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Abstract

In many image denoising tasks, the difficulty of
collecting noisy/clean image pairs limits the appli-
cation of supervised CNNs. We consider such a
case in which paired data and noise statistics are
not accessible, but unpaired noisy and clean images
are easy to collect. To form the necessary supervi-
sion, our strategy is to extract the noise from the
noisy image to synthesize new data. To ease the in-
terference of the image background, we use a noise
removal module to aid noise extraction. The noise
removal module first roughly removes noise from
the noisy image, which is equivalent to excluding
much background information. A noise approxi-
mation module can therefore easily extract a new
noise map from the removed noise to match the gra-
dient of the noisy input. This noise map is added
to a random clean image to synthesize a new data
pair, which is then fed back to the noise removal
module to correct the noise removal process. These
two modules cooperate to extract noise finely. After
convergence, the noise removal module can remove
noise without damaging other background details,
so we use it as our final denoising network. Exper-
iments show that the denoising performance of the
proposed method is competitive with other super-
vised CNNss.

1 Introduction

Removing noise from an image is a preprocessing step in
many imaging projects to facilitate visualization and down-
stream tasks such as image segmentation and detection. A
noisy image = can be represented as

r=y+mn, ey
where n denotes the measurement noise, ¥ is the clean image
to be restored. This inverse problem is challenging because
the statistics of n are usually unknown and complex.
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Figure 1: (a): Noisy images. (b): Noise maps extracted from (a) by
our method. (¢): Random clean images. (d): Noisy images obtained
by multiplying (b) with a random binary (—1 or 1) mask and then
superimposed on (c¢). The noise in (d) is similar to that in (a). From
top to bottom the noise are Gaussian, Speckle and Poisson.

1.1 Related Work

In the past decades, image denoising has been an active re-
search topic in image processing. Existing image denoising
methods can be roughly divided into model-based methods
and learning-based methods.

Model-based methods. Most classical image denoising
algorithms exploit hand-crafted priors [Xu et al, 2018],
[Buades et al., 2005], [Meng and De La Torre, 2013], [Zhao
et al., 2014] to guide the denoising process. The non-local
self-similarity (NSS) prior [Hou et al, 2020] has demon-
strated its powerful ability to aid noise removal. The NSS
prior reveals the fact that a natural image contains many sim-
ilar but non-local patches. Some well-known NSS-based
methods include BM3D [Dabov et al., 2007] and WNNM
[Gu et al., 2014]. Other prominent techniques, such as
wavelet coring [Simoncelli and Adelson, 1996], total varia-
tion [Selesnick, 2017] and low-rank assumptions [Zhu et al.,
2016] have also been utilized to simplify the denoising prob-
lem. Though simple and effective, these model-based meth-
ods tend to produce over-smoothed results and cannot handle
noise that does not meet their priors.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Gaussian ~ Speckle Poisson

noise noise noise

(c=25) (=01 \=30)
Original 31.81 31.49 31.09
Fake 31.65 29.90 30.70

Table 1: PSNR results (dB) on BSD300 test set. o, v and A represent
the noise level.

Learning with paired data. Recently, deep learning has
achieved unprecedented success in image denoising. CNNs
trained with plenty of noisy/clean image pairs have become
the dominant method. One of the seminal networks for im-
age denoising is DnCNN [Zhang er al., 20171, which adopts
a residual architecture to ease learning. Beyond DnCNN,
many versatile network architectures have been developed to
achieve better denoising results, including FFDNet [Zhang et
al., 20181, DANet [Yue et al., 2020], NLRN [Liu ez al., 2018],
VDN [Yue et al., 2019] and RIDNet [Anwar and Barnes,
2019]. These supervised CNNs consistently show impres-
sive performance on some predefined datasets (e.g. syn-
thetic datasets). However, in many imaging systems (e.g.
medical imaging, SAR imaging), paired noisy/clean images
are difficult to collect, which limits the application of these
supervised techniques. To mitigate this issue, Lehtinen ef
al. [Lehtinen et al., 2018] demonstrate that the denoising
CNN can be trained with pairs of independent noisy mea-
surements of the same scene. This elegant training strategy is
called Noise2Noise (N2N), and it can achieve denoising per-
formance on par with general supervised learning methods.
Nevertheless, it is not always feasible to sample two indepen-
dent noises for the same scene.

Learning without paired data. To relax the requirement
for training data, training CNN denoisers without pre-
collected paired data has become a hot topic [Liu ez al., 2019].
Inspired by the Noise2Noise method, Noise2Void [Krull et
al., 2019] and Self2Self [Quan et al., 2020] further demon-
strate that denoising CNNs can be trained with individual
noisy images via the blind spot strategy. These methods are
self-supervised because they do not rely on external data to
provide supervision. Considering its practical value, the blind
spot strategy is further improved in [Laine et al., 2019], [Bat-
son and Royer, 2019], [Wu et al., 2020] to achieve better
denoising results. Unfortunately, the effectiveness of these
self-supervised methods stems from some pre-defined sta-
tistical assumptions, for example, the noise n is zero mean
and pixel-independent. This means that these methods can-
not cope with noise that violates their assumptions, such as
spatially correlated noise. Another elegant strategy is to use
unpaired noisy and clean images to learn the transformation
between the noise domain and the clean domain. To this end,
methods to this category usually integrate noise modeling and
removal into the same deep learning framework. For instance,
generative adversarial network (GAN) [Chen et al., 2018],
[Kaneko and Harada, 20201, [Yan er al., 2020] is widely used
to synthesize noise samples corresponding to accessible clean
images. These generated data then provide supervision for
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Figure 2: (a): An image with Gaussian noise (o = 25). (b): A noise
map obtained by subtracting ground-truth from (a). (c): The image
gradient of (a), object edges from (a) are retained in (c). (d): The
image gradient of (b).

denoising. However, GAN-based methods are easy to suffer
from mode collapse, so that the generated noise is usually un-
realistic or lacks diversity. These unrealistic and monotonous
noises can lead to poor denoising.

1.2 Motivations

Considering that the collection of unpaired data is easy in
most applications and unpaired images contain more infor-
mation than individual noisy images, the topic of this paper is
unpaired denoising. To form supervision, an intuitive idea is
to extract noise n from the noisy image = and add it to other
clean images to obtain pairs of data. To verify the feasibil-
ity of this idea, we first conduct some denoising experiments.
We synthesize three noise datasets (original) by software (i.e.
Gaussian, Speckle and Poisson), and the ground-truth is avail-
able. Then, we subtract the ground-truth from these noisy im-
ages to obtain noise components, which are superimposed on
random clean images to construct new noise datasets (fake).
We train denoising U-Nets on these original and fake datasets
respectively, and the results are reported in Table 1. As can be
seen, the network trained on the “fake” dataset achieves com-
parable denoising performance with the network trained on
the “original” dataset. Even for signal-dependent noise (i.e.
Speckle and Poisson), this strategy is still feasible. These ex-
periments show the effectiveness of our noise superposition
strategy. Based on these observations, the focus of this pa-
per is shifted to how to extract noise from noisy images when
ground-truth is not available.

On the other hand, we notice that the gradient of the noisy
image is dominated by noise (see Figure 2), which inspires
us that the gradient of the noisy image can be used to guide
the noise extraction while avoiding the interference of other
background content. However, the noisy image gradient con-
tains object edges in addition to noise, which may contami-
nate the extracted noise. How to counteract the negative effect
of image gradient is a thorny problem.

1.3 Our Contributions

Based on the above analysis, we develop a new training strat-
egy Noise2Grad to train a noise extraction network. To re-
duce the interference of the background content of the noisy
image, we divide the noise extraction into two subtasks: noise
removal and noise approximation. First, the noise removal
module roughly removes the noise from the noisy input, and
the removed noise is input to a noise approximation module.
Since most of the background details have been eliminated by
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Figure 3: Illustration of Noise2Grad training scheme for noise extraction and denoising. The noise extraction network consists of a noise
removal module and a noise approximation module. The dimension of the random binary (—1 or 1) mask m is the same as that of nn. For

better visualization, only nine elements in m are shown.

the noise removal module, the noise approximation module
can easily produce a realistic noise map to match the gradient
of the noisy image. The noise map is multiplied by a ran-
dom binary (—1 or 1) matrix to destroy the residual structural
details, and then superimposed on a random clean image to
synthesize a new noisy / clean image pair. These synthesized
data are fed back to the noise removal module to guide bet-
ter noise removal, which indirectly leads to subsequent finer
noise extraction. After convergence, the two modules coop-
erate to extract noise components from the noisy input. Since
the noise removal module is trained with data synthesized by
our method, we directly use it as the final denoising network
instead of retraining one. Through experiments on several
denoising tasks, we demonstrate that the denoising perfor-
mance of Noise2Grad is close to that of CNNs trained with
pre-collected paired data and significantly outperforms other
self-supervised and unpaired denoising methods.

2 Methodology

Given some unpaired noisy images D"°%*¢ = {z7}¥ | and
clean images D™ = {y#}71 |, the major objective of this
paper is extract noise from noisy images and use it to synthe-
size new noisy data. Hereafter, we use the superscript r to
represent real data and s to represent the data synthesized by
our method. Our noise extraction network is shown in Figure
3. Since noise extraction is constrained by the image gradient,
this training scheme is called Noise2Grad (N2G). In effect,
the gradient of the noisy image does not promise high-quality
noise extraction. For this problem, the noise extraction net-
work is divided into two parts, a noise removal module and
a noise approximation module. These two modules use each
other’s output to correct their own learning, and cooperate to
achieve fine noise extraction.

2.1 Noise Extraction

Image gradient reflects the high-frequency content but ex-
cludes the low-frequency part of the image. Generally, the
gradient of a noisy image is mainly composed of the gradient
of noise. This inspires us that the gradient of the noisy im-
age can be a hint for noise extraction. We calculate the image
gradient by combining the horizontal and vertical deviations
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of adjacent pixels,

Ve =05 (Ve + V,2)
0 0 O 0 0 0
=0.5- 0 -1 1 |({xz+|0 -1 0 |xzx]”’
0 0 0 0 1 0
(2)

where * indicates the convolution operation, V represents the
image gradient. Then, the noise extraction network aims to
minimize the following gradient similarity loss,

Acgrad = Z ||Vﬁ‘2 - Vm:”i ) 3)

where L2 loss is adopted. n is the output of noise approxima-
tion module, it can be expressed as,

“4)

where z” is the noisy input, n is the noise component of z”
that we want, € represents some structural details from ",
F(-) and G(-) represent noise removal module and noise ap-
proaximation module, respectively.

Following Eq.(3), the gradient of 7 is always similar to that
of the noise component n. However, some structural details
may remain in 72 (i.e. ||€|| # 0), because the label Vz" con-
tains object edges in addition to noise. Our goal is to obtain
the noise component n, so we have to remove the residual
structural detail € in n. Fortunately, this can be achieved by
reducing the structural information contained in the input of
the noise approximation module. If the input of the noise
approximation module is only noise without other structural
information of " (i.e. 7 = n ), then its output n should be
mainly composed of noise, and other structural details are un-
likely to be retained. To do this, we apply a simple feedback
technique to turn » into a “clean” noise. We add the noise
map 7 to a random clean image y" to synthesis a new noisy
image z°,

=y  +n. (5)
z® and x" have similar noise, but their image content is
different. More importantly, =° has a clean label 4", so they



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

can be paired to guide denoising. z° is fed back to the noise
removal module to obtain a denoised result F'(x*). The cor-
responding noise removal objective function is

s 2
Edenoise = Z ”F(xz) —Y; ||2 . (6)
Combining Egs.(3) and (6), the overall loss function is,
L= Lgrad + [’denoise~ (7)

In this setting, the noise removal module learns to restore
image details while removing noise. This means that the n
removed by the noise removal module is mainly composed of
noise i.e.

®)

where € denotes some structural details of x”. Since much
image background information is excluded, the noise approx-
imation module is easier to produce realistic noise map. With
the noise removal module doing better in restoring image de-
tails, we want ||€]| to converge to 0.

2.2 Detail Destruction

At each training step ¢, a new noisy image z° can be obtained
by noise superposition Eq.(5). Since 7 may contain some
structural details € from x”, the synthesized noisy image z°
may not be realistic. The unrealistic ° may impair the abil-
ity of the noise removal module to restore image details and
remove noise. To solve this problem, n is multiplied by a ran-
dom binary mask m before being superimposed on the clean
image y". Eq.(5) can be reformulated as

2 =y"+noOm. 9)
where © represents element-wise multiplication, m has the
same dimension as n. Each element in m is set to 1 with a
probability of 0.5, otherwise is —1. The random mask m can
destroy the residual structural information in the 7 to obtain
a more realistic z° (see Figure 4, (1)-(n)). The realistic z*
is beneficial for the noise removal module to learn noise re-
moval and image detail restoration. In addition, multiplying
with m can be seen as a way of data augmentation. Since m
is random, various noises can be obtained.

2.3 Update Delay

As the noise removal module becomes better at restoring im-
age details while removing noise, the structural information
¢ remaining in 7 gradually decays. Since the noise approxi-
mation module takes 7 as the input, the weakening of & will
also lead to the attenuation of € in n (see Figure 4, (b)-(d) and
(e)-(g)). However, the gradient similarity loss Lgqq Eq.(3)
hinders this convergence process due to the edge information
in the the noisy image gradient (i.e. Vz"). To alleviate the
negative impact of L,,4, we gradually reduce the frequency
of calculating £,q4, that is, the time interval 7 for calculating
L grqaq becomes longer. 7 can be further expressed as

(10)

where ¢ denotes the training step, | -] is the floor function.
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Figure 4: Visual examples produced by our noise extraction network
during training. (a): A noisy image. (b)-(d): Noise maps produced
by the noise removal module. The superscript represents the num-
ber of training steps. (e)-(g): Noise maps corresponding to (b)-(d)
produced by the noise approximation module. (h): A clean image.
(i)-(k): New noisy images obtained by superimposing (e)-(g) to (h)
respectively. (1)-(n): New noise maps obtained by multiplying (e)-
(g) with a random binary mask m respectively. (0)-(q): New noisy
images obtained by superimposing (1)-(n) to (h) respectively.

0)

By gradually delaying the calculation of Lg;.qq, the noise
removal module can focus on preserving image details while
removing noise. After convergence, the n removed by the
noise removal module contains little structural details. Due
to the lack of sufficient structural information, the noise ap-
proximation module can only output a realistic noise map
n=G(h) ~n.

Note that, we use the noise removal module as our final
denoising network.

2.4 Architecture and Training Details

The implementation of N2G is based on CNNs. For simplic-
ity, we adopt a simple U-Net [Ronneberger et al., 2015] as the
noise removal module, while the noise approximation module
is only composed of one 1 x 1 convolution layer. We use Py-
Torch and Adam with a batch size of 1 to train the network.
The training images are randomly cropped into 128 x 128
patches before being input to the network. The learning rate
if fixed to 0.0002 for the first 2, 500, 000 iterations and lin-
early decays to 0 for the next 2, 500, 000 iterations.'

"We will release our code and datasets soon.
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Figure 5: Example results for Gaussian denoising, o = 25.

Test noise level BM3D NLH N2V S2S LIR N2N U-Net N2G

Gaussian oc=25 3090 3031 3056 29.63 2691 31.62 31.81 31.71
o € (0,50] 31.69 31.77 31.88 27.76 2638 3327 3344 3336

Speckle v=01 2664 2518 2840 27.60 2566 31.13 3149 29.84
v € (0,0.2] 26.70 26.10 28.777 2753 2544 3139 31.86 30.16

Poisson A=30 2770 2849 29.78 29.23 26.15 3091 31.09 30.64
A € [5,50] 2723 2612 2894 28.01 25.62 3025 30.44 29.64

Table 2: PSNR results (dB) from BSD300 dataset for Gaussian, Speckle and Poisson noise. Bold: best. Red: second. Blue: third.

3

We evaluate the effectiveness of Noise2Grad on several image
denoising tasks in this section.

Experiments

3.1 Synthetic Noises

Our Noise2Grad requires some unpaired noisy and clean
images to train the network. We use the 4744 natural
images in [Ma et al, 2016] to synthesize noisy images
(i.e. D™¢) with software. In addition, 5000 clean im-
ages collected from the Internet are adopted as the clean
set D@ We compare N2G with several state-of-the-art
denoising methods, including model-based methods BM3D
[Dabov et al., 2007] and NLH [Hou et al., 2020], self-
learning methods Noise2Void(N2V) [Krull et al., 2019] and
Self2Self(S2S) [Quan er al., 20201, an unpaired learning
method LIR [Du er al., 20201, other deep learning meth-
ods include Noise2Noise(N2N) [Lehtinen et al., 2018] and
a common fully-supervised U-Net. For the sake of fairness,
N2N, U-Net and our N2G adopt the same network architec-
ture to perform denoising. BSD300 [Martin ez al., 2001] is
the test set of the following experiments.

Gaussian noise. We first conduct the comparative experi-
ments on additive gaussian noise. We add zero-mean gaus-
sian noise with a random standard deviation o € (0,50] to
each training example. For the test sets, noisy images are
synthesized in two ways: a fixed noise level 0 = 25 and a
variable o € (0,50]. PSNR comparisons are reported in Ta-
ble 2. Subjective denoising results are shown in Figure 5.

Speckle noise. Multiplicative speckle noise, often observed
in medical ultrasonic images and radar images. It is harder to
remove than Gaussian noise because it is signal dependent.
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This noise can be modeled by random value multiplications
with pixel values of the latent singal y and can be expressed
as x = y + y - n. In this model, n is an uniform noise with a
mean of 0 and a variance of v. We vary v € (0,0.2] to syn-
thesize training images. Quantitative and visual comparisons
are shown in Table 2 and Figure 6, respectively.

Poisson noise. We then consider poisson noise, which can
be used to model photon noise in imaging sensors. The ex-
pected magnitude of poisson noise is dependent on the pixel
brightness. Following the setting in [Laine et al., 20191, we
randomize the noise level A € [5,50] separately for each
training example. We show the comparisons in Table 2.

Discussion. From the above experiments, we see that the
denoising performance of N2G is close to supervised meth-
ods (U-Net and N2N), and significantly outperforms other de-
noising methods (e.g. BM3D and N2V). The effectiveness of
N2G does not rely on paired data or prior knowledge about
the noise. The only prerequisite is some unpaired noisy and
clean images, which is easy to achieve in most practical appli-
cations. For various types of noise, N2G consistently exhibits
satisfactory denoising performance. The denoised images are
clean and sharp. Besides, the denoising results of N2G are
close to the results in Table 1 (Fake). This indicates that the
noise extracted by N2G is similar to the real noise compo-
nent of the noisy image. These experiments show that N2G
is a promising solution for various denoising tasks.

3.2 Ablation Study

Detail destruction and update delay and are two key compo-
nents of the N2G training scheme. We then explore the im-
pact of these two technologies on the performance of N2G.
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(f) LIR | 0.794, 28.38

(e) N2V | 0.832, 30.53

(c) BM3D | 0.698, 28.28

SIS

(d) NLH | 0.582, 26.41

e e

- B

(g) U-Net | 0.886, 31.94

Figure 6: Example results for Speckle denoising, v = 0.1.

N2GP  N2GY  N2G
Gaussian SSIM  0.701  0.768 0.896
(c=25) PSNR 25.18 2633 31.71

Table 3: Quantitative comparisons of N2G and its variants.

We design two variants of N2G. One is called N2GP, which
cancels detail destruction. The other is called N2GY, which
cancels the update delay. These networks are trained and
tested on the dataset of Gaussian noise, and the results are
reported in Table 3. Without detail destruction, the noisy im-
age x° synthesized by N2G is unrealistic, which leads to poor
performance of the noise removal module. On the other hand,
due to the cancellation of update delay, the gradient similarity
loss Lg4rqq has a negative effect on the noise removal mod-
ule, thus damaging the denoising results. The combination
of these two techniques can achieve excellent results of noise
removal and noise extraction.

3.3 Medical Image Denoising

Computed tomography (CT) provides critical clinical infor-
mation, but there are potential risks induced by X-ray radi-
ation, such as cancer diseases and genetic damages. Given
these risks, reducing the radiation dose as much as possible
has become a trend in CT-related research. However, the re-
duction of radiation dose is associated with the increase of
noise and artifacts in the reconstructed image, which may ad-
versely affect subsequent diagnosis. Here, we show the ap-
plication of Noise2Grad on low-dose CT denoising.

The training dataset is an authorized clinical low-dose CT
dataset, which was used for the 2016 NIH-AAPM-Mayo
Clinic LDCT Grand Challenge.” This dataset contains 5946
pairs of images with a slice thickness of Imm. We divide
them into 3 parts, 500 pairs as the test set, 2718 pairs as
Dmo%¢_and the remaining 2718 pairs as D", N2G is com-
pared with the fully-supervised U-Net. Results are shown in
Figure 7 and Table 4. For low-dose CT denoising, the denois-
ing performance of our N2G is close to the fully supervised
U-Net. Our denoising network cleanly removes noise and re-
stores high-quality images.

*https://www.aapm.org/GrandChallenge/LowDoseCT/
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(b) Noisy
SSIM, PSNR  0.772, 20.58

(a) Clean (c) U-Net

0.839, 26.95

(d) N2G
0.835, 26.51

Figure 7: Low-dose CT denoising example.

Noisy UNet N2G
SSIM  0.752 0.828 0.816
PSNR 21.51 28.04 26.80

Table 4: Quantitative comparisons of N2G and its variants.

4 Conclusion

We proposed Noise2Grad, a novel algorithm that uses un-
paired noisy and clean images to train denoising CNNs. The
core idea of N2G is to extract noise from noisy images,
and then superimpose it on other clean images to synthe-
size paired training data. To facilitate noise extraction, we
use a noise removal module to eliminate the interference of
the image background. Constrained by the image gradient,
the noise removal module and the noise approximation mod-
ule cooperate to extract noise finely. We demonstrate the ef-
fectiveness and wide applicability of Noise2Grad over multi-
ple denoising tasks. Since Noise2Grad does not require pre-
collected paired data and assumptions about noise statistics,
it is a promising solution for many practical applications.
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