e,t =0,1,...,499 as in Eq. (2)). We visualize the gener-
ated C-examples on ImageNet dataset in Figure 3.

In our experiment, we use the accuracy of the C-examples
on the pruned model to indicate its robustness and the ac-
curacy on the variant model (with similar functionality to
the base model, e.g. VGG-19 model to the base VGG-
16 model) to indicate its transferabilty. Originally, the ac-
curacy of all kinds of C-examples on the base model is
100% during generation. To effectively evaluate the trade-
off between robustness of the pruned models and transfer-
ability to other variant models, we define the difference be-
tween the robustness and transferability as Uniqueness Score
(Uniqueness Score = Robustness — Transferability), where
higher Uniqueness Score means the C-examples are more ro-
bust to pruned models and less transferable to variant models.
Intuitively, a better fingerprint method should achieve higher
uniqueness score. Uniqueness Score can also be used to in-
dicate the false positive problem, i.e., if Uniqueness Score
is negative, the corresponding fingerprint method is prone to
make false model claims.

4.2 Comparative Methods

There are two works that are most relevant to our paper.
[Le Merrer et al., 2019] extracts adversarial examples to wa-
termark neural networks. Their experiment was conducted on
MNIST dataset [LeCun et al., 1998] which only contains bi-
nary images of handwritten digits. Although, the method in
[Le Merrer er al., 2019] is similar to our vanilla C-examples,
we highlight that we use random initialization instead of true
data and therefore our method is data-free. In our experi-
ments, we report the performance of the vanilla C-examples
as a baseline rather than the watermarking method [Le Merrer
et al., 2019] due to their similarity. Another work proposes
sensitive examples [He et al., 2019] from a DNN as its finger-
prints. Similar to [Le Merrer et al., 20191, its fingerprinting
also relies on adversarial examples. This paper regards all the
pruned models as compression attack and reject the pruned
models even the test accuracy degradation after pruning is
minor (e.g., 0.65%). Different from [He et al., 2019], we be-
lieve that an effective fingerprinting method should be robust
to pruned models and recognize pruned models as non-attack.
To demonstrate the robustness problem of [He er al., 2019],
we use pruned models to evaluate the robustness of sensitive
examples. With 8 sensitive samples, the Robustness (i.e., ac-
curacy on pruned models) is only 0.04%, demonstrating that
pruning is treated as illegitimate by sensitive samples, which
is unreasonable due to the wide application of DNN prun-
ing for size reduction and inference acceleration especially
on edge devices with limited resources.

4.3 Uniqueness Evaluation

We demonstrate the effectiveness of proposed C-examples,
RC-examples, LTRC-examples on different pruned models
using the base VGG-16 model on ImageNet dataset with
different pruning ratio for evaluating robustness. For test-
ing transferability to other variant models (such as VGG-
19, ResNet “Family”, DenseNet “Family”), as VGG-19 is
the most similar architecture to VGG-16 and more transfer-
able for fingerprints generated on VGG-16, we only report
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(a) Vanilla C-Example (b) RC-Example (c) RC-Example + GM  (d) LTRC-Example (k=5) (e) LTRC-Example (k=20)

Figure 3: Characteristic Examples Visualized using Different Generation Process. The label assigned to all these image is “strawberry”.
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Figure 4: Visualization of the Trade-off Curve between Transferability and Robustness. Base Model is Pruned with 40%, 60%, and 80%
Pruning Ratios.

Method 5 Base Model Transferability Uniqueness Score (%)

VGG-16 (%) to VGG-19 (%) 40% Pruned 50% Pruned 60% Pruned 70% Pruned 80% Pruned

Vanilla C-Example 0 100 47 +13 +13 +13 -5 -22

0.001 100 60 +30 +30 +23 +22 +0

RC-Example 0.003 100 88 +6 +11 +5 +2 -3

0.005 100 86 +12 +12 +12 +9 +2

0.007 100 95 +4 +4 +3 +2 +3

0.001 100 55 +34 +37 +35 +23 -7

0.003 100 67 +30 +38 +38 +21 +19

RC-Example+GM ; 05 100 85 +15 +15 +15 +15 +15

0.007 100 100 +0 +0 +0 +0 +0

0 100 16 +53 +51 +50 +23 +13

0.001 100 24 +65 +65 +65 +58 +32

LTRC-Example 0.003 100 75 +25 +25 +25 +25 +23

0.005 100 96 +4 +4 +4 +4 +3

0.007 100 98 +2 +2 +2 +2 +2

The experiment is evaluated on 100 C-examples generated from VGG-16.

Table 1: Uniqueness Score of C-examples on Implemented Models by Different Weight Pruning on the Base VGG-16 model with ImageNet
Dataset: The base model has 70.85% top 1 accuracy and 90.10% top 5 accuracy. The base model is pruned by unstructured pruning [Han
et al., 2015] with various pruning ratio, where it is pruned for 5 times at each pruning ratio with average accuracy degradation for pruning
ratio 40%, 50%, 60%, 70%, and 80% are 0.26%, 0.45%, 0.38%, 0.61%, and 0.97%, respectively. We choose one representative setting for
LTRC-examples with £ = 20. The robustness at each pruning ratio can be obtained by the summation of Uniqueness Score and transferability.

Method s Base Model Transferability Uniqueness Score (%)
VGG-16 (%) to VGG-19 (%) 40% Pruned 50% Pruned 60% Pruned 70% Pruned 80% Pruned
LTRC-Example (k = 5) 0.001 100 26 +53 +52 +62 +45 +14
LTRC-Example (k =10)) 0.001 100 31 +50 +49 +49 +38 +24
LTRC-Example (k =20) 0.001 100 24 +65 +65 +65 +58 +32
LTRC-Example (k =30) 0.001 100 28 +54 +63 +52 +52 +35

The experiment is evaluated on 100 C-examples generated from VGG-16.

Table 2: An Ablation Study of Uniqueness Score of LTRC-examples Generated with Various k Value.

the transferability on VGG-19 and omit the transferability re- We plot and visualize the trade-off curve between robust-
sults on other models such as ResNet “Family” or DenseNet  ness to the pruned models and transferability to variant mod-
“Family”. Note that the transferability to other models should  els in Figure 4, and Table 1 further summarizes the corre-
be lower than VGG-19, leading to better performance with sponding Uniqueness Score with respect to each method. For
higher uniqueness score. better comparison, we only take our best choice of £k = 20
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Method 5 Base Model Transferability to Uniqueness Score (%)
CNN-1 (%) Variant CNNs (%) 80% Pruned 90% Pruned 95% Pruned

Vanilla C-Example 0 100 68 +17 +5 -30
0.01 100 74 +26 +18 3

0.03 100 78 +22 +16 +2

RC-Example 0.05 100 94 +6 +6 +3
0.07 100 96 +4 +4 +2

0 100 59 +39 +20 3

0.01 100 64 +35 +18 9

LTR&EXf)mple 0.03 100 78 +21 +15 +1
0.05 100 80 +11 +6 9

0.07 100 83 +10 +5 -3
0 100 28 42 +40 +35
0.01 100 31 +48 +44 +38
HIREESmPIE 0.3 100 51 +49 +48 +43
0.05 100 61 +39 +36 +35
0.07 100 69 +31 +31 +30
0 100 36 +20 +19 +15
0.01 100 39 +25 +21 +17

HIREES™E 0.3 100 60 +15 +13 +9
0.05 100 71 +13 +9 +4

0.07 100 75 +12 +9 3

The experiment is evaluated on 100 examples generated from base model CNN-1.

Table 3: Uniqueness Score of C-examples on Implemented Models by Different Weight Pruning Methods on the Base model CNN-1 with
CIFAR-10 Dataset: The base model has 80.5% accuracy on test set. The base model is pruned by unstructured pruning [Han et al., 2015]
with various pruning ratio, where it is pruned for 5 times at each pruning ratio and the average accuracy degradation for pruning ratio 80%,
90%, and 95% are 0.2%, 0.2%, and 0.8%, respectively. Here we use an optimal setting for LTRC-examples with k£ = 1, 2, 3. The robustness
at each pruning ratio is reported by the summation of Uniqueness Score and the averaged accuracy of 20 variant CNN models representing

the transferability of each group of C-examples.

for LTRC-examples. More details can be found in Table 2 for
the ablation study of k value.
We summarize our findings from experiments as follows:

1. For evaluating the trade-off between robustness and
transferability, as shown in Figure 4, both RC-examples,
RC-examples+GM, and LTRC-examples clearly outper-
forms the baseline vanilla C-examples as fingerprint-
ing methods. By comparing RC-examples and RC-
examples+GM, applying GM to the input gradients can
significantly help with the fingerprinting performance
on both robustness and transferability. The proposed
LTRC-examples clearly outperforms C-examples, RC-
examples, and RC-examples+GM for all pruned models,
as LTRC-example applies both random perturbations to
the weights and high-pass filters to remove the high-
transferable low-frequency components during genera-
tion. Specifically, as the classification mainly relies on
low-frequency components, LTRC-example can signifi-
cantly decrease its transferbility to other models by ap-
plying the high-pass frequency mask.

As shown in Table 1, uniqueness scores of RC-
examples, RC-examples+GM, and LTRC-examples are
higher than that of the baseline vanilla C-examples. We
notice that C-examples suffer from negative unique-
ness scores due to their high transferability to other
models when the pruning ratios are 70% and 80%.
We can observe that LTRC-examples with § = 0.001
achieve the best uniqueness scores with relatively large
margins (about 1.9X, 2.1X, and 5X that of the RC-
examples+GM, RC-examples, and C-examples).

In general, for a given method with fixed §, the unique-
ness score decreases if the pruning ratio increases since
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larger pruning ratio degrades the test accuracy, lead-
ing to weaker model functionalities with less robust-
ness after pruning. Meanwhile, we observe that with
increasing J, there are more uncertainty in the model
with larger random perturbations, leading to more gen-
eral C-examples to incorporate larger uncertainty. Thus
they become more transferable to other variant mod-
els, resulting in increasing transferability and decreas-
ing uniqueness score. For example, for LTRC-examples
with § = 0.001, with 40% pruned model, the uniqueness
score is 65 while it becomes 2 with § = 0.007.

The above findings and observations can also applied
to CIFAR-10 dataset, where we use a CNN model (re-
ferred as CNN-1) as our base model to generate C-examples.
The CNN-1 model has 13 convolutinal layers and 3 fully-
connected layers and can achieve an accuracy of 80.5% on
test set. To test the transferability, we apply 20 variant
CNN models with an average accuracy of 80.4% on the test
set. They share the same model architecture as the base
CNN-1 model but are trained from different random initial-
ized weights. We summarize the experimental results for C-
examples on CIFAR-10 dataset in Table 3. We observe that
LTRC-examples with & = 2 and § = 0.03 achieve the best
uniqueness scores than other methods.

4.4 Ablation Study on High-frequency Band Size %

In order to investigate the effect of k value in our experiment
for LTRC-examples, we further perform ablation study on
k. Motivated by our findings in Figure 1 that low-frequency
components concentrated within the range of [0, 20], the
value k is set to 5, 10, 20, and 30. We test the effective-
ness of LTRC-examples with different k values using the best
0 = 0.001 in Table 2. More detailed results with different ¢
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Method 5 Base Model Transferability Uniqueness Score (%)
VGG-16 (%) to VGG-19 (%) 40% Pruned 50% Pruned 60% Pruned 70% Pruned 80% Pruned
0 100 21 +49 +49 +50 33 +10
0.001 100 26 +53 +52 +62 +45 +14
LTR(Ck‘IfX;mP‘e 0.003 100 68 +26 +28 +28 +26 +12
- 0.005 100 90 +8 +8 +6 +5 -4
0.007 100 93 +7 +7 +7 +7 +6
0 100 18 +48 +45 +46 +26 +10
0.001 100 31 +50 +49 +49 +38 +24
LT}?E'_ETS)TPIC 0.003 100 67 +29 +31 +31 +30 +22
= 0.005 100 90 +8 +9 +10 +10 +8
0.007 100 93 +3 +3 +4 +4 +6
0 100 16 +53 +51 +50 +23 +13
0.001 100 24 +65 +65 +65 +58 +32
LTR((lz‘f’;‘(;‘)“ple 0.003 100 75 +25 425 +25 +25 +23
- 0.005 100 96 +4 +4 +4 +4 +3
0.007 100 98 +2 +2 +2 +2 +2
0 100 18 +53 +50 +52 +19 +8
0.001 100 28 +54 +63 +52 +52 +35
LTR(E‘P’;T)HPIC 0.003 100 76 +24 +24 +24 +22 +19
= 0.005 100 98 +2 +2 +2 +2 +0
0.007 100 98 +2 +2 +2 +2 +0
The experiment is evaluated on 100 examples generated from VGG-16.
Table 4: An Ablation Study of Uniqueness Score of LTRC-examples Generated with Various &k Value.
are summarized in Table 4. _Method 0 AUC Fl-score
. . Vanilla C-Example 0 0.87 0.91
We observe that with £ = 20, LTRC-examples achieve su- 0001 094 001
perior performance in uniqueness score demonstrating better 0.003  0.96 0.91
T : RC-Example 0.005  0.98 0.95
trade-off between robustness and transferability. We notice 0007 097 0.95
that when £ increases from 5 to 20, uniqueness score in- 0.00T 097 0.05
creases, as larger k values can remove more l.ow-frequency RC-Example +GM 8.882 8.33 8.32
components of the generated examples, making them less : : :
. . 0.007 0.86 0.95
transferable to variant models. Furthermore, as we increase 0.001 1 1
k from 20 to 30, uniqueness score drops. The reason be- 0.003 1 1
. . LTRC-Example
hind is that as larger k removes more low-frequency com- 8-88?/ i i

ponents, the test accuracy of pruned models suffers from rel-
atively larger degradation, making the robustness reduction
dominant in uniqueness score decreasing.

4.5 False Alarm and Utility Analysis

We evaluate the proposed C-examples under false alarm sce-
nario, which is essential in practical usage. Given a group of
legally pruned models (test accuracy drop < 2%) and other
widely used variant models on ImageNet dataset including
VGG19 [Simonyan and Zisserman, 2015], ResNet50 [He and
et al., 2016], ResNet101, ResNet152, DenseNet121 [Huang
et al., 20171, DenseNet169, and DenseNet201, we evaluate
the effectiveness of C-examples by calculating the receiver
operating characteristic (ROC) curve of each method with
different § and report the area under the curve (AUC) and
Fl-score corresponding to each method, shown in Table 5.
For the pruned models, we test with 5 pruned models cor-
responding to pruning ratios of 40%, 50%, 60%, 70%, and
80%, respectively. We can observe that with LTRC-examples,
the AUC and F1-score both reached the ideal case of 1 with
all ¢ values, meaning with an appropriate threshold, LTRC-
examples as fingerprints won’t cause the false alarm problem
(i.e., recognize other variant models as base model). Mean-
while, we notice that incorporating enhanced robustness (RC-
examples v.s. C-examples), GM (RC-examples+GM v.s. RC-
examples) or low-transferability (LTRC-examples v.s. RC-
examples+GM) can help with false detection issues and im-
prove the AUC and F1-score.
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Table 5: False Alarm Analysis of C-examples using AUC and F1-
score. k = 20 is used for LTRC-example.

5 Conclusion

Towards achieving high-robustness and low-transferability
for fingerprinting DNNs, we design three kinds of charac-
teristic examples with increasing performance by applying
random noise to the model parameters and using a high-pass
filter to remove low-frequency components. To fairly charac-
terize the trade-off between robustness and transferability, we
propose an evaluation metric named Uniqueness Score. Ex-
tensive experiments demonstrate that the proposed methods
have superior performance in achieving high-robustness and
low-transferability than current watermarking/fingerprinting
methods.
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