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Abstract
The feedback mechanism in the human visual
system extracts high-level semantics from noisy
scenes. It then guides low-level noise removal,
which has not been fully explored in image denois-
ing networks based on deep learning. The com-
monly used fully-supervised network optimizes pa-
rameters through paired training data. However,
unpaired images without noise-free labels are ubiq-
uitous in the real world. Therefore, we proposed
a multi-scale selective feedback network (MSFN)
with dual loss. We allow shallow layers to access
valuable contextual information from the following
deep layers selectively between two adjacent time
steps. Iterative refinement mechanism can remove
complex noise from coarse to fine. The dual re-
gression is designed to reconstruct noisy images to
establish closed-loop supervision that is training-
friendly for unpaired data. We use the dual loss
to optimize the primary clean-to-noisy task and the
dual noisy-to-clean task simultaneously. Extensive
experiments prove that our method achieves state-
of-the-art results and shows better adaptability on
real-world images than the existing methods.

1 Introduction
There are complex unknown noises during processing, stor-
age, and transmission in the real-world image acquisition sys-
tem. The complicated electrical noise overwhelms the image
details and causes the image quality to deteriorate. Most of
the existing denoising methods are based on known synthe-
sized noise and often have poor performance in real-world
images [Kim et al.2020, Anwar and Barnes2019].

Known noisy images have infinite noisy-to-clean mappings
in the solution space, making image denoising an ill-posed
task. Deep learning networks can learn complex end-to-
end mappings and have been widely used in image denois-
ing tasks [Zhang et al.2018, Zhang et al.2020]. The recur-
sive structure deepens the network and increases the recep-
tive field [Tai et al.2017, Liu et al.2018]. Although residual
learning alleviates the disappearance of gradients and accel-
erates the optimization of loss [Zhang et al.2019, Zhang et
∗Contact Author

(a) Feedback Mechanism (b) Dual Loss
Figure 1: Schematic diagram of selective multi-scale feedback
mechanism and dual learning. (a) The principle of our MSFB
scheme unfolding in time. The ”S” on the feedback loop repre-
sents the selective mechanism. (b) Dual regression training scheme,
which contains a primal regression task for denoising and a dual re-
gression task to project clean images back to noisy images.

al.2020], too many skip connections reuse destructive noise
information. The bottom layer cannot access valuable con-
textual information. A feed-forward network that only per-
forms one-step prediction has poor fitting ability to complex
noise. The feedback mechanism is widespread in the human
visual system and has been widely used in high-level com-
puter vision tasks. The top-down structure forces the shal-
low units to carry high-level semantic information and, in
turn, guides noise removal. Single-to-single and multiple-to-
multiple feedback structures have been explored for image
super-resolution [Li et al.2019b, Li et al.2019a] tasks but are
rarely used for image denoising. Severely degraded images
put forward higher requirements on pixel prediction. Image
denoising needs to balance valuable high-level semantic in-
formation with accurate low-level image details.

It is difficult for a single-stage supervised image denois-
ing network to find the best mapping from noise to clean in
the infinite solution space. The two-stage methods for image
denoising include noise estimation and removal. But the two-
step structure increases network complexity and accumulates
errors inevitably. In network optimization, most end-to-end
networks strive to minimize the difference between clean la-
bels and the predicted images. However, it is challenging to
predict complex degradation with only one-step supervision
in the clean domain. Due to the lack of noise-free labels,
many unpaired real-world noise images that are easily avail-
able cannot participate in general fully-supervised training,
which limits network performance and adaptability to real
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noise. Networks that rely excessively on high-quality images
are likely to overfit the synthetic noise. Dual learning [He
et al.2016] uses closed-loop dual tasks to optimize the net-
work. Adding additional supervision in the noise domain
can make the network more robust to various noise. Some
methods used for high-level tasks such as CycleGAN [Zhu et
al.2017] and DualGAN [Yi et al.2017] discard a large number
of task-independent image details, so they cannot be directly
transferred to the image-to-image denoising task.

We design a novel multi-scale selective feedback network
(MSFN) with the dual loss for real image denoising based on
the above discussion. The commonly used one-step predic-
tion is replaced by a multi-level iterative prediction, which
guides image restoration from coarse to fine adaptively. As
shown in Fig. 1(a), the multi-scale selective feedback block
(MSFB) is unfolded in time. We count each iteration into the
total loss to ensure that the hidden unit to be fed back con-
tains reliable high-level functions. Using too many high-level
semantic features will overwhelm the original low-level infor-
mation. The selective feedback mechanism is proposed to an-
alyze principal feature components. We reduce feature redun-
dancy through principal component analysis (PCA), which
captures the most representative information. The multi-
scale selective block (MSB) integrates multi-scale features
for changing receptive fields dynamically. The step-by-step
learning strategy is proven to be more suitable for fitting var-
ious real-world degradations accurately.

As shown in Fig. 1(b), we decompose the noise removal
task into closed-loop dual tasks. The primary task predicts
noise-free images Ŷ from the noise image X , and the dual
regression task restores the original noise image X̂ from Ŷ re-
versely. We introduce a weighting mechanism to design dual
loss to guide network optimization. The closed-loop dual-
domain supervision can reduce the solution space and allevi-
ate the model’s excessive dependence on clean images. For
paired data, there is a complete dual loss. For unpaired data,
the loss function only includes supervision in the noise do-
main. Unpaired real-world images can directly participate in
network training. We can expand diversified noise types in
the training set freely and effectively, which reduces the risk
of network overfitting to a specific noise level. In summary,
our contribution has the following three points:

• The proposed MSFN allows shallow layers to access
valuable information from the following deep layers se-
lectively. Combining bottom-up multi-level intermedi-
ate supervision and the top-down feedback mechanism
can remove complex noise from coarse to fine.

• We design a dual weighted loss combining clean-to-
noisy and noisy-to-clean tasks. The closed-loop multi-
domain supervision is easier to learn the best mapping
in an infinite solution space. Dual loss can perform end-
to-end training on unpaired data, which has better gen-
eralization and adaptability to real-world noise images.

• Dual loss and feedback learning strategies can be
adapted to different denoising tasks, including complex
degraded and unsupervised images. Extensive experi-
ments prove that our proposed network achieved the best
denoising performance in multiple synthetic noise im-
ages and paired or unpaired real-world noise images.

0t = 1t = 2t = 3t = 4t =

Figure 2: Visualization of noise removal from coarse to fine.

2 Proposed Method
2.1 Overall Network Architecture
The feedback network contains two essential elements: it-
erability and the reverse connection from deep to shallow.
As shown in Fig. 3(a), we designed the multi-scale selection
block (MSB) to extract features with multiple receptive fields
and the selective feedback module (SFM) to capture valuable
deep features to assist shallow denoising adaptively. Our pro-
posed multi-scale selective feedback network (MSFN) can be
expanded into an independent convolutional neural network
with T iterations. We train two regression tasks in the noise
domain and the clean domain jointly at each time step.

We define the input image of each iteration in MSFN as
Inoisy. Firstly, we use two convolutional layers with convolu-
tion kernel sizes of 3×3 and 1×1 to extract the initial shallow
feature F t

N,0, which can be expressed as:

F t
N,0 = MSFE(Inoisy), (1)

where MSFE(·) represents the shallow feature extraction
(SFE) function. After that, the initial feature is transferred to
the recurrent structure that contains the stacked MSBs. The
MSB fuses multi-scale information by changing receptive
fields and selects useful features for image denoising adap-
tively and dynamically. The MSB is detailed in Section 2.3.

As shown in Fig. 3(a), when t = 0, there is no high-level in-
formation fed back from the previous step. The feed-forward
shallow layers access useful information from the following
layers when 0 < t ≤ T . Assuming that the number of stacked
MSBs in the feed-forward network is B, then the feature F t

N,B
output by the last MSB in each time step is expressed as:

F t
N,B = MMSFB(F t

N,0), (2)

where MMSFB(·) is the function that combines B MSBs and
M SFMs. The principal components of high-level features
from the previous time step are fused with the shallow fea-
tures adaptively. Dynamically aggregated context allows top-
down and bottom-up real-time knowledge exchange.

At the end of each time step, the reconstruction function
is defined as MR(·), which includes two convolutional layers
and a residual skip connection. The final output of our de-
noised image in the t− th iteration can be expressed as:

It
clean = MR(F t

N,B)+ Inoisy. (3)

We visualize the iterative restoration process in Fig. 2. The
structural edges and textures are refined step by step, prov-
ing that the feedback hierarchical learning strategy can re-
construct high-quality details from coarse to fine.

In each time step, we design a dual regression task to con-
strain the pixel prediction further. As shown by the red arrows
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(a) The overall architecture of MSFN
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(b) Selective Feedback Module
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Figure 3: The framework of the multi-scale selective feedback network (MSFN) and the implementation details of internal components.

in Fig. 3(a), the reverse degradation model (DM) generates
noisy correspondences to the predicted images at each time
step. As shown in Fig. 3(d), the DM is composed of stacked
degradation blocks (DB). The DM function MDM(·) remaps
the clean image to the image Înoisy in the noise domain. The
degradation process of the t-th iteration is defined as:

Ît
noisy = MDM(It

clean), (4)

MDM(It
clean) = Mk

DB(M
k−1
DB (. . .M1

DB(I
t
clean) . . .)), (5)

where MDB(·) represents the DB, and the convolution kernel
sizes of the convolutional layer are 3× 3, 3× 3, and 1× 1,
respectively, and the activation layer LeakyReLU follows the
first convolutional layer. We set k = 8 and the DM output
degraded noisy image predicted by the dual regression task.

In the primary regression, we get T predicted noise-free
images. Simultaneously, other T noise images are restored
by dual regression tasks. We design a novel asymmetric dual
loss to optimize the dual model jointly. As shown in Fig. 3(a),
the dual loss is weighted by Lossprimal in the clean domain
and Lossdual in the noisy domain, which can be defined as:

L(θ) =
1
T

T

∑
t=1

[λ1
∥∥IGT − It

clean

∥∥
1︸ ︷︷ ︸

Lossprimal

+λ2
∥∥Inoisy− Ît

noisy
∥∥

1︸ ︷︷ ︸
Lossdual

], (6)

where θ represents all the learnable parameter in MSFN. IGT
stands for ground truth (GT). It

clean and Ît
noisy represent the

predicted clean image and predicted noisy image in the t-th
step, respectively. The adaptive weighting with λ1 and λ2 can
guide the task optimization with attention. For unpaired real-
world noisy images without clean labels, λ1 is set to 0.

2.2 Selective Feedback Module
Integration of all unprocessed high-level feedback will bring
information redundancy, which will overwhelm the original
shallow features. We improved the multi-level feedback and
showed the internal implementation details in Fig 3(b).

Firstly, we use the selective mechanism (SM) to ana-
lyze the principal feature components. The correlated high-
dimensional features are transformed into mutually indepen-
dent low-dimensional information. We perform principal
component analysis (PCA) on the fused features. We decom-
pose the singular value of the feature X ∈ R(h×w)×c as:

X = U(h×w)×(h×w)Λ(h×w)×cVT
c×c,

X̂ = Û(h×w)×(h×w)Λ̂(h×w)×(c/r)V̂T
(c/r)×(c/r),

X̂ ≈ X ,

(7)

where X̂ ∈ R(h×w)×c/r. For the t-th iteration, the selected
potential clean feature F t

C,b to be fed back is expressed as:

F t
C,b = MPCA([F t−1

N,b , · · · ,F t−1
N,B−1,F

t−1
N,B ]), (8)

where F t−1
N,b , · · · ,F t−1

N,B−1,F
t−1
N,B is the high-level feedback

features from different depths. The number of feedback
branches is defined as m, ie.m= B−b. These high-level com-
ponents are concatnated into a whole in the channel direction.

For the b-th MSB, we fuse the feedback feature F t
C,b and

feed-forward feature F t
N,b−1 by the fusion block (FB) as:

F t
S,b = MFB([F t

N,b−1,F
t

C,b]), (9)

where the F t
S,b is the refined low-level features.
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Figure 4: Visual comparisons between MSFN and other state-of-the-art denoising methods on the SIDD benchmark.

Method Kodak24 BSD68 Urban100
10 30 50 70 10 30 50 70 10 30 50 70

CBM3D [Dabov et al.2007] 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31
TNRD [Chen and Pock2017] 34.33 28.83 27.17 24.94 33.36 27.64 25.96 23.83 33.60 27.40 25.52 22.63
RED [Mao et al.2016] 34.91 29.71 27.62 26.36 33.89 28.46 26.35 25.09 34.59 29.02 26.40 24.74
DnCNN [Zhang et al.2017a] 36.98 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17
MemNet [Tai et al.2017] N/A 29.67 27.65 26.40 N/A 28.39 26.33 25.08 N/A 28.93 26.53 24.93
IRCNN [Zhang et al.2017b] 36.70 31.24 28.93 N/A 36.06 30.22 27.86 N/A 35.81 30.28 27.69 N/A
FFDNet [Zhang et al.2017c] 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39
RNAN [Zhang et al.2019] 37.24 31.86 29.58 28.16 36.43 30.63 28.27 26.83 36.59 31.50 29.08 27.45
MSFN (Ours) 37.49 32.08 29.81 28.38 36.66 30.84 28.52 27.17 36.95 31.93 29.63 27.98

Table 1: Quantitative results about color image denoising. Best results are highlighted.

2.3 Multi-scale Selective Block
The changing receptive field brings more contextual informa-
tion. We design a selective mechanism to adjust the self-
attention of the multi-scale feature. As shown in Fig 3(c),
the MSB extracts features through three convolutional lay-
ers with different convolution kernels and aggregates multiple
branches according to the significance dynamically.

Specifically, the MSB contains three branches with convo-
lution kernels of 3× 3, 5× 5, and 7× 7. For the b-th MSB,
the multi-scale information of feature F t

S,b is described as:

f3 = Mt
3×3(F

t
S,b), (10)

f5 = Mt
5×5(F

t
S,b), (11)

f7 = Mt
7×7(F

t
S,b), (12)

where f3, f5, and f7 are the outputs of each path.
We use the global average pooling and LeakyReLU acti-

vation function to squeeze and excite the fused feature. The
output global feature descriptor F t

f ,b is:

F t
f ,b = MGAP(Mt

1×1(LeakyReLU( f3 + f5 + f7)). (13)
The self-attention mapping (SAM) recalibrates the correla-

tion of each branch. The fuction MSAM includes convolution
and the softmax regression to map the descriptor as:

[a3,a5,a7] = MSAM(F t
f ,b), (14)

where a3, a5, and a7 are the attention vectors. The valuable
and representative information at each scale is remapped as:

F t
N,b = f3a3 + f5a5 + f7a7. (15)

The multi-scale features are selected and gathered for crit-
ical cross-layer and cross-scale information interaction.

3 Experiments
3.1 Datasets
Synthetic Noisy Images. The DIV2K [Timofte et al.2017]
and Flickr2K [Lim et al.2017] datasets are used to generate
synthetic noise images. There are 3100 images used for train-
ing and 350 images for verification. We add white Gaussian
noise with levels of σ = 10,30,50,70 for paired data. We will
evaluate the trained network on common benchmark datasets,
including BSD68, Kodak24, and Urban100.
Real Noisy Images. The real-world noise images come
from the SIDD [Abdelhamed and Lin2018]. Specifically,
SIDD includes 10 static scenes of 5 smartphones with dif-
ferent shooting pipeline settings, which are under different
lighting conditions. The SIDD-Medium dataset that we used
consists of 320 image pairs. We additionally use three other
public real-world noise data sets for model testing, including
PolyU [Xu et al.2018a], Nam [Nam et al.2016], and Darm-
stadt Noise Dataset (DND) [Plotz and Roth2017]. The un-
paired data used for adaptive training come from the SIDD-
Full dataset 1. To verify the proposed noise domain supervi-
sion effectiveness, we select 200 images that do not overlap
with the original training set. It should be noted that unpaired
data do not use clean reference images in the training process.

1https://www.eecs.yorku.ca/ kamel/sidd/dataset.php
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Method SIDD DND
DnCNN-B [Zhang et al.2017a] 23.66 / 0.583 32.43 / 0.790
FFDNet+ [Zhang et al.2017c] - / - 37.61 / 0.942
CBDNet [Guo et al.2019] 33.28 / 0.868 38.06 / 0.942
RIDNet [Anwar and Barnes2019] 38.71 / 0.914 39.26 / 0.953
VDN [Yue et al.2019] 39.23 / 0.955 39.38 / 0.952
AINDNet [Kim et al.2020] 39.15 / 0.955 39.53 / 0.956
MIRNet [Zamir et al.2020] 39.72 / 0.959 39.88 / 0.956
MSFN (Ours) 39.98 / 0.973 40.01/ 0.963
MSFN-U (Ours) 40.12 / 0.974 40.12/ 0.965

Table 2: Quantitative comparison on SSID and DND.
Method PolyU Nam
DnCNN−B [Zhang et al.2017a] 34.68 / 0.874 34.95 / 0.885
NC [Lebrun and Colom2015] 36.84 / 0.936 37.69 / 0.952
MCWNNM [Xu et al.2017] 37.72 / 0.945 37.84 / 0.956
RDN [Zhang et al.2020] 37.94 / 0.946 38.16 / 0.956
FFDNet+ [Zhang et al.2017c] 38.17 / 0.951 38.81 / 0.957
TWSC [Xu et al.2018b] 38.68 / 0.958 38.96 / 0.962
CBDNet [Guo et al.2019] 38.74 / 0.961 39.08 / 0.969
RIDNet [Anwar and Barnes2019] 38.86 / 0.962 39.20 / 0.973
VDN [Yue et al.2019] 39.04 / 0.965 39.68 / 0.976
MSFN (Ours) 40.68 / 0.977 40.81 / 0.985
MSFN-U (Ours) 40.79 / 0.978 40.95 / 0.987

Table 3: Quantitative comparison on PolyU and Nam.

3.2 Implementation Details
The MSFN has 30 MSBs and 4 SFMs in the sub-network at
each time step. We set unfolded time steps as T = 4. We set
up a multiple-to-multiple feedback connection (m = 4). The
reduction factor r in PCA is 16, and the DM has 8 DBs. The
weighting coefficients in dual loss are {λ1 = 0.9,λ2 = 0.1}.
In the synthetic datasets, 16 patches cropped to 96×96 form
a training batch, while in the real-world datasets, the setting is
32 patches that cropped to 128×128. The number of feature
channels is 64, except for the input and output layer. We set
the initial learning rate as 1×10−4 and use the ADAM opti-
mization method with parameter {β1 = 0.9,β2 = 0.999,ε =
10−8}. All models are implemented in PyTorch and trained
on NVIDIA GeForce RTX 2080 Ti GPU.

3.3 Comparisons with Other Methods
We perform qualitative and quantitative comparisons on the
standard benchmarks. The metrics are peak signal-to-noise
ratio (PSNR) and structural similarity index metric (SSIM).

Quantitative Comparison
Synthetic Noise. We evaluate different methods including
CBM3D [Dabov et al.2007], TNRD [Chen and Pock2017],
RED [Mao et al.2016], DnCNN [Zhang et al.2017a], Mem-
Net [Tai et al.2017], IRCNN [Zhang et al.2017b], FFD-
Net [Zhang et al.2017c], and RNAN [Zhang et al.2019]. The
quantitative and qualitative comparison results of all methods
on the three benchmark data sets of Kodak24, BSD68, and
Urban100 are shown in Tab. 1. The proposed MSFN achieves
the best performance on all noise levels and all benchmark
datasets, which increases the highest PSNR by more than 0.2
dB. Our method shows superiority on severely degraded im-
ages with a noise level of σ = 70. On the Urban100 dataset,
MSFN increases the highest PSNR from 27.45 dB to 27.98
dB. The iterative feedback mechanism reduces the difficulty
of training and accelerates convergence step by step.

Figure 5: Visual comparison with noise level σ = 50 on BSD68.

Figure 6: Denoising examples from DND testing set.

Real-World Noise. We compare the performance of nine
real-world denoising methods on PolyU and Nam, and seven
methods on SIDD and DND, including DnCNN-B [Zhang
et al.2017a], Noise Clinic (NC) [Lebrun and Colom2015],
MCWNNM [Xu et al.2017], RDN [Zhang et al.2020], FFD-
Net+ [Zhang et al.2017c], TWSC [Xu et al.2018b], CBD-
Net [Guo et al.2019], RIDNet [Anwar and Barnes2019],
VDN [Yue et al.2019], AINDNet [Kim et al.2020], and MIR-
Net [Zamir et al.2020]. The dual loss can supervise images in
the noise domain independently so that we can add unpaired
data for training. As shown in Tab. 2 and Tab. 3, the pro-
posed MSFN shows significant superiority and good general-
ization on the real-world images denoising. Compared with
the latest MIRNet, our network achieved a performance gain
of 0.26 dB on SIDD and 0.14 dB on DND. The performance
on PolyU and Nam also exceeds other methods by a large
margin, improving at least 1.64 dB and 1.13 dB, respectively.
The network fine-tuned by 200 unpaired noise images is de-
fined as MSFN-U, which improves the model performance on
the 4 datasets by at least 0.11 dB. The MSFN based on dual
loss can make full use of unpaired training data and does not
rely on noise-free labels excessively. Experiments prove that
training with paired and unpaired data is optimal.
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Figure 7: Model complexity and performance analysis of T .

Method Feedback Mechanism Dual Regression PSNR (dB) / SSIM
A 37.97 / 0.948
B X 38.63 / 0.949
C X 39.37 / 0.952
D (Ours) X X 40.01 / 0.963

Table 4: Model Performance Analysis on DND.
Weight

λ1 0 0.1 0.3 0.5 0.7 0.9 1
λ2 1 0.9 0.7 0.5 0.3 0.1 0

PSNR (dB) 25.86 26.75 27.83 28.61 29.38 29.81 29.57

Table 5: The hyper-parameter analysis of λ1 and λ2 in dual loss.

Visual Comparison
We compare denoising results with a noise level of σ = 50
on BSD68 in Fig. 5. The result of MSFN is the closest to the
ground truth compared with other methods. The MemNet,
FFDNet, and RNAN deform and blur the structural texture,
which causes distortion and loss of details. The image re-
stored by our MSFN can retain more original structures while
removing noise. The visual comparison on SIDD benchmark
datasets is shown in Fig. 4. Recovering contaminated charac-
ters clearly and accurately is difficult for previous methods.
The structural textures are excessively smoothed and appear
artifacts or chromatic aberration after processing by previous
RIDNet and MIRNet. Our MSFN shows superiority in pre-
serving structural content and fine texture details, resulting
in pleasantly clear images. As shown in Fig. 6, our MSFN
has better adaptability to the unevenly distributed real-world
noise. Compared with reference images, our method effec-
tively removes noise and achieves reliable results.

3.4 Ablation Study
Time Steps. Fig. 7(a) and Fig. 7(b) show the response
curves of model complexity and performance to T, respec-
tively. We take T = {2,4,8} and use green, red, and blue
markers to mark the corresponding points in the figure. As
the iteration proceeds, the amount of model learnable parame-
ters increases in a non-linear exponential trend, and the PSNR
also increases. When T further increases to greater than 4,
the growth of PSNR slows down. When T > 8, the denoising
performance (39 dB) hardly improves, along with the rapidly
increasing parameter quantity. Therefore, we set T = 4 to
balance model performance and computational complexity.
Component Analysis. We analyze the performance of dif-
ferent network component combinations on the DND. As
shown in Tab. 4, method A is a baseline with no feedback
and no duality. Methods B and C introduce feedback mech-
anisms and dual loss, respectively. The feedback mechanism
refines the high-level information to guide low-level features
and increases 1.4 dB compared to baseline. The dual super-
vision narrows the solution space by additional constraints

Figure 8: Visualization of iterative training on unpaired data.

and obtains a performance gain of 0.66dB. The method D
combining feedback and dual regression strategies gains the
best denoising ability as high as 40.01 dB. Eq. (6) introduces
two hyper-parameters λ1 and λ2 to adjust the weights of pri-
mary and dual regression losses. We set different weights
during training and tested it on Kodak24 with σ = 70. As
shown in Tab. 5, when {λ1 = 0,λ2 = 1}, only supervising the
noise domain results in a poor performance. Relaxed con-
straints lead to ill-posed uncertain mapping. Therefore, the
increase of λ1 achieves a significant performance gain. When
{λ1 = 0.9,λ2 = 0.1}, the learned model obtains the high-
est PSNR (29.81 dB).After canceling the noise fitting loss
(λ2 = 0), the PSNR decreases by 0.24dB, which proves the
necessity of the dual regression task.

Unpaired Supervision. The denoising of unpaired data is
visualized in Fig 8. The feed-forward noise image Inoisy out-
puts the predicted image It

clean and then degenerates to the
reconstructed Înoisy in the noise domain step by step. As
shown in Fig 8, unpaired real noisy images can obtain reli-
able restoration only through the noise domain supervision.
The MSFN outputs refined noise-free images from coarse to
fine and refits the original noise as much as possible. The un-
paired real-world noise images can be used for model training
and fine-tuning. The effective expansion of real-world images
further increases the model adaptability. It can alleviate the
model’s excessive dependence on labels and noise overfitting.

4 Conclusion
In this paper, we propose a novel network for real-world im-
age denoising, called multi-scale selective feedback network
(MSFN) with dual loss. By propagating the principal com-
ponents of the high-level hierarchical features to the shal-
low layers, the selective feedback module (SFM) enriches the
early representation learning effectively. Iterative multi-scale
feature reusing in multiple time steps is conducive to fitting
complex degradation from coarse to fine. The proposed dual
loss method provides a more strict closed-loop supervision
on both the noise domain and the clean domain for paired
and unpaired data. The comprehensively experimental results
prove that our method is superior to the state-of-the-art meth-
ods and has better applicability to real-world data.
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