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Abstract

This paper proposes a novel pretext task for self-
supervised video representation learning by ex-
ploiting spatiotemporal continuity in videos. It is
motivated by the fact that videos are spatiotemporal
by nature and a representation learned by detecting
spatiotemporal continuity/discontinuity is thus ben-
eficial for downstream video content analysis tasks.
A natural choice of such a pretext task is to con-
struct spatiotemporal (3D) jigsaw puzzles and learn
to solve them. However, as we demonstrate in the
experiments, this task turns out to be intractable.
We thus propose Constrained Spatiotemporal Jig-
saw (CSJ) whereby the 3D jigsaws are formed in a
constrained manner to ensure that large continuous
spatiotemporal cuboids exist. This provides suffi-
cient cues for the model to reason about the conti-
nuity. Instead of solving them directly, which could
still be extremely hard, we carefully design four
surrogate tasks that are more solvable. The four
tasks aim to learn representations sensitive to spa-
tiotemporal continuity at both the local and global
levels. Extensive experiments show that our CSJ
achieves state-of-the-art on various benchmarks.

1

Self-supervised learning (SSL) has achieved tremendous suc-
cesses recently for static images [He ef al., 2020; Chen er al.,
2020] and shown to be able to outperform supervised learning
on a wide range of downstream image understanding tasks.
However, such successes have not yet been reproduced for
videos. Since different SSL models differ mostly on the pre-
text tasks employed on the unlabeled training data, design-
ing pretext tasks more suitable for videos is the current focus
for self-supervised video representation learning [Han et al.,
2020a; Wang et al., 2020].

Introduction

*Corresponding author.
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Spatiotemporal analysis is the key to many video content
understanding tasks. A good video representation learned
from the self-supervised pretext task should capture discrim-
inative information jointly along both spatial and temporal
dimensions. It is thus somewhat counter-intuitive to note that
most existing SSL pretext tasks for videos do not explicit-
ly require joint spatiotemporal video understanding. For ex-
ample, some spatial pretext tasks have been borrowed from
images without any modification [Jing et al., 2018], ignor-
ing the temporal dimension. On the other hand, many recent
video-specific pretext tasks typically involve speed or tempo-
ral order prediction [Lee et al., 2017; Benaim et al., 2020],
i.e., operating predominately along the temporal axis.

A natural choice for a spatiotemporal pretext task is to
solve 3D jigsaw puzzles, whose 2D counterpart has been suc-
cessfully used for images [Noroozi and Favaro, 2016]. In-
deed, solving 3D puzzles requires the learned model to un-
derstand spatiotemporal continuity, a key step towards video
content understanding. However, directly solving a 3D puz-
zle turns out to be intractable: a puzzle of 3x3x 3 pieces (the
same size as a Rubik’s cube) can have 27! possible permuta-
tions. Video volume even in a short clip is much larger than
that. Nevertheless, the latest neural sorting model [Paumard
et al., 2020; Du et al., 2020] can only handle permutation-
s a few orders of magnitude less, so offer no solution. This
is hardly surprising because such a task is daunting even for
humans: Most people would struggle with a standard Rubik’s
cube, let alone a much larger one.

In this paper, we propose a novel Constrained Spatiotem-
poral Jigsaw (CSJ) pretext task for self-supervised video rep-
resentation learning. The key idea is to form 3D jigsaw puz-
zles in a constrained manner so that it becomes solvable. This
is achieved by factorizing the permutations into the three spa-
tiotemporal dimensions and then applying them sequential-
ly. This ensures that for a given video clip, large continuous
spatiotemporal cuboids exist after the constrained shuffling
to provide sufficient cues for the model to reason about spa-
tiotemporal continuity (see Figure 1(b)(c)). Such large con-
tinuous cuboids are also vital for human understanding of
video as revealed in neuroscience and visual studies [Stringer
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Figure 1: Illustration of our constrained jigsaw using an image ex-
ample (only spatial for clarity). (a): The raw image. (b),(c): Com-
paring an unconstrained puzzle (b) and our constrained one (c), it is
clear that ours is much more continuous (hence interpretable) reflect-
ed by the size of the largest continuous cuboids (LCCs, rectangles in
images here) shown in red. (d),(e): Illustration of the importance of
the relative order of the top-2 LCCs for determining the global con-
tinuity level of the shuffled image. (d) and (e) have the same top-2
LCCs, but only (d) keeps the correct relative order between them.

et al., 2006; Chen et al., 2019]. Even with the constrained
puzzles, solving them directly could still be extremely hard.
Consequently, instead of directly solving the puzzles (i.e., re-
covering the permutation matrix so that each piece can be put
back), four surrogate tasks are carefully designed. They are
more solvable but meanwhile still ensure that the learned rep-
resentation is sensitive to spatiotemporal continuity at both
the local and global levels. Concretely, given a video clip
shuffled with our constrained permutations, we make sure
that the top-2 largest continuous cuboids (LCCs) dominate
the clip volume. The level of continuity in the shuffle clip as
a whole is thus determined mainly by the volumes of these L-
CCs, and whether they are at the right order (see Fig. 1(d)(e))
both spatially and temporally. Our surrogate tasks are thus
designed to locate these LCCs and predict their order so that
the model learned with these tasks can be sensitive to spa-
tiotemporal continuity both locally and globally.

Our main contributions are three-fold: (1) We introduce
a new pretext task for self-supervised video representation
learning called Constrained Spatiotemporal Jigsaw (CSJ). To
our best knowledge, this is the first work on self-supervised
video representation learning that leverages spatiotemporal
jigsaw understanding. (2) We propose a novel constrained
shuffling method to construct easy 3D jigsaws containing
large LCCs. Four surrogate tasks are then formulated in
place of the original jigsaw solving tasks. They are much
more solvable yet remain effective in learning spatiotem-
poral discriminative representations. (3) Extensive experi-
ments show that our approach achieves state-of-the-art on two
downstream tasks across various benchmarks.

2 Related Work

Self-supervised Learning with Pretext Tasks. According
to the transformations used by the pretext task, existing SSL
methods for video presentation learning can be divided into
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three groups: (1) Spatial-Only Transformations: Derived
from the original image domain [Gidaris et al., 2018], [Jing et
al., 2018] leveraged the spatial-only transformations for self-
supervised video presentation learning. (2) Temporal-Only
Transformations: [Misra et al., 2016; Lee et al., 2017] ob-
tained shuffled video frames with the temporal-only transfor-
mations and then distinguished whether the shuffled frames
are in chronological order. [Xu et al., 2019] chose to shuf-
fle video clips instead of frames. [Benaim er al., 2020;
Yao et al., 2020] exploited the speed transformation via de-
termining whether one video clip is accelerated. (3) Spa-
tiotemporal Transformations: There are only a few recent
approaches [Ahsan et al., 2019; Kim et al., 2019] that lever-
aged both spatial and temporal transformations by permuting
3D spatiotemporal cuboids.

However, due to the aforementioned intractability of solv-
ing the spatiotemporal jigsaw puzzles, they only leveraged
either temporal or spatial permutations as training signal-
s, i.e., the crops are extracted from a 4-cell grid of shape
2x2x1 or 1x1x4. Therefore, no true spatiotemporal per-
mutations have been considered in [Ahsan et al., 2019;
Kim et al., 2019]. In contrast, given that both spatial appear-
ances and temporal relations are important cues for video rep-
resentation learning, the focus of this work is on investigating
how to exploit the 3D permutations jointly for self-supervised
video presentation learning, i.e., if we follow the statement
in [Kim ef al., 2019], 16 crops are actually sampled from a
grid of shape 2x2x4. To that end, our CSJ presents the first
spatiotemporal continuity based pretext task for video SSL,
thanks to a novel constrained 3D jigsaw and four surrogate
tasks to reason about the continuity in the 3D jigsaw puzzles
without solving them directly.

Self-supervised Learning with Contrastive Learning.
Contrastive learning is another self-supervised learning ap-
proach that has become increasingly popular in the image
domain [He er al., 2020; Chen er al., 2020]. Recently, it
has been incorporated into video SSL as well [Han et al.,
2020b]. Contrastive learning and transformation based pre-
text tasks are orthogonal to each other and often combined in
that different transformed versions of a data sample form the
positive set used in contrastive learning. Recent works [Han
et al., 2019; 2020a; Zhuang et al., 2020] leveraged features
from the future frame embeddings or with the memory bank.
They modeled spatiotemporal representations using only con-
trastive learning without transformations. Contrastive learn-
ing is also exploited in one of our surrogate pretext tasks. D-
ifferent from existing works, we explore the spatiotemporal
transformations in the form of CSJ and employ contrastive
learning to distinguish different levels of spatiotemporal con-
tinuity in shuffled jigsaws. This enables us to learn more dis-
criminative spatiotemporal representations.

3 Constrained Spatiotemporal Jigsaw

3.1 Problem Definition

The main goal of self-supervised video representation learn-
ing is to learn a video feature representation function f(-)
without using any human annotations. A general approach
to achieving this goal is to generate a supervisory signal y
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Figure 2: (a) Illustration of our Constrained Spatiotemporal Jigsaw (CSJ) (see Sec. 3.2). (b) The pipeline of our proposed framework for

self-supervised video representation learning (see Sec. 3.3).

from an unlabeled video clip = and construct a pretext task
P to predict y from f(x). The process of solving the pretext
task P encourages f(-) to learn discriminative spatiotemporal
representations from videos.

The pretext task P is constructed by applying a transfor-
mation function ¢(-; §) parameterized by 0 and then automati-
cally deriving y from 6, e.g., y can be the type of the transfor-
mation. Based on this premise, P is defined as the prediction
of y using the feature map of the transformed video clip f(z),
ie, P: f(T) = y, where & = t(x;6). For example, in [Lee
et al., 2017], t(-;6) denotes a temporal transformation that
permutes the four frames of video clip = in a temporal order
0, & = t(x;0) is the shuffled clip, and the pseudo-label y is
defined as the permutation order 6 (e.g., 1324, 4312, etc.).
The pretext task P is then a classification problem of 24 cat-
egories because there are 4! = 24 possible orders.

3.2 Constrained Permutations

Solving spatiotemporal video jigsaw puzzles seems to be an
ideal pretext task for learning discriminative representation
as it requires an understanding of spatiotemporal continuity.
After shuffling the pixels in a video clip using a 3D permu-
tation matrix, the pretext task is to recover the permutation
matrix. However, as explained earlier, this task is intractable
given even moderate video clip sizes. Our solution is to in-
troduce constraints on the permutations. As a result, a new
pretext task Pcsy based on Constrained Spatiotemporal Jig-
saw (see Fig. 2(a)) is formulated, which is much easier to
solve than a random/unconstrained jigsaw.

Specifically, our goal is to introduce constraints to the per-
mutations so that the resultant shuffled video clip is guaran-
teed to have large continuous cuboids (see Fig. 2(a)). Simi-
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lar to humans [Stringer et al., 20061, having large continuous
cuboids is key for a model to understand a 3D jigsaw and
therefore to have any chance to solve it. Formally, the vol-
ume of a shuffled video clip Z are denoted as {T', H, W},
measuring its sizes along the temporal, height, and width di-
mensions, respectively. A cuboid is defined as a crop of z:
c—xtl to,h1:ho,wis -wq» Where tl,tz S {1 2,. T} hl,hg €
{1,2,. hw,we € {1,2,...,W}. If all the jigsaw
pieces (smallest video clip unit, e.g.a pixel or a 3D pixel
block) in ¢ keep the same relative order as they were in x
(before being shuffled), we call the cuboid c as a continuous
cuboid ¢*°™. The cuboid’s volume equals (tz — t1) X (ha —
hi) x (wg — w1), and the largest continuous cuboid (LCC)

oM s the ¢*°™ with the largest volume.

We introduce two permutation strategies to ensure that the
volumes of LCCs are large in relation to the whole video clip
volume after our shuffling transformation ¢(-; fcsy). First, in-
stead of shuffling  in three spatiotemporal dimensions simul-
taneously, ¢(-; Ocsy) factorizes the permutations into the three
spatiotemporal dimensions and then utilizes them sequential-
ly to generate shuffled clips, e.g., in the order of 7', W, H and
only once. Note that the volume of the generated x stays
the same with different permutation orders (e.g., TW H and
HTW:). Second, we shuffle a group of jigsaw pieces together
instead of each piece individually along each dimension.

Given that a video clip has eight frames, taking the tempo-
ral dimension as an example, we make an arbitrarily grouped
permutation. fcsy could be represented as the permuta-
tion from {12345678} to {84567123}. The longest and
the second-longest index ranges are: [2,5] for coordinates
{4567}, and [6, 8] for coordinates {123}. Note that we make
3 groups of frames only as an example. Since the permuta-
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tions are not deterministic, in practice, different numbers of
groups (e.g.., 3, 4, or 5) will be selected for different video
clips. With these two permutation strategies, not only do we
have large LCCs, but also they are guaranteed to have clearly
separable boundaries (see Fig. 2(b)) with surrounding pieces
due to the factorized and grouped permutation design. This
means that they are easily detectable.

3.3 Surrogate Tasks

Having permutation constraints preserves more spatiotempo-
ral continuity in the shuffled clip and reduces the amount of
possible permutations. But exploiting them to make a neu-
ral sorting model tractable is still far from trivial. Instead
of solving the jigsaw directly, our Fcgy is thus formulated
as four surrogate tasks: Largest Continuous Cuboid Detec-
tion (LCCD), Clip Shuffling Pattern Classification (CSPC),
Contrastive Learning over Shuffled Clips (CLSC), and Clip
Continuity Measure Regression (CCMR). As illustrated in
Fig. 2(b), given an unlabeled clip =, we first construct a mini-
batch of 8 clips {Z1, Za, ..., Zg } by shuffling  with differen-
t but related constrained permutations (to be detailed later).
These shuffled clips and the raw clip z are then fed into a 3D
CNN model f(-) for spatiotemporal representation learning
with a non-local operation [Wang et al., 2018]:

(@) = NL(f (@), f(2)), )

where NL(+, -) denotes the non-local operator, and f(Z;) and
f(x) denote the feature map of =; and x from the last con-
volutional layer of f(-), respectively. The resultant feature
map fni(Z;) is further passed through a spatial pooling layer
followed by a separately fully-connected layer for each sur-
rogate task. Note that the raw video feature map f(x) is used
as guidance through the non-local based attention mechanism
to help fulfill the tasks. This is similar to humans needing to
see the completed jigsaw picture to help solve the puzzle.

We first explain how the eight permutations from the same
raw clip are generated. First, the factorized and grouped per-
mutations are applied to x to create one shuffled clip. By ex-
amining the largest and the second-largest continuous puzzle
piece numbers of each dimension ({7, H, W'}), we can easily
identify the top-2 largest continuous cuboids (LCCs). Next,
by varying the relative order of the top-2 LCCs either in the
correct (original) order or the reverse order in each dimen-
sion, 2x2x2=8 permutations are obtained. By controlling
the group size in permutation, we can make sure that the top-
2 LCCs account for a large proportion, saying 80% of the total
clip volume. Our four tasks are thus centered around these t-
wo LCCs as they largely determine the overall spatiotemporal
continuity of the shuffled clip.

The first task LCCD is to locate the top-2 LCCs {5 () :
j = 1,2} and formulated as a regression problem. Given
a ground-truth LCC ¢ (), a Gaussian kernel is applied to
its center to depict the possibility of each pixel in Z belong-

ing to the LCC. This leads to a soft mask M{ ., with the
same size of Z: Mj p, is all O outside the region of ¢ (j),

max
— " 2 . . .
—M) inside the region, where a,a. denote

202
g

any pixel and the center point, respectively. o is the hyper-

parameter which is set as 1 empirically. In the training stage,

and exp(
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FPN [Lin et al., 2017] is used for multi-level feature fusion.
LCCD is optimized using the MSE loss in each point:

Licep = Z ZMSE(MI{CCD(G’)’MI{CCD(O’),)v 2
je{1,2} acx

where MSE(-,-) denotes the MSE loss function, and

M o (a)” is the prediction of each pixel a.

CSPC is designed to recognize the shuffling pattern of a
shuffled clip. As mentioned early, the eight shuffled clips in
each mini-batch are created from the same raw clip and dif-
fer only in the relative order of the top-2 LCCs along each
of the three dimensions. There are thus eight permutations
depending on the order (correct or reverse) in each dimen-
sion. Based on this understanding, CSPC is formulated as a
multi-class classification task to recognize each shuffled clip
into one of these eight classes, which is optimized using the
Cross-Entropy (CE) loss:

>

i€{0,1,...,7}

CE(lcseci], lespeli]), 3)

Lcspe =

where CE(-, -) is the CE loss function and lg.gpc[i] is the pre-
dicted class label of i-th shuffled clip in each mini-batch.

The two tasks above emphasize on local spatiotemporal
continuity understanding. In contrast, CLSC leverages the
contrastive loss to encourage global continuity understand-
ing. In particular, since the top-2 LCCs dominate the volume
of a clip, it is safe to assume that if their relative order is
correct in all three dimensions, the shuffled clip largely pre-
serve continuity compared to the original clip, while all other
7 permutations feature large discontinuity in at least one di-
mension. We thus form a contrastive learning task with the
original video = and the most continuous shuffled video ; as
a positive pair, and x and the rest Z; (j # 4) as negative pairs.
CLSC is optimized using the Noise Contrastive Estimation
(NCE) [Oord et al., 2018] loss:

exp(sim(f(z), £(%:))/7)
exp(sim(f (@), f(2:))/7) + 3_; exp(sim(f (), f(;))/7)

where sim(-, -) is defined by the dot product: f(x)" f(z;),
and 7 is the temperature hyper-parameter. Note that the non-
local operator is not used in CLSC.

CCMR is similar to CLSC in that it also enforces glob-
al continuity understanding, but differs in that it is a regres-
sion task aimed at predicting a global continuity measure.
We consider two such measures. Since the total size of the
top-2 LCCs {ct(45) : j = 1,2} is a good indicator of
how continuous a shuffle video clip is, the first measure /;4
directly measures the relative total size of the top-2 LCCs:
Lig = —V(C‘L"oﬂnxl(l)v)&\;(cé);;@)) , where v(-) represents the volume of
a clip/cuboid. The second measure [/"" examines the shuf-
fling degree of Z in each dimension, computed as the nor-

%, where hamming|(-)
denotes the hamming distance in each dimension between
the original piece sequence and the permuted one, and NV,
represents the number of pieces in each dimension so that
N.(N.—1)/2 indicates the maximum possible hamming dis-

tance in the dimension. CCMR is optimized using the Mean

,C)

Lersc = —log

malized hamming distance:
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Squared Error (MSE) loss:

h / ’ h/ 4
Leemr = MSE([llda lLda lhd7 ll‘;vd]7 [lld> lltldv lhda ll\;vd])a &)
where Iy, I, I, I, are the prediction of the model.

3.4 Opverall Learning Objective

Our entire CSJ framework is optimized end-to-end with the
learning objective defined as:

L = 01Liccp + 02 Lcspe + 03Lcrsc + 04Lcemr, (6)

where 01, 03, 03, 04 are the weights for these losses. We de-
ploy the adaptive weighting mechanism [Kendall ez al., 2018]
to weight these tasks, resulting no free hyper-parameters to
tune. We also adopt curriculum learning [Bengio et al., 2009]
to train our network by shuffling clips from easy to hard.

4 Experiments

4.1 Datasets and Settings

We select three benchmark datasets for performance evalu-
ation: UCF101 [Soomro et al., 2012], HMDBS51 [Kuehne
et al., 2011], and Kinetics-400 (K400) [Kay er al., 20171,
containing 13K/7K/306K video clips from 101/51/400 ac-
tion classes, respectively. In the self-supervised pre-training
stage, we utilize the first training split of UCF101/HMDBS51
and the training split of K400 without using their labels. As
in [Han et al., 2020al, we adopt R2D3D as the backbone
network, which is modified from R3D [Hara et al., 2018]
with fewer parameters. By fine-tuning the pre-trained mod-
el, we can evaluate the SSL performance on a downstream
task (i.e., action classification). Following [Han er al., 2019;
He et al., 2020], two evaluation protocols are used: compar-
isons against state-of-the-arts follow the more popular fully
fine-tuning evaluation protocol, but ablation analysis takes
both the linear evaluation and fully fine-tuning protocols. For
the experiments on supervised learning, we report top-1 ac-
curacy on the first test split of UCF101/HMDBS1 as the stan-
dard [Han et al., 2020al.

4.2 Implementation Details

Raw videos in these datasets are decoded at a frame rate of
24-30 fps. From each raw video, we start from a randomly s-
elected frame index and sample a consecutive 16-frame video
clip with a temporal stride of 4. For data augmentation, we
first resize the video frames to 128x 171 pixels, from which
we extract random crops of size 112x112 pixels. We also
apply random horizontal flipping to the video frames during
training. Random color jittering is utilized to avoid learning
shortcuts. We exploit only the raw RGB video frames as input,
and do not leverage optical flow or other auxiliary signals for
self-supervised pre-training.

4.3 Model Evaluations

Results of Directly Solving CSJ. We first demonstrate the
results of solving the CSJ task directly in Table 1. We
randomly shuffle video clips into 4 x 4 X 4 jigsaw puz-
zles. To recognize the correct permutation, the model solve a
(4! x 4! x 41)-way classification task in the pre-training stage.
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Rand. Init. | CSJ | LCCD+CCMR | LCCD+CCMR
(4x4x4) (16x28x28)
8.3 | 138 | 18.2 | 23.1

Table 1: Evaluation of pre-training tasks with the backbone R2D3D-
18 under the linear evaluation protocol on UCF101. For computa-
tion efficiency, CSJ is only defined on 4 x 4 x 4 cells.

Tasks \ Rand. Init. LCCD CSPC CLSC CCMR
Linear 8.3 21.8 22.6 18.9 22.7
Fully 63.6 67.8 68.1 68.1 68.1
Tasks \ (CCMR)+CSPC +CLSC +LCCD +AW +CL
Linear 24.7 25.5 27.9 28.2 28.5
Fully 69.2 69.3 69.5 70.0 70.4

Table 2: Evaluation of pre-training tasks with the backbone R2D3D-
18 under linear and fully fine-tuning protocols on UCF101. AW:
Adaptive Weighting. CL: Curriculum Learning.

We compare the CSJ task with the joint LCCD+CCMR task
under the same setting for fair comparison. Linear evaluation
is adopted to show the effectiveness of different tasks. We can
observe from the table that solving LCCD+CCMR jointly is
more effective than solving CSJ directly.

Ablation Study. We conduct ablative experiments to val-
idate the effectiveness of four CSJ surrogate tasks and two
additional learning strategies. From Table 2, we can observe
that: (1) Self-supervised learning with each of the four tasks
shows better generalization than fine-tuning the network from
scratch (random initialization). (2) By training over all the
four tasks jointly, we can achieve large performance gains
(see “+LCCD’ vs. ‘CCMR’). (3) Each additional learning s-
trategy (i.e., adaptive weighting or curriculum learning) leads
to a small boost to the performance by 0.3-0.5%. (4) Our
full model achieves a remarkable classification accuracy of
70.4%, demonstrating the effectiveness of our proposed C-
SJ with only the RGB video stream (without additional opti-
cal flow, audio, or text modalities).

Visualization of LCCD Predictions. We also demonstrate
the visualization of the LCCD predictions from the pre-
trained models in Fig. 3. We can observe that solving the
LCCD task indeed enables the model to learn the locations
of LCCs and understand spatiotemporal continuity, which is
a key step towards video content understanding.

4.4 Main Results

Comparison in Action Recognition. A standard way to e-
valuate a self-supervised video representation learning model
is to use it to initialize an action recognition model on a s-
mall dataset. Specifically, after self-supervised pre-training
on UCF101/HMDBS51/K400, we exploit the learned back-
bone for fully fine-tuning on UCF101 and HMDBS51, fol-
lowing [Han et al., 2020a; Wang et al., 2020]. We consider
one baseline: fully-supervised learning with pre-training on
K400. Note that this baseline is commonly regarded as the
upper bound of self-supervised representation learning [Al-
wassel et al., 2020]. From Table 3, we have the following
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Figure 3: Visualization of the LCCD predictions from pre-trained
models. Each row denotes the frames at time stamp = (0, 4, 8, 12)
from one video clip. (a) raw frames (with color jittering); (b) shuf-
fled frames; (c) ground truth of LCCD; (d) network’s prediction.
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observations: (1) Our CSJ achieves state-of-the-art perfor-
mance on both UCF101 and HMDBS51. Particularly, with the
backbone R2D3D-18 that is weaker than R(2+1)D-18, our C-
SJ performs comparably w.r.t. Pace on UCF101 but achieves
a 10% improvement over Pace on HMDBS51. (2) By exploit-
ing spatiotemporal transformations for self-supervised repre-
sentation learning, our CSJ beats either methods with only
temporal transformations (1) or methods with both spatial and
temporal transformations (1), as well as those learning spa-
tiotemporal representations () via only contrastive learning
(w./o. spatiotemporal transformations). (3) Our CSJ also out-
performs CBT [Sun et al., 2019], which used ten-times more
massive datasets (K600 + Howto100M) and multiple modal-
ities (RGB+Audio). (4) Our CSJ is the closest to the fully-
supervised one (upper bound), validating its effectiveness in
self-supervised video representation learning.

Comparison in Video Retrieval. We evaluate our C-
SJ method in the video retrieval task. Following [Xu et
al., 2019], we extract each video clips’ embeddings with the
pre-training model and use each clip in the test set to query
the k£ nearest clips in the training set. The comparative re-
sults in Table 4 show that our method outperforms all other
self-supervised methods and achieves new state-of-the-art in
video retrieval on UCF101. Particularly, our method beats
the latest competitor PRP [Yao et al., 2020] on four out of
five metrics. This indicates that our proposed CSJ is also ef-
fective for video representation learning in video retrieval.

5 Conclusion

We have introduced a novel self-supervised video representa-
tion learning method named Constrained Spatiotemporal Jig-
saw (CSJ). By introducing constrained permutations, our pro-
posed CSIJ is the first to leverage spatiotemporal jigsaw in
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Methods Backbone Pre-trained UCF101 HMDB51
OPN C2D(VGG) U 59.8 23.8
CMC C2D U 55.3 -
VCOP' R3D-18 U 64.9 29.5
vCPf R3D-18 U 66.0 31.5
PRPT R3D-18 U 66.5 29.7
MemDPC* R2D3D-18 U 69.2 -
CSJ* (ours) R2D3D-18 U 70.4 36.0
Video-Jigsaw!  C2D K400 55.4 27.0
Statisics™® C3D K400 61.2 334
ST-Puzzlet R3D-18 K400 63.9 33.7
DPC* R2D3D-18 K400 68.2 34.5
SpeedNet' 13D K400 66.7 43.7
VIE* R3D-18 K400 75.5 44.6
Pacef R(2+1)D-18 K400 771 36.6
CSJ* (ours) R2D3D-18 K400 76.2 46.7
MemDPC* R2D3D-34 K400 78.1 41.2
CBT S3D K600+HT  79.5 44.6
CSJ* (ours) R2D3D-34 K400 79.5 50.9
Upper Bound:

Fully-Supervised R3D-34 K400 81.7 59.1

Table 3: Comparison to the state-of-the-arts on UCF101(U) and H-
MDB51 (only with the RGB modality). t: temporal-only transfor-
mations are used. I: both spatial and temporal transformations are
used. *: spatiotemporal representations are used. HT: HowTo100M.
The underline represents the second-best result.

Methods Topl TopS Topl0 Top20 Top50
VCOP 14.1 30.3 40.0 51.1 66.5
VCP 18.6 33.6 42.5 53.5 68.1
SpeedNet 13.1 28.1 37.5 49.5 65.0
PRP 22.8 38.5 46.7 552 69.1
Pace 19.9 36.2 46.1 55.6 69.2
MemDPC 20.2 40.4 524 64.7 -
CSJ (ours) 215 40.5 53.2 64.9 70.0

Table 4: Comparison with state-of-the-art self-supervised learn-
ing methods for nearest neighbor video retrieval (top-k recall) on
UCF101. The underline represents the second-best result.

self-supervised video representation learning. We also pro-
pose four surrogate tasks based on our constrained spatiotem-
poral jigsaws. They are designed to encourage a video repre-
sentation model to understand the spatiotemporal continuity,
a key building block towards video content analysis. Exten-
sive experiments were carried out to validate the effectiveness
of each of the four CSJ tasks and also show that our approach
achieves the state-of-the-art on two downstream tasks.
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