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Abstract
The challenges of visible-thermal person re-
identification (VT-ReID) lies in the inter-modality
discrepancy and the intra-modality variations. An
appropriate metric learning plays a crucial role
in optimizing the feature similarity between the
two modalities. However, most existing metric
learning-based methods mainly constrain the simi-
larity between individual instances or class centers,
which are inadequate to explore the rich data rela-
tionships in the cross-modality data. Besides, most
of these methods fail to consider the importance of
different pairs, incurring an inefficiency and inef-
fectiveness of optimization. To address these is-
sues, we propose a Multi-Constraint (MC) similar-
ity learning method that jointly considers the cross-
modality relationships from three different aspects,
i.e., Instance-to-Instance (I2I), Center-to-Instance
(C2I), and Center-to-Center (C2C). Moreover, we
devise an Adaptive Weighting Loss (AWL) func-
tion to implement the MC efficiently. In the AWL,
we first use an adaptive margin pair mining to se-
lect informative pairs and then adaptively adjust
weights of mined pairs based on their similarity.
Finally, the mined and weighted pairs are used for
the metric learning. Extensive experiments on two
benchmark datasets demonstrate the superior per-
formance of the proposed over the state-of-the-art
methods.

1 Introduction
Traditional person re-identification (ReID) [Zhong et al.,
2018; Zheng et al., 2017; Yang et al., 2020b] aims at match-
ing a specific query person from large-scale gallery images
captured by RGB cameras. However, the quality of the visible
(RGB) image will significantly decrease under poor illumi-
nation (e.g. night-time). To overcome this issue, many ther-
mal surveillance cameras have been deployed to capture ther-
mal images. Hence, we encounter the task of matching per-
son samples between visible and thermal cameras, which is
known as visible thermal person re-identification (VT-ReID).
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Figure 1: (a) Illustration of the key challenges in the VT-ReID task.
The intra-class similarity Sintra often smaller than the inter-class
similarity Sinter , due to the pose variations, inter-modality discrep-
ancy. (b) Illustration of the result of ignoring the I2I constraint. The
cross-modality intra-class similarity (SI2I ) maintains small when
the model converged (The similarity between class centers SC2C

are optimized). Shapes indicate the identities and colors represent
the modalities (blue for visible and yellow for thermal).

Apart from the long-standing inter-and intra-class variations
suffered in the traditional REID, VT-ReID further needs to
deal with the large inter-modality discrepancy (Figure 1(a)).

The key solution for VT-ReID is learning a shared embed-
ding space in which the features of two modalities can be
matched. Therefore, different metric-learning-based meth-
ods have been proposed to reduce the inter-modality discrep-
ancy and intra-modality variations. These methods can be
mainly divided into two aspects based on the similarity con-
straint utilized during the learning phase: (1) Instance-to-
Instance (I2I): constraining the inter-and-intra modality simi-
larity relationship of different training samples at the instance
level [Feng et al., 2019; Hao et al., 2019c], and (2) Center-to-
Center (C2C): constraining the relationship between the class
centers from two different modalities [Liu and Tan, 2020;
Zhu et al., 2020]. Despite their success, the former I2I-based
methods mainly focus on constraining the relationship be-
tween instances while ignoring the overall global class-level
characters. They will be easily affected by noise or hard
sample-pairs, resulting in inferior performance and general-
ization. On the other hand, the latter C2C-based methods in-
directly optimize the feature similarity and significantly ig-
nore intra-class variations of different samples. This may
lead the situation that the similarity between class centers of
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two different modalities are optimized, but the discrepancy
of cross-modality (SI2I ) still maintain large (Figure 1(b)).
In a nutshell, these single constraint metric learning-based
methods are insufficient to explore the rich data relation-
ships among the large inter-modality discrepancy and intra-
modality variations. Besides, most of these methods treat dif-
ferent informative pairs equally and fail to explore the cross-
modality informative pairs for similarity learning, incurring
an inefficiency and ineffectiveness of optimization.

To overcome the shortcomings of previous methods,
we propose a Multi-Constraint (MC) similarity learning
method to fully explore the various data relationship among
cross-modality samples. In this study, we mainly con-
sider the following three constraints, i.e., Center-to-Center
(C2C), Center-to-Instance (C2I), and Instance-to-Instance
(I2I). Specifically, the C2C constraint mainly enforces the
cross-modality intra-class centers should have higher similar-
ity than inter-class centers, whose primary goal is to bridge
the large cross-modality gap. The C2I constraint further en-
forces that each sample should be close to its corresponding
class center of the other modality to reduce the intra-modality
variations. Additionally, the I2I constraint force the inter-
modality intra-class discrepancy between samples should be
smaller by pulling them close to each other. These three con-
straints are jointly utilized to reduce the intra-class discrep-
ancy and enlarge the inter-class distance.

In addition, different informative pairs have different ef-
fects during similarity learning, and we devise an Adaptive
Weighting Loss (AWL) function to effectively implement the
multi-constraint. In the AWL, we first use an adaptive margin
to select cross-modality informative pairs and discard those
less informative pairs. Then, we exploit a sigmoid variant
function to adjust pair weights based on their similarity. By
utilizing this pair mining and pair weighting scheme, we will
encourage the network to pay more attention to optimize the
informative pairs during training.

To sum up, our main contributions are as follows: 1) We
propose a Multi-Constraint (MC) similarity learning frame-
work to reduce the inter-and intra-modality discrepancy in the
VT-ReID by jointly considering three constraints (I2I, C2I,
and C2C). 2) We devise an Adaptive Weighting Loss (AWL)
function to leverage the cross-modality informative pairs for
model training in a more effective manner. 3) Experiments
on two datasets demonstrate the mutual benefits of the above-
proposed components and show superior performance over
state-of-the-art methods.

2 Related Work
The existing methods of VT-ReID can be mainly divided
into three groups. 1) Feature extraction based methods.
[Wu et al., 2017] first introduce SYSU-MM01, a visible
thermal dataset, and they study a deep zero-padding method
for evolving domain-specific nodes in the network. [Ye et
al., 2018b] introduce a two streams network to learn cross-
modality embedding. To handle the cross-modality discrep-
ancy, [Lu et al., 2020] introduce a cross-modality shared-
specific feature network, [Ye et al., 2020] develop a dy-
namic dual-attentive aggregation network, and [Yang et al.,

2020a] propose a bi-directional random walk scheme net-
work. These methods mainly focus on exploring a cross-
modality network to extract discriminative feature. 2) Metric
learning based methods [Dai et al., 2018; Ye et al., 2018a;
Hao et al., 2019c; Feng et al., 2019; Hao et al., 2019a;
Hao et al., 2019b; Ling et al., 2020; Zhu et al., 2020;
Liu and Tan, 2020] are proposed to learn an embedding space
that makes the intra-class samples close to each other. [Hao
et al., 2019c] and [Feng et al., 2019] only consider the re-
lationship between instances. Hence, [Zhu et al., 2020] and
[Liu and Tan, 2020] are proposed to optimize the relation-
ship between class centers of two modalities. However, these
methods with a single relationship constraint are not enough
to express the rich data relationships. Therefore, we propose
a Multi-Constraint (MC), which adopts the relationships of
I2I, C2I, and C2C constraints to optimize the feature. 3)
Image generation based methods. [Wang et al., 2019c;
Wang et al., 2019a; Li et al., 2020] use a variational autoen-
coder and generative adversarial network to generate fake im-
ages to bridge the modality gap. These methods may contain
id-unrelated factors, which undermines the performance, so
[Choi et al., 2020], [Wang et al., 2020], and [Pu et al., 2020]
combine a disentangle representation with VAE for robust
cross-modality matching. These models are commonly dif-
ficult to train due to complex generative adversarial networks
to generate fake images.

3 Proposed Method
In this section, we will introduce the details of the proposed
framework. As shown in Figure 2, the proposed framework
mainly includes the base feature extractor, part-based embed-
dings, and training loss function. The training loss function
consists of a multi-constraint based metric learning loss func-
tion LMC and the identification loss function LID.

3.1 Base Feature Extractor and Part-Based
Embeddings

Due to the large modality discrepancy, we first use two inde-
pendent modules to compute the modality-specific features at
the shallow layers. Then, we use parameter sharing module to
learn the modality-shareable feature to embed the two modal-
ities into the same subspace. The independent modules have
the same structure as the first convolution block and residual
block 1 (Layer1) in ResNet-50 [He et al., 2016], and the share
module is the same as the residual block 2-4 (Layer2-4).

Besides, the PCB method [Sun et al., 2018] has demon-
strated the effectiveness of using local parts to increase fea-
ture discrimination. Therefore, we exploit an efficient mod-
ule to extract two parallel part features at different scales.
Firstly, we divide the feature maps into six non-overlapping
parts and three non-overlapping parts along the vertical di-
rection. Then, we compute the feature of each local part by
a global pooling and a convolution. The final local feature
dimension of the branch with six parts and three parts are 256
and 512, respectively. Finally, the holistic features for these
two-part branches are simply concatenating the correspond-
ing local part features. In the testing stage, we concatenate
these two holistic features ([0.6fh3, 0.4fh6]) to match the vis-
ible and thermal images.
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Figure 2: The framework of our proposed method includes feature extractor, multi-scale part, and Multi-Relationship Constraints. The feature
extractor contains two independent modules and a sharing module. We use feature extractor to extract multi-scale part feature, which includes
six-part features, three-part features, and their corresponding holistic features. Then, we optimize the network with cross-entropy identity
loss (LID) and Multi-Constraint (MC). The MC adopts the relationships of Instance-to-Instance (I2I), Center-to-Instance (C2I), and Center-
to-Center (C2C) constraints to jointly reduce the cross-modality discrepancy and increase the similarity of the same class. Shapes indicate
the identities and colors represent the modalities (blue for visible and yellow for thermal).

3.2 The Multi-Constraint Loss
For learning a more discriminative feature, we propose a gen-
eral metric learning by considering multiple cross-modality
constraints, i.e., Center-to-Center (C2C), Center-to-Instance
(C2I), and Instance-to-Instance (I2I). Specifically, the I2I and
C2I constraints are leveraged to optimize the holistic fea-
tures, the C2C constraint is utilized to constrain the local
part features. These three constraints jointly reduce the inter-
modality discrepancy and intra-class variations, and an illus-
tration of them are shown in Figure 3.

Assume xvi and xti are a sample of class i from visible
modality and thermal modality, respectively. Their class cen-
ter cvi and cti can be computed by:

cvi =
1

Ci

Ci∑
j=1

fvj , cti =
1

Ci

Ci∑
j=1

f tj , (1)

where Ci is the number of samples of class i for a modality
in a mini-batch. fvj and f tj are the feature of xvj and xvj .

1) C2C Constraint. For handling the large inter-modality
discrepancy, we use C2C constraint enforces the cross-
modality intra-class centers have higher similarity than inter-
class centers. Given a class center anchor of one modality
(i.e., cva), we select a positive and negative class center form
another modality (ctp and ctn). Then, we reduce the distance
between cva and ctp, and enlarge the distance between cva and
ctn (Figure 3(a)). Given the selected positive and negative
class center pairs, the loss of C2C constraint is defined as:

LC2C = L(PC2C , NC2C), (2)

where the PC2C and NC2C are positive and negative pairs
satisfying C2C constraint, respectively. The pair-based loss
function L(P,N) will be introduced later.

2) C2I Constraint. We further enforces that each sample
should be close to its corresponding class center of the other
modality to reduce the intra-modality variations. Given a
class center anchor of one modality (i.e., cva), we select a
positive and negative samples form another modality (xtp and
xtn). Then, we force positive samples xtp to approach their
own inter-modality class center cva, and enlarge the distance

between cva and xtn (Figure 3(b)). The loss of C2I constraint
is defined as follows:

LC2I = L(PC2I , NC2I), (3)

where the PC2I and NC2I indicate the positive and negative
pairs of the C2I constraint, respectively.

3) I2I Constraint. We utilize the I2I constraint to increase
the similarity of two matching samples from the two differ-
ent modalities. Given a anchor sample of one modality (i.e.,
xva), we select a positive and negative samples from another
modality (xtp and xtn). Then, we pull the positive pairs close
to each other and push the negative pairs away from each
other. The loss of I2I constraint is defined as follows:

LI2I = L(PI2I , NI2I), (4)

where the PI2I and NI2I indicate the positive and negative
pairs of the I2I constraint, respectively.

By jonitly considering these three constraints, the equation
of MC is defined as follows:

LMC = αLI2I + βLC2I + ωLC2C , (5)

where α, β, and ω are hyper-parameters.

3.3 Adaptive Weighting Loss
For implementing the L(P,N) used in the multi-constraints,
we devise a new adaptive weighting loss based on the Multi-
Similarity (MS) Loss [Wang et al., 2019b] for the cross-
modality VT-ReID task.

Revisit Multi-Similarity (MS) Loss
The MS loss optimizes the feature space based on informa-
tive pairs mined based on three similarities: Self-similarity,
Negative relative similarity, and Positive relative similarity.
In the MS loss, And they propose a MS loss to optimize sam-
ple pairs by considering these three similarities. Set xi as an
anchor, a negative and positive pair {xi, xj} are selected if
the pair similarity Sij satisfies the following conditions:

S−ij > min
yk=yi

Sik −m,S+
ij < max

yk 6=yi
Sik +m (6)

where m is a given margin.
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Figure 3: Illustration of the three constraints of proposed MC. (a) Given a anchor class center of one modality (cva), we select a positive and
negative class center form another modality (ctp and ctn). Then, we reduce the distance between cva and ctp, and enlarge the distance between cva
and ctn. (b) We also select a positive and negative samples form another modality (xt

p and xt
n). Then, we increase the positive pairs similarity,

and reduce the negative pairs similarity. (c) Given a anchor sample of one modality (xv
a), we select a positive and negative samples form

another modality (xt
p and xt

n). Then, we pull the positive pairs close to each other as well as push the negative pairs away from each other.

The MS loss function can be calculated by:

LMS =
1

C

C∑
i=1

{
1

λp
log

[
1 +

∑
k∈Pi

e−λp(Sik−λ)

]

+
1

λn
log

[
1 +

∑
k∈Ni

eλn(Sik−λ)

]}, (7)

where C is the number of selected anchors. λp, λn, and λ are
hyper-parameters.

Despite the effectiveness of MS loss in the standard sin-
gle modality task, the MS will suffer the issue of discarding
many informative pairs for the cross-modality VT-ReID. As
shown in figure 4 (a), the negative pair with maximum cross-
modality similarity is the av, nt. The similarity of positive
pair av, pt is larger than the av, nt which does not satisfy
with the condition in Eq. 6. Then, this informative positive
pair will be discarded and not be used for optimization. To
deal with this issue, we propose a new pair mining strategy
for selecting cross-modality informative pairs. Besides, we
further devise a weighting function to adjust the weights of
selected pairs.

Pair Mining
For a given visible modality anchor av , the pt and nv are
a positive sample and a negative sample from the inter-
modality, respectively. Then we will decide whether selecting
pt or nv to form a positive pair or a negative pair of av based
on following conditions.

For the selection of positive pair, we first find the closest
negative intra-modality sample nv of pt. If the similarity of
{nv, pt} is higher than the {av, pt}, it means that the sim-
ilarity of {av, pt} is not optimized as shown in Fig.4. We
will select {av, pt} as a positive pair. Formally, the condition
for the positive pair selection with an addition margin can be
denote as,

S
(
av, pt

)
< max

nv
S
(
pt, nv

)
+m, (8)

where m is a margin.

𝑎𝑣
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Figure 4: Illustration of the pair mining of MS loss and our AWL.
(a) Set av as the anchor, the inter-modality hard positive samples pt

(red borer) are not selected following the mining of MS loss. (b)
The informative pair (red borer) can be selected following our pair
mining condition.

In a similar manner, a inter-modality negative pair {av, nt}
is select if S(av, nt) satisfies following conditions:

S
(
av, nt

)
> min

nv
S
(
nt, nv

)
−m, (9)

where the nv and nt are belong the same label.

Pair Weighting
After selecting the informative positive and negative pairs,
we will adaptively assign large weights for more informative
pairs, impelling the model to pay more attention to the infor-
mative pair during training. In this step, we exploit a sigmoid
variant function to adaptively adjusting weighting based on
their similarity with the anchor. Specifically, the weights are
inversely correlated to positive pairs similarity and positively
correlated to negative pairs similarity. The adaptive weight-
ing function for positive pairs and negative pairs are defined
as follows:

Wp = 10× δ(−S(a,p)−0.50.5 ), Wn = 3× δ(S(a,n)−0.50.5 ),
(10)

where δ indicates the sigmoid function.
We then design the Adaptive Weighting Loss (AWL) based

on the Eq 7, by considering the selected informative pairs and
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Methods Venue

All-search
Single-shot Multi-shot
R1 mAP R1 mAP

D2RL CVPR19 28.9 29.2 / /
DGD TIP19 37.35 38.11 43.86 30.48
AlignGAN ICCV19 42.4 40.7 51.5 33.9
DFE MM19 48.71 48.59 54.63 42.14
Hi-CMD CVPR20 34.94 35.94 / /
PIG AAAI20 38.1 36.9 45.1 29.5
cmSSFT CVPR20 47.7 54.1 57.4 59.1
Xmodal AAAI20 49.92 50.73 / /
CML MM20 51.8 51.21 56.27 43.39
DDAG ECCV20 54.75 53.02 / /
DG-VAE MM20 59.49 58.46 / /
SIM CVPR20 60.88 56.93 / /
HC-TRI TMM21 61.68 57.51 / /
Ours IJCAI21 64.82 60.81 68.05 51.48

Table 1: Comparison with the state-of-the-art methods on the
SYSU-MM01 dataset.

their adaptive weights. The final AWL is defined as:

L(P ,N ) =
1

C

C∑
i=1

{
log

[
1 +

∑
k∈Pi

e−Wp(S(a,p)−λ)

]

+ log

[
1 +

∑
z∈Ni

eWn(S(a,n)−λ)

]},
(11)

where C is the number of selected anchors. λ is a hyper-
parameter.

3.4 Final Loss Function
Finally, we train our proposed framework by combining the
Multi-Constraint (MC) loss LMC and the identity loss LID
in an end-to-end manner. The loss is as follows:

argmin
θ
LMC + γLID, (12)

where θ represents the parameters of the model, and δ is a
hyper-parameter controlling the influence of the two losses.

4 Experiments
4.1 Experimental Settings
Datasets. We evaluate our proposed methods on two pub-
licly available VT-ReID datasets (SYSU-M001 [Wu et al.,
2017] and RegDB [Nguyen et al., 2017]). SYSU-M001 con-
tains 287,628 RGB images and 15,729 infrared images cap-
tured by four RGB cameras and two thermal cameras. The
training set consists of 22,258 RGB images and 11,909 in-
frared images from 395 identities. RegDB contains 4,120
RGB images and 4,120 infrared images. There are 412 iden-
tities, where 206 identities for training and others for testing.

Evaluation metrics. The Cumulative Matching Character-
istics (CMC) and mean Average Precision (mAP) are used to
evaluate the performance. For the CMC, we only report the
rank-1 (R1) accuracy.

Setting V2T T2V
Method Venue R1 mAP R1 mAP
D2RL CVPR19 / / 43.4 44.1
AlignGAN ICCV19 57.9 53.6 56.3 53.4
DFE MM19 70.13 69.14 67.99 66.70
Hi-CMD CVPR20 / / 70.93 66.04
PIG AAAI20 48.50 49.3 48.1 48.90
Xmodal AAAI20 62.21 60.18 / /
CML MM20 59.81 60.86 / /
cmSSFT CVPR20 65.4 65.6 63.8 64.2
DDAG ECCV20 69.34 63.46 68.06 61.80
DG-VAE MM20 72.97 71.78 / /
SIM CVPR20 75.29 74.47 78.30 75.24
HC-TRI TMM21 91.05 83.28 89.30 81.46
Ours IJCAI21 93.83 87.55 91.55 85.25

Table 2: Comparison with the state-of-the-art methods on the
RegDB dataset on visible-thermal and thermal-visible settings.

Method
RegDB SYSU-M001

R1 mAP R1 mAP
Baseline(w/ Part) 64.71 63.10 48.15 48.39
+MC 91.55 85.25 64.82 60.81
Baseline(w/o Part) 40.34 38.16 35.55 34.97
+MC 54.81 54.12 50.25 48.63

Table 3: Evaluation of the MC under the baseline with part (w/Part)
and without part (wo/Part).

Implementation details. The baseline network is con-
structed based on [Liu and Tan, 2020], which optimizes part
features with the identity loss and hc-tri loss. We also eval-
uate the performance of a baseline framework without part
([Ye et al., 2018b]) to demonstrate the generalization of our
proposed. The training batch is set to 96 (48 RGB images
and 48 infrared images from 6 person IDs) and 64 (32 RGB
images and 32 infrared images from 8 person IDs) for SYSU-
MM01 and RegDB dataset, respectively. The input images
are resized to 288 × 144 × 3 for both RGB and infrared im-
ages. We use the SGD optimizer for training with an initial
learning rate of 0.01, and train the model for 80 epochs. We
divide the learning rate by 10 after every 10 epochs. The
weights α, β, and ω in Eq. 5 are set to 0.5, 1.0, and 0.2, re-
spectively. The pair mining margin m in Eq. 8 is set to 0.2. λ
in Eq. 11 is set to 0.5. The weights γ in Eq. 12 is set to 1.

Method
RegDB SYSU-M001

R1 mAP R1 mAP
Baseline(w/o Part) 40.34 38.16 35.55 34.97
+I2I 50.63 51.72 47.44 47.79
+C2I 51.70 51.99 48.59 46.92
+C2C 51.02 50.50 47.25 47.41
+I2I+C2C 51.26 52.22 49.01 47.67
+C2I+C2C 52.33 52.25 49.49 48.06
+I2I+C2I 53.30 52.23 49.41 49.81
+I2I+C2I+C2C 54.81 54.12 50.25 48.63

Table 4: Investigation of three constraints in MC.
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Method
RegDB SYSU-M001

R1 mAP R1 mAP
Baseline(w/o Part) 40.34 38.16 35.55 34.97
+MS (MS mining) 44.85 41.74 40.07 39.29
+MS (Our mining) 49.32 48.60 44.12 45.35
+AWL (MS mining) 46.75 46.03 41.65 40.39
+AWL (w/o weighting) 49.85 49.04 44.46 46.39
+AWL 50.63 51.72 47.44 47.79

Table 5: Evaluation of the pair mining and pair weighting in our
proposed AWL with I2I constraint.

Method
RegDB SYSU-M001

R1 mAP R1 mAP
Baseline(w/o Part) 40.34 38.16 35.55 34.97
+Triplet Loss(Hard) 42.28 42.49 42.02 42.84
+MS Loss(cm-Mining) 45.29 41.96 41.55 43.26
+Hc-Tri Loss 48.59 45.22 38.84 38.90
+CML Loss 50.29 48.34 44.36 44.25
+Our Loss 54.81 54.12 50.25 48.63

Table 6: Comparison of the MC with other metric-learning methods.

4.2 Comparison with State of The Art
We compare our proposed method with recently published
state of the arts on SYSU-MM01 and RegDB datasets.
The comparison includes: feature extraction based methods
(cmSSFT with single query [Lu et al., 2020], DDAG [Ye
et al., 2020], SIM [Jia et al., 2020]), metric learning based
methods ( DGD [Feng et al., 2019], DFE [Hao et al., 2019a],
CML [Ling et al., 2020], HC-TRI [Liu and Tan, 2020]), im-
age generation based methods (D2RL [Wang et al., 2019c],
AlignGAN [Wang et al., 2019a], Xmodal [Li et al., 2020],
Hi-CMD [Choi et al., 2020], PIG [Wang et al., 2020], DG-
VAE [Pu et al., 2020]).

The results on SYSU-MM001 and RegDB datasets are
shown in Tabel 1 and Tabel 2, respectively. We can see that
proposed method outperforms the state-of-the-art methods on
both datasets. Specifically, our method achieve rank-1 accu-
racy = 64.82 and mAP accuracy = 60.81 on SYSU-MM01
for the single-shot setting of the all-search mode, and, rank-1
accuracy = 93.83 and mAP accuracy = 87.55 on RegDB for
visible to thermal setting.

4.3 Evaluation
In this section, we evaluate the effectiveness of each compo-
nent in our proposed method on SYSU-MM01 (single shot
setting of all-search mode) and RegDB (thermal to visible
setting).

Comparison over the baseline. To evaluate the effective-
ness and demonstrate the generalization of our proposed
Multi-Constraints (MC), we conduct experiments of ablation
study under two settings: the baseline with part (w/ Part) [Liu
and Tan, 2020] and without part (w/o Part) [Ye et al., 2018b]
on both datasets. The results show in Table 3. We can see that
the proposed MC can significantly improve the performance
over the baseline on both datasets for two settings. The ob-
servation verifies the effectiveness and generalization of our

proposed MC for the challenge cross-modality VT-ReID.

Investigation of three constraints in MC. In Table 4, we
further evaluate the effectiveness of different constraints in
the MC. From the table, we can find that considering every
single constraint can significantly improve the performance
over the baseline. Moreover, combining two of them can
further improve the performance. Additionally, the highest
accuracy is obtained by jointly considering the three con-
straints. These results demonstrate the complementary and
mutual benefits of the three constraints in MC.

Evaluation of the components in AWL. To evaluate
the effectiveness of the proposed Adaptive Weighting Loss
(AWL), we conduct a controlled experiment with MS
loss [Wang et al., 2019b]. The results are reported in Ta-
ble 5. By replacing the pair mining in MS loss with ours
(+MS (our mining) vs. +MS (MS mining)) and the pair min-
ing in our AWL with the one in MS (+AWL (MS mining)
vs. +AWL), we can observe a significant performance boost
for the former case and a notable degeneration for the later.
Then, by comparing the AWL without pair weighting to AWL
(+AWL (w/o weighting) vs. +AWL), we can find that AWL
with pair weighting gain a higher result than AWL without
pair weighting. These results demonstrate the effectiveness
of the proposed pair mining and pair weighting strategies.

Comparison of the MC with other metric-learning meth-
ods. In order to demonstrate the superiority of our proposed
MC, we further compare our MC with other various dif-
ferent metric-learning loss functions, including Triplet Loss
(Hard) [Hermans et al., 2017] (I2I), MS Loss with cross-
modality pair mining (cm-Mining) [Wang et al., 2019b] (I2I),
Hc-Tri Loss [Liu and Tan, 2020] (C2C), and CML Loss [Ling
et al., 2020] (C2C & C2I). Notice that these loss functions
usually consider one or two constraints. By comparing our
MC with them, our method outperforms them by a large mar-
gin. These results suggest considering more comprehensive
data relationships is essential for overcoming the large inter-
modality discrepancy and intra-and-inter class variations in
VT-ReID.

5 Conclusion
In this paper, we propose a Multi-Constraint (MC) for
VT-ReID, which jointly considers Instance-to-Instance (I2I),
Center-to-Instance (C2I), and Center-to-Center constraints
(C2C) to optimize feature similarity to reduce inter-modality
discrepancy and intra-modality variations. Furthermore, we
implement MC with an Adaptive Weighting Loss (AWL) to
promote the model training. Extensive experiments on two
VT-ReID datasets demonstrate the superior performance of
the proposed over the state of the art methods.
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