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Abstract
For meshes, sharing the topology of a template is
a common and practical setting in face-, hand-,
and body-related applications. Meshes are irreg-
ular since each vertex’s neighbors are unordered
and their orientations are inconsistent with other
vertices. Previous methods use isotropic filters
or predefined local coordinate systems or learning
weighting matrices for each vertex of the template
to overcome the irregularity. Learning weighting
matrices for each vertex to soft-permute the ver-
tex’s neighbors into an implicit canonical order is
an effective way to capture the local structure of
each vertex. However, learning weighting matri-
ces for each vertex increases the parameter size lin-
early with the number of vertices and large amounts
of parameters are required for high-resolution 3D
shapes. In this paper, we learn spectral dictionary
(i.e., bases) for the weighting matrices such that the
parameter size is independent of the resolution of
3D shapes. The coefficients of the weighting matrix
bases for each vertex are learned from the spectral
features of the template’s vertex and its neighbors
in a weight-sharing manner. Comprehensive exper-
iments demonstrate that our model produces state-
of-the-art results with a much smaller model size.

1 Introduction
Convolutional operations designed for 3D meshes in deep
neural networks have drawn great attention recently. An effi-
cient and effective convolutional operation is desirable and
crucial for representation learning of meshes in many 3D
tasks, e.g., reconstruction [Tran and Liu, 2018; Gao et al.,
2020b], shape correspondence [Groueix et al., 2018], shape
synthesis and modeling [Cao et al., 2014b], face recogni-
tion [Liu et al., 2018a] and shape segmentation [Ðonlić et
al., 2017; Kalogerakis et al., 2010], and graphics applica-
tions such as virtual avatar [Cao et al., 2014a]. The success
of convolutional neural networks (CNN) in the fields where
underlying data are Euclidean structured (e.g., images, audio,
computed tomography images) has inspired many researchers
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Figure 1: Quantitative evaluation of our SDConv+ against LSA-
Conv and LSA-small [Gao et al., 2021], Spiral [Bouritsas et al.,
2019], COMA [Ranjan et al., 2018], and FeaStNet [Verma et al.,
2018] on the DFAUST dataset for latent size d = 32 with the same
network architecture, in terms of reconstruction errors, inference
time complexity, and parameter size. SDConv+ outperforms LSA-
Conv easily by increasing the channel sizes of the network while
maintaining a much smaller model size (denoted as SDConv+L).

to adopt CNN on 3D meshes. Different from Euclidean struc-
tured data, 3D meshes are non-Euclidean structured and are
usually represented as graphs in which the number and ori-
entation of each vertex’s neighbors vary from one to another
(vertex inconsistency). Thus, an effective convolutional op-
eration that is analogous to CNN meanwhile captures the
unique feature of fixed-topology meshes is important for rep-
resentation learning of meshes.

Many graph convolutional networks have been developed
to handle 3D meshes. Defferrard et al. [2016] proposed
spectral filters that are isotropic using Chebyshev expansion
(called ChebNet) based on spectral graph theory. Ranjan et
al. [2018] built convolutional mesh autoencoder (COMA)
for fixed-topology 3D meshes upon ChebNet and introduced
mesh sampling operations that enable a hierarchical represen-
tation to capture non-linear variations of human faces. How-
ever, since the convolutional filters are isotropic instead of
anisotropic, the expressiveness of ChebNet is limited com-
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pared to its CNN counterpart. Bouritsas et al. [2019] intro-
duced anisotropic filters on graph convolutions by formulat-
ing a spiral convolution operator (called SpiralNet). However,
a spiral order of local neighbors cannot resolve the inconsis-
tency between different vertices. Experiments in Table 2 of
the recent work [Gao et al., 2021] show that a randomized
order of neighbors can even achieve better results.

In this paper, we propose a spectral dictionary based con-
volutional operation (SDConv) that learns distributed repre-
sentation for each vertex. We learn a small number of weight-
ing matrices as the bases (i.e., dictionary) and linearly com-
bine these bases to construct weighting matrices for each ver-
tex. The weighting matrices are local structure-aware and can
soft-permuted each vertex’s neighbors into an implicit canon-
ical order such that conventional CNN with anisotropic filters
can be applied in a meaningful way. The coefficients of the
bases for each vertex are learned from spectral features of the
template’s vertex and its neighbors in a weight-sharing man-
ner, so that the parameter size is independent of the template
resolution. Furthermore, we introduce a skip connection (i.e.,
an MLP layer to match the output channel size) in SDConv
to further improve its performance, denoted as SDConv+.

In line with LSA-Conv [Gao et al., 2021], COMA [Ran-
jan et al., 2018], SpiralNet [Bouritsas et al., 2019], and
SpiralNet++ [Gong et al., 2019], SDConv is also designed
for fixed-topology meshes. We evaluate our approach on
two fundamental testbeds: autoencoder-based reconstruction
and 3D shape correspondence. Note that, meshes with arbi-
trary topologies can directly be handled by point-cloud based
methods [Verma et al., 2018; Li et al., 2018]. We use SD-
Conv+ to build convolutional mesh autoencoder and achieve
on par or even better results compared with LSA-Conv with
much smaller model size on two 3D shape datasets: hu-
man faces (COMA [Ranjan et al., 2018]) and human bodies
(DFAUST [Bogo et al., 2017]), as shown in Figure 1.

Our method can be viewed as a combination of global and
local methods. In contrast to global methods like COMA
[Ranjan et al., 2018] with isotropic filters or predefined local
coordinates used in SpiralNet [Bouritsas et al., 2019] using
shared model across all the vertices, SDConv personalizes the
vertex representation model to enjoy higher local flexibility.
Yet compared with the concurrent local structure-aware learn-
ing method [Gao et al., 2021] that learns all the weighting
matrices for each vertex separately, SDConv notably reduces
the model parameter size by a more compact dictionary-based
encoding scheme (see Figure 1 for comparison).

The contributions of this paper are summarized below:
1) We propose to learn distributed representation of each

mesh vertex, encoded by a spectral dictionary which is em-
bodied as an inherent component in our carefully devised
convolutional operation (SDConv) for 3D meshes. SDConv
constructs weighting matrices for each vertex from a small
number of learnable bases to soft-permute its neighbors based
on the local neighboring structure.

2) For more expressive vertex feature learning especially
for high-frequency feature, we adopt spectral features with
high-frequency information preserved, to learn the corre-
sponding coefficients of weighting matrix bases. Further-
more, an adaptive temperature for softmax is introduced to

control the ‘softness’ of the output distribution of the basis
coefficients. Meanwhile, we introduce a skip connection to
SDConv, which further improves the performance, denoted
as SDConv+.

3) Extensive experiments show that even with much
smaller model sizes, SDConv achieves on a par or even better
results compared with state-of-the-art methods for 3D shape
generations both in terms of time complexity and reconstruc-
tion accuracy. The source code has been formally released at:
https://github.com/Gaozhongpai/PaiConvMesh.

2 Related Work
Linear 3D morphable models. 3D morphable models
(3DMM) are parameterized models of 3D shapes, such as
human faces, bodies, hands, etc., and are constructed by per-
forming principal component analysis (PCA) on a training
set where 3D meshes share a common template. The widely
used 3DMM for faces [Zhu et al., 2015] was built by merging
Basel Face Model (BFM) [Paysan et al., 2009] with 200 sub-
jects in neutral expressions and FaceWarehouse [Cao et al.,
2014b] with 150 subjects in 20 different expressions. Skinned
multi-person linear model (SMPL) [Loper et al., 2015] is the
most well-known body model that represents a wide variety
of body shapes in natural human poses. MANO [Romero
et al., 2017] is a hand model that learned from around 1000
high-resolution 3D scans of human hands in a wide variety
of hand poses. Those PCA-based models are commonly used
for 3D faces, bodies, and hands reconstruction. The proposed
SDConv can be used to build a non-linear 3DMM for 3D
shapes with much higher representation power.
Graph neural networks. The popularity of extending deep
learning approaches for graph data has been rapidly growing
in recent years. ChebNet [Defferrard et al., 2016] and GCN
[Kipf and Welling, 2017] generalizes convolution to graphs
via Laplacian eigenvectors using fast localized and isotropic
filters. GraphSage [Hamilton et al., 2017] samples a fixed
number of neighbors and aggregates neighboring features for
each vertex. GAT [Veličković et al., 2018] adopts attention
mechanisms to learn the relative weights between two con-
nected vertices. MoNet [Monti et al., 2017] introduces vertex
neighboring pseudo-coordinates to assigns different weights
to the neighbors. FeaStNet [Verma et al., 2018] proposes
a graph-convolution operator that learns a weighting matrix
dynamically computed from features. LSA-Conv [Gao et al.,
2021] proposed to learn weighting matrices for each vertex
of the template to soft-permute the vertex’s neighbors so that
CNNs can be applied. Our SDConv is a concurrent work with
LSA-Conv to construct weighting matrices for each vertex.
However, instead of learning weighting matrices directly, we
adopt the idea of dictionary learning to learn distributed rep-
resentation for each vertex.
Point neural networks. Point cloud is another type of 3D
geometric data. PointCNN [Li et al., 2018] presents a method
to learn an X -transformation as a function of input points.
KPConv [Thomas et al., 2019] proposes a convolution that
takes radius neighbors as input and processes them with
weights spatially located by a set of kernel points. Instead
of calculating a weighting matrix as a function of inputs in
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FeaStNet [Verma et al., 2018], PointCNN [Li et al., 2018],
and KPConv [Thomas et al., 2019], our SDConv learns the
coefficients of weighting matrix bases for each vertex thanks
to the fixed topology of meshes which otherwise is unavail-
able in cloud data.
3D shape correspondences. 3D shape correspondence is
a fundamental task for many computer vision and computer
graphics applications, such as shape interpolation, deforma-
tion, surface completion, cross-shape texture mapping, etc.,
[Bogo et al., 2014], [Bogo et al., 2017], where geometric 3D
shapes are usually represented by triangle meshes or point
clouds. The problem can also be referred as shape registra-
tion, alignment, or matching. In line with [Groueix et al.,
2018], the 3D shape correspondence task in this paper is to
seek reliable correspondences between a 3D shape with ran-
domized vertex order (i.e., point cloud) and a common tem-
plate shape, which can be achieved by encoding the point
cloud shape to a low dimensional global feature using a point
cloud encoder and recovering the 3D shape from the global
feature to have the same topology with the template using a
mesh decoder.
Dictionary learning. Dictionary learning represents data
with a linear combination of a small number of bases from
a dictionary matrix. The coefficient vector determines how
we process the linear combination of these bases with dif-
ferent weights. Recent works have demonstrated that dictio-
nary learning can be built in deep neural networks. Liu et al.
[2018b] replaced both the fully connected layer and rectified
layer with a dictionary learning layer for scene recognition
tasks. Mahdizadehaghdam et al. [2019] learned a hierarchy
of deep dictionaries for image classification tasks. In this pa-
per, we build a spectral dictionary into the convolutional layer
for the weighting matrices that can soft-permute each vertex’s
neighbors into an implicit canonical order.

3 Preliminary
This section briefly recaps LSA-Conv [Gao et al., 2021] for
background information and the same mathematical notations
are used for consistency. A 3D mesh is represented as M =
(V ,E), where V = {1, . . . , N} is a set of vertices, N is the
number of vertices, and E ⊆ V × V is a set of edges. Vertex
has attributes X ∈ RD×N , where D is the feature dimension
(e.g., D = 3 as the 3D space coordinates). For each vertex,
N i is a set of the one-ring neighborhood of xi (including
itself, also as xi,0), where xi,j ∈ N i and (xi,0,xi,j) ∈ E .
We denote the neighbors N i = {xi,0,xi,1, . . . ,xi,|N i|−1},
where |N i| is the number of vertex’s neighbors and it varies
from one vertex to another in a graph.

For each vertex, we construct Xi = {xi,0,xi,1, . . .,
xi,K−1} ∈ RDin×K , where the first K neighbors are se-
lected if K is smaller than or equal to |N i|; otherwise zero-
padding is applied, as shown in Fig. 2. The order of each
vertex’s neighbors {xi,0,xi,1, . . . ,xi,K−1} in Xi is random
and unspecified. A learnable weighting matrix is used to soft-
permute each vertex’s neighbors, denoted as Pi ∈ RK×K .
The resampled neighbors of each vertex can be obtained by

X̃i = XiPi, (1)

where X̃i ∈ RDin×K and Pi is a trainable parameter to be
adaptive according to the geometric structure of the vertex’s
neighbors. Then conventional convolution is applied as

yi = vec(X̃i)
>W + b, (2)

where W ∈ R(Din·K)×Dout includesDout anisotropic filters,
b ∈ RDout is the bias, yi ∈ RDout is the output feature vertex
corresponding to the input vertex xi ∈ RDin , and vec(·) is a
vectorization function which converts a matrix into a column
vector. Thus, LSA-Conv is defined as

yi = f
(
vec(f(XiPi))

>W + b
)
, (3)

where f(·) is an activation function (e.g., ELU [Clevert et al.,
2015]) to introduce non-linearity.

4 Approach
Instead of directly training a local structure-aware weighting
matrix for each vertex along with the whole network, we con-
struct the weighting matrices from a small number of learn-
able bases (i.e., spectral dictionary) and the corresponding
coefficients (i.e., distributed representation) to soft-permute
each vertex’s neighbors.

4.1 Architecture Design for SDConv
LSA-Conv needs to learn weighting matrices for each vertex
of the template. For instance, when the number of vertices
is N = 5023 and the number of neighbors is K = 9, the
parameter size for the weighting matrices is N ×K ×K =
406, 863. The model size increases linearly with the number
of vertices in the ratio of K ×K.

This paper introduces a spectral dictionary method that
can significantly reduce the parameter number of LSA-Conv.
Learning the weighting matrix for each vertex is unnecessary
since the geometric shapes of many vertices are similar to
each other. The weighting matrices for all the vertices fall
into a small subspace and can be constructed by linear com-
binations of the low dimensional dictionary (i.e., bases). For
meshes withN vertices, we denote P ∈ RN×K×K for all the
weighting matrices that can be factorized as follows,

P = RD, (4)

where D ∈ RB×K×K is the B-dimensional dictionary of
weighting matrices, R = {r0, r1, . . ., rN−1} ∈ RN×B is the
distributed representation (i.e., coefficients) corresponding to
the N vertices (subject to B � N , e.g., N = 5023, B = 8).

The coefficients ri ∈ RB for each vertex are learned from
spectral features of the vertex and its neighbors in a weight-
sharing manner, as illustrated in Fig. 2. First, we calculate
each vertex’s feature of the template as

vi,j = {ti,0 ⊕ (ti,0 − ti,j)⊕ ‖ti,0 − ti,j‖}, (5)
vi = {vi,0 ⊕ vi,1 ⊕ · · · ⊕ vi,K−1}, (6)

where vi,j ∈ R7 and vi ∈ R7·K , ti,j ∈ R3 is the ith ver-
tex’s jth neighbor of the template, ⊕ is the concatenation op-
eration, and ‖ · ‖ calculates the Euclidean distance between
the neighbors and the center point. Then, spectral feature
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Figure 2: Spectral dictionary convolutional operation (SDConv). {xi,0,xi,1, . . . ,xi,5} ⊆N i are the one-ring neighborhood of xi (including
itself). We construct Xi = {xi,0,xi,1, . . . ,xi,K−1} ∈ RDin×K whereK is a predefined neighbor size. vi = {vi,0⊕vi,1⊕. . .⊕vi,K−1} ∈
RK∗7 is the template vertex feature, followed by a spectral feature mapping function λ(vi). Instead of learning weighting matrices for each
vertex, we define B learnable weighting matrices as the bases, D ∈ RB×K×K , and each node’s corresponding coefficients, ri ∈ RB ,
which learns from the spectral features. At last, we construct the weighting matrix for each vertex as Pi = riD to soft-permute the vertex’s
neighbors, which is followed by a conventional convolution operation.

mapping technique is applied to learn high-frequency func-
tions. Spectral feature mapping function λ is used to featurize
the vertex feature before passing them through a coordinate-
based MLP. The function λ maps the vertex feature vi to the
surface of a higher dimensional hypersphere with a set of si-
nusoids as:

λ(vi) = {cos(2πviB)⊕ sin(2πviB)}, (7)

where B ∈ R7·K×M is a fixed random mapping matrix and
2 ·M is the dimension of the mapped spectral features. At
last, the corresponding coefficients are obtained by encoding
the spectral features as,

ri = g(MLP (λ(vi))), (8)
where g(·) is softmax with adaptive temperature, which is
described in Section 4.2. Instead of directly learning the cor-
responding coefficients ri as model parameters in [Gao et
al., 2021], we only need to learn a small number of sharing
weights (i.e., 2·M×B for a MLP layer) from the spectral fea-
tures of each vertex and its neighbors across all the template’s
vertices. Thus, SDConv can be expressed as,

yi = f
(
vec(f(Xi · ri ·D))>W + b

)
. (9)

SDConv reduces the parameter size significantly. For in-
stance, whenB = 8,K = 9, andM = 32, the parameter size
for the weighting matrices isB×K×K+2·M×B = 1, 160
compared toN×K×K = 406, 863 for LSA-Conv. Further-
more, a skip connection is added, and the enhanced model is
denoted as SDConv+.
yi = f

(
vec(f(Xi · ri ·D))>W + b

)
+MLP (xi), (10)

where MLP (xi) is the skip connection that matches the in-
put channel to the output channel.

4.2 Adaptive Temperature for Softmax
In Eq. 8, the distributed representation (i.e., coefficients) of
the dictionary ri is produced by using a softmax layer g(·) as,

ri,j = g(zi,j) =
exp(zi,j/T )∑B−1

k=0 exp(zi,k/T )
, (11)

where zi = MLP (λ(vi)) and T is a hyperparameter named
temperature. Using a higher value for T produces a softer
probability distribution over the B bases. In this paper, we
learns the temperature from the spectral features of the vertex
and its neighbors so that the ‘softness’ of the output distri-
butions is adaptive to the local structure of the vertex. The
adaptive temperature is expressed as,

Ti = s(MLP (λ(vi))) · (0.1− 1.0/F ) + 1.0/F, (12)

where s(·) is Sigmoid function and F is set to 100 such that
Ti ∈ [0.01, 0.1]. Since Ti is smaller than 1, the output dis-
tributed representation can be more close to binary values
than that of the vanilla softmax. This is similar to the meaning
of sparse representation.

5 Experiments and Evaluation
We first evaluate the proposed method on two different 3D
shape datasets in two tasks: autoencoder-based reconstruc-
tion and 3D shape correspondence. For autoencoder-based
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Figure 3: Architecture of the autoencoder-based reconstruction task as the testbed. N is the number of vertices. Conv layer can be COMA,
Spiral, LSA-Conv, LSA-small, SDConv, or SDConv+ for comparison. For the 3D correspondence task, the conv layers in the encoder are
replaced with PAI-Conv [Gao et al., 2020a] — a point convolutional operation.

reconstruction, the input is 3D meshes with fixed topology.
For the task of 3D shape correspondence, the input is point
clouds with randomized vertex order. Then, ablation tests are
conducted to demonstrate the effectiveness of SDConv.

5.1 Protocol
Datasets. In line with [Gao et al., 2021], we evaluate our
model on two datasets: COMA [Ranjan et al., 2018] and
DFAUST [Bogo et al., 2017]. COMA is a human facial
dataset that consists of 12 classes of extreme expressions
from 12 different subjects. The dataset contains 20,466 3D
meshes that were registered to a common reference template
with 5,023 vertices. DFAUST is a human body dataset that
collects over 40,000 real meshes, capturing 129 dynamic per-
formances from 10 subjects. The meshes were also registered
to a common reference topology that has 6,890 vertices. Both
two datasets are split into training and test set with a ratio of
9:1 and randomly select 100 samples from the training set for
validation. All of the 3D meshes are standardized to have a
mean of 0 and standard deviation of 1 to speed up the training.

Training. We use Adam [Kingma and Ba, 2014] optimizer
with a learning rate of 0.001 and reduce the learning rate with
a decay rate of 0.99 in every epoch. The batch size is 32
and the total epoch number is 300. Weight decay regulariza-
tion is used for the network parameters except for the spectral
dictionary of weighting matrices. We initialize the weighting
matrix bases with identity matrix according to the experiment
in Table 2 of [Gao et al., 2021]. We compare different con-
volutional operations that are implemented in PyTorch on the
same machine with an AMD 3700X @3.6GHz CPU and an
NVIDIA RTX2080Ti GPU.

Architecture of autoencoder. We adopt the network archi-
tecture from [Gao et al., 2021] and the conv layer can be
SDConv, LSA-Conv, Spiral, and COMA for the correspond-
ing methods. The network is an encoder-decoder architecture
with a latent vector in the middle, as shown in Figure 3. First,
the encoder has four conv layers with downsampling. The
conv layers have channel sizes of [3, 16, 32, 64, 128] and
meshes are downsampled with ratios of [4, 4, 4, 4]. Then, a
fully connected layer outputs the latent vector that represents
the 3D mesh. The decoder has five conv layers with upsam-
pling. The conv layers have channel sizes of [128, 64, 32, 32,
16, 3] and meshes are upsampled with ratios of [4, 4, 4, 4, 1].
At last, the decoder outputs the reconstructed 3D mesh.

Figure 4: Evaluation of SDConv against peer methods: LSA-Conv,
COMA, and Spiral on the test sets of DFAUST and COMA.

Architecture of 3D shape correspondence. We only re-
place the conv layer of the encoder in Figure 3 with PAI-Conv
[Gao et al., 2020a] that is designed for point clouds. The ran-
dom sampling method is used to downsample point clouds.

5.2 Task I: Autoencoder-based Reconstruction
For the reconstruction task, we compare three existing meth-
ods: LSA-Conv [Gao et al., 2021], COMA [Ranjan et al.,
2018], and Spiral [Bouritsas et al., 2019] on different dimen-
sionalities of the latent space: 8, 16, 32, 64, and 128 with the
same architecture for a fair comparison. As shown in Figure
4, the proposed SDConv achieves the smallest reconstruction
errors compared to COMA and Spiral on both COMA and
DFAUST datasets for different dimensionalities of the latent
space. Compared with LSA-Conv, SDConv has larger recon-
struction errors but with much smaller model parameter sizes.

To enhance SDConv, we add a skip connection, denoted
as SDConv+ in Eq. 10. As shown in Table 1, given the
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Figure 5: Quantitative evaluation of our SDConv+L (see Figure 1
for the corresponding quantitative results) against LSA-Conv [Gao
et al., 2021], Spiral [Bouritsas et al., 2019], COMA [Ranjan et al.,
2018], FeaStNet [Verma et al., 2018] and PCA on the DFAUST
dataset when the latent size is d = 32.

same architecture, SDConv+ outperforms COMA, Spiral, and
LSA-small notably. Compared with LSA-Conv, SDConv+
has larger reconstruction errors but with much smaller pa-
rameter size. Especially compared with LSA-small — the pa-
rameter reduction method proposed by LSA-Conv, SDConv+
achieves better results and has much smaller parameter size.
In Figure 5, we qualitatively compare the reconstruction er-
rors of four examples from the test sets of DFAUST datasets
when the latent size is d = 32. SDConv+ achieves much
better visual quality than other methods. The corresponding
quantitative results are presented in Figure 1.

For a fair comparison, we adjust the channel sizes of each
method to have around the same parameter size. SDConv+
achieves the best results compared with COMA, Spiral, and
LSA-small. As presented in Figure 1, in terms of time com-
plexity, SDConv+ is on par with LSA-Conv and Spiral and
more efficient than COMA and FeaStNet. In terms of re-
construction accuracy, SDConv+ can even outperform LSA-
Conv while maintaining a much smaller model size.

5.3 Task 2: 3D Shape Correspondence
For 3D shape correspondence, we extract the global feature
of a 3D shape with randomized vertex order using PAI-Conv
[Gao et al., 2020a] which is a convolutional operation de-
signed for point clouds. To compare the expressiveness of
different mesh convolutional operations, we recover the 3D
shape from the global feature to have the same topology with
the template using decoders built by these convolutional op-

DFAUST COMA
L2(mm) parm # L2(mm) parm #

PCA 9.977 661K 0.210 482K

same architecture
COMA 5.238 361K 0.248 303K
Spiral 5.258 446K 0.227 414K
LSA-Conv 3.492 2,478K 0.117 1,867K
LSA-small 4.569 1,263K 0.176 986K
SDConv+ (ours) 3.884 518K 0.159 459K

around same # of parm
COMA (v2) 5.110 658K 0.198 532K
Spiral (v2) 4.667 647K 0.193 533K
LSA-small (v2) 4.544 644K 0.179 532K
SDConv+ (v2) 3.673 643K 0.148 531K

encoder channels decoder channels

COMA (v2) [3, 64, 96, 112, 128] [128, 112, 96, 96, 64, 3]
Spiral (v2) [3, 32, 64, 64, 128] [128, 110, 64, 64, 32, 3]
LSA-small (v2) [3, 16, 32, 64, 128] [128, 64, 32, 32, 16, 3]
SDConv+ (v2) [3, 32, 45, 80, 128] [128, 80, 64, 45, 32, 3]

Table 1: Comparison of reconstruction errors for the models of
COMA, Spiral, LSA-Conv, LSA-small, and SDConv+ when latent
size d = 32. LSA-small is a parameter-reduced version of LSA-
Conv. The weighting matrix bases B = 32 for LSA-small and SD-
Conv+. For a fair comparison, we increase the channel sizes for
COMA (v2), Spiral (v2), SDConv+ (v2) to have around the same
parameter size with LSA-small (v2) when B = 8, as listed above.

DFAUST COMA
L2(mm) parm # L2(mm) parm #

COMA 20.564 475K 0.341 417K
Spiral 21.398 475K 0.341 417K
LSA-small 17.085 607K 0.312 514K
SDConv+ (ours) 16.478 521K 0.294 463K

Table 2: Comparison of 3D correspondence errors of COMA, Spiral,
LSA-small, and SDConv+ when latent size d = 32.

erations. We compare our SDConv+ with COMA, Spiral, and
LSA-small. As shown in Table 2, SDConv+ achieves the best
results, which indicates that SDConv+ has the best represen-
tation power to generate 3D shapes. The decoder built by
SDConv+ can also be used in 3D shape reconstruction from
images and other applications for shape generation.

5.4 Ablation Study
The activation function in Eq. 12 is important to calculate the
coefficients of the weighting matrix dictionary (i.e., bases).
As shown in Table 3, when using vanilla softmax, the re-
construction errors increase largely for both datasets. When
using sparsemax, the reconstruction errors are smaller com-
pared to vanilla softmax but are larger than the full model that
uses adaptive temperature softmax. Since the temperature of
softmax is learned from the spectral features of each vertex
and its neighbors, the temperature is adaptive to best optimize
the ‘softness’ of the output distribution for the coefficients of
the weighting matrix dictionary.
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DFAUST (mm) COMA (mm)

Full model 3.884 0.159
w/ vanilla softmax 4.611 0.175
w/ sparsemax 4.157 0.164
w/o spectral filter 4.387 0.183
w/o skip connection 4.202 0.165

Table 3: Ablation tests of SDConv+ with the latent size d = 32 and
number of weighting matrix bases B = 32.

Figure 6: Comparison of numbers of weighting matrix bases for
SDConv on DFAUST when latent size d = 32. Blue denotes recon-
struction error and orange represents model parameter size.

To learn the encoding coefficients, we map the vertex fea-
ture to the spectral feature (Eq. 7) that helps preserve high-
frequency information. When without the spectral feature
mapping function, reconstruction errors increase in both two
datasets. Thus, the spectral feature mapping technique can
improve regressing the coefficients of the weighting matrix
dictionary.

An MLP-based skip connection is added to improve the
performance. Without the skip connection, the reconstruction
errors increase in both two datasets. The MLP-based skip
connection help the model avoid gradient vanishing problem
and put more weight on each vertex than its neighbors.

We further investigate the effect of weighting matrix basis
size, B, as shown in Figure 6. When we increase the ba-
sis size, the reconstruction error decreases and model size in-
creases. In practice, we can choose a basis size for weighting
matrices to balance the tradeoff between the reconstruction
accuracy and model size.

6 Conclusion
We have proposed a spectral dictionary based convolutional
neural network (SDConv) and SDConv+ (with a skip connec-
tion) for mesh representation learning and demonstrate their
performance on 3D shape generation tasks. We adopt the
learnable adaptive-temperature softmax and spectral feature
mapping functions to regress the coefficients of the weighting
matrix bases (i.e., spectral dictionary) for each vertex. The
weighting matrices are constructed by the linear combina-
tion of the bases in a weight-sharing manner to soft-permute
each vertex’s neighbors. Then, a conventional CNN with
anisotropic filters is applied.

Compared with methods with either isotropic filters or pre-

defined local coordinate systems, our SDConv+ enjoys much
higher representation power. Compared with methods that
learn weighting matrices directly, SDConv+ achieves com-
petitive or even better results with much smaller model sizes
and can be used for applications that involve high-resolution
3D shapes and require high geometric details.
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