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Abstract

For crowd counting task, it has been demonstrated
that imposing Gaussians to point annotations hurts
generalization performance. Several methods at-
tempt to utilize point annotations as supervision di-
rectly. And they have made significant improve-
ment compared with density-map based methods.
However, these point based methods ignore the in-
evitable annotation noises and still suffer from low
robustness to noisy annotations. To address the
problem, we propose a bipartite matching based
method for crowd counting with only point super-
vision (BM-Count). In BM-Count, we select a sub-
set of most similar pixels from the predicted den-
sity map to match annotated pixels via bipartite
matching. Then loss functions can be defined based
on the matching pairs to alleviate the bad effect
caused by those annotated dots with incorrect po-
sitions. Under the noisy annotations, our method
reduces MAE and RMSE by 9% and 11.2% respec-
tively. Moreover, we propose a novel ranking dis-
tribution learning framework to address the imbal-
anced distribution problem of head counts, which
encodes the head counts as classification distribu-
tion in the ranking domain and refines the estimated
count map in the continuous domain. Extensive ex-
periments on four datasets show that our method
achieves state-of-the-art performance and performs
better crowd localization.

1 Introduction

Recently, due to its significance in various applications,
crowd counting has became an important research problem
in deep learning community. Earlier methods estimate crowd
counts via the detection of people, bodies or heads [Rabaud
and Belongie, 2006; Li er al., 2008; Ge and Collins, 2009] in
the image, which may suffer from heavy occlusions. There-
fore, these methods require fine-grained annotations for train-
ing and have limited applications. Current methods mainly
cast crowd counting as a density map estimation problem
[Zhang et al., 2016; Li et al., 2018; Xiong et al., 2019;
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Liu et al., 2019a; Jiang et al., 2020]. Specifically, a crowd
density map is regressed by neural networks, whose values
are summed to give the total size of the crowd. This type of
methods have achieved excellent improvements in terms of
the overall error rate compared with earlier methods.

However, most of the crowd density map estimation net-
works are not directly trained with point supervision. Instead,
they are all supervised by pseudo ground truths, where each
annotated point in the original ground truths is turned into a
Gaussian blob that represents the spatial extent of each per-
son. Unfortunately, it is a non-trivial task to set the correct
width for each Gaussian blob, as the spatial extents of persons
are various and these informations are not provided by the
dataset. Instead of constraining the value at every pixel in the
density map, [Ma et al., 2019] proposed a Bayesian loss func-
tion adopting a more reliable supervision on the count expec-
tation at each annotated point. Although the new loss makes
substantial improvements over the baseline loss, it also re-
quires Gaussian kernels to construct the likelihood functions
for annotated points and may lead to density maps that are
very different from the ground truths. [Wang ez al., 2020a]
proposed to use distribution matching for crowd counting
(DM-Count) with only point supervision. In this work, the
authors use optimal transport to measure the similarity be-
tween the normalized predicted density map and the normal-
ized ground truth density map. This measurement can pro-
vide valid gradients for network training even if there are no
overlap between source and target distribution. However, to
stabilize optimal transport computation, total variation loss is
incorporated into the model, which may reduce the robustness
to noisy annotations and ruin the performance. Furthermore,
as the size of the input for optimal transport, i.e. the num-
ber of the pixels in density map, is much larger than that of
crowd, the calculation of optimal transport loss is also time
consuming.

In this paper, we propose a new crowd counting framework
with only point supervision. Our method casts crowd count-
ing as a bipartite matching problem, which selects a subset
of most similar pixels from the predicted density map for the
annotated pixels in ground truth. As we do not impose any
constraints on the coordinates of predicted values and their
supervision points, our method is more robust to noisy an-
notations. Unlike DM-Count, which treats all the pixels of
ground truth density map equally, our method only considers
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the sparse pixels with point annotations. Therefore, the size
of the input of our method is much smaller, and our network
can be trained more efficiently. Based on the matching pairs
computed by bipartite matching, we present a new ranking
distribution loss, which can deal with the imbalanced distri-
bution problem of head count commonly appeared in public
datasets. Extensive experiments show that our method can
achieve the best performance compared with previous meth-
ods. In summary, the contributions of our work are threefold:

* We propose a new bipartite matching based crowd
counting method with only point supervision (BM-
Count). Our method is more robust to noisy annotations
and can be trained more efficiently.

* We present a new ranking distribution loss for perfor-
mance improvement, which can be used to deal with the
imbalanced distribution of head count in crowd counting
problem.

* Our method gives new state-of-the-art performance with
light weight backbone on four public crowd counting
datasets. Our predicted density maps are interpretable
and are more useful in real world applications.

2 Related Work

The existing crowd counting methods can be divided into
three categories: traditional counting methods, density-map
based methods and point based methods.

2.1 Traditional Methods

Most of the early traditional works focus on detection-based
methods [Rabaud and Belongie, 2006; Li et al., 2008; Ge and
Collins, 2009] via the detection of people, bodies or heads
in the crowd image. However, severe occlusions of highly
congested scenes limit the performance of these methods. To
overcome the problem, regression-based methods [Victor and
Andrew, 2010; Idrees et al., 2013; Viet-Quoc et al., 2015] are
proposed to learn a mapping from the extracted feature to the
count number directly. But their results are less interpretable
and the dot annotations are underutilized.

2.2 Density-Map Based Methods

Recent methods mainly conduct crowd counting via density
map estimation, which have surpassed the traditional meth-
ods by a large margin. [Zhang et al., 2016; Cao ef al., 2018;
Jiang et al., 2019; Liu et al., 2019a; Dai et al., 2021] mainly
focus on the scale variation problem by enlarging the diver-
sity of receptive field and fusing multi-scale features effec-
tively. Instead, many methods attempt to utilize auxiliary in-
formation to boost the performance, such as segmentation and
semantic priors [Zhao et al., 2019; Wan et al., 2019], atten-
tion [Jiang er al., 2020], perspective map [Yang er al., 2020],
context information [Liu ef al., 2019b] and adaptive density
maps [Wan et al., 2020]. Moreover, several approaches ad-
dress the density pattern shift problem by learning rich rep-
resentations covering adequate density levels [Xiong ef al.,
2019]. However, all of these methods are based on density
maps whose quality limits the upper bound of network per-
formance. Because it is not trivial to set suitable Gaussian
widths in the process of turning annotated dots into blobs.
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2.3 Point Based Methods

Most recently, several methods have made use of annotated
points directly to alleviate the noises caused by Gaussian
smoothed operation. [Ma et al., 2019] propose a Bayesian
loss that adopts a more reliable supervision on the count
expectation at each annotated point. But it still requires
Gaussian kernels and may predict incorrect density maps be-
cause the loss is underdetermined. Hence, [Wang er al.,
2020a] makes use of Optimal Transport to perform distribu-
tion matching under points supervision. Specifically, it can
provide valid gradients to train count networks by measuring
the similarity between sparse density map and ground truth.
However, the time complexity of solving Optimal Transport
problem is still not efficient and robust enough. And the
method ignores the natural ranking of head counts per pixel
that provides richer information.

3 Our Method: BM-Count

In this section, we introduce our BM-Count that considers
crowd counting as bipartite matching problem. Given pre-
dicted density map, BM-Count first selects a subset of pixels
from it that are most similar to the pixels of ground truth with
point annotations, then it optimizes the predicted density map
with the supervision of matched pixel pairs. Besides of gen-
erally used counting loss and regression loss, we additionally
introduce a ranking distribution loss for further performance
improvement. As we do not make any assumption on the ar-
chitecture of the network, BM-Count can be applied to all
existing counting networks and is end-to-end trainable.

3.1 Crowd Counting as Bipartite Matching

To get rid of Gaussian smoothing ground truth annotations,
DM-Count uses optimal transport loss to measure the similar-
ity between the prediction and the ground truth. To increase
the stabilization, DM-Count further incorporates a total vari-
ation loss. However, for each pixel value of prediction to be
optimized, the total variation loss assumes that its supervision
has the same coordinates on the ground truth. This makes
DM-Count fragile to noises, which is inevitable in crowd an-
notation. Actually, there is also the same problem for meth-
ods supervised with Gaussian smoothed ground truth. How-
ever, as each annotated point is turned into a Gaussian blob,
the problem is not obvious. To train our network with only
point supervision, we select a subset of pixels from predicted
density map to make them most compatible with ground truth
annotations. As no constraints are imposed on the coordinates
of predicted values and their supervision, our method is more
robust to noisy annotations.

Given a predictive density map and its corresponding
ground truth, let P = {p,;}"_; denote the flattened points of
prediction, where 7 is the number of pixels. Let G = {g;}?_,
denote the annotated points on ground truth, where v is the
number of point annotations. As the annotations in crowd
counting dataset are very sparse, v is much smaller than n.
Our goal is to find an optimal subset from P such that this
subset is most compatible with G. To be specific, we try to
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Figure 1: The illustration of the proposed BM-Count, where a novel ranking distribution learning framework uses the results of bipartite
matching between estimated map and GT map to optimize Ranking Distribution Loss, Regression Loss and Count Loss.

find a set S = {s;}?_, of size v, such that

v
S = argmin ZCost(pSi,gi),
Sc{t,,n}

ey

where Cost(ps,, g;) is the matching cost between estimated
point ps, and ground truth point g;. The matching cost is
defined as

2

where ¢, and c; is the count number for estimated point p,,
and ground truth point g; respectively, X,, and x; are the co-
ordinates of p,, and g; respectively, and A is the weight factor
to balance the importance of these two items. In the formula,
the former item measures the value difference between p;,
and g;, while the latter item computes the spatial distance be-
tween the points.

As the two points sets P and G satisfy PNG = (J, the above
minimization problem can be formulated as a bipartite match-
ing problem and can be solved using Hungarian algorithm.
Then we can get the matched pixel pairs between predictive
density map and ground truth M = {(ps,,¢:)[i =1, -+ ,v}.
The unmatched points in the predictive density map are de-
noted as Uf.

Cost(ps;» 95) = [1es; = ¢jlln + All%s; =2

Discussion. The time complexity of Sinkhorn algorithm
used to compute the optimal transport loss in DM-Count is
O(n?logn/e?), where ¢ is the desired optimality gap. The
time complexity of Hungarian algorithm used in our method
is O(n?v). Although it seems to be that the former one is
faster, the size of the input of our method is much smaller
than that of DM-Count, i.e. v < logn/ €2, thus our method
can be trained more quickly as shown in experimental result
section.

3.2 Ranking Distribution Learning

In this section, we propose a novel supervision way to sub-
stitute for original regression form for crowd counting. As
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shown in Figure 2, the original supervision only comes from
the regression loss and count loss, which models the crowd
counting as a regression problem. Unlike previous methods,
our proposed supervision way models the task as a distribu-
tion learning problem to address the imbalanced distribution
problem of head counts by using ranking relation of head
counts. And the overall loss consists of ranking distribution
loss, regression loss and count loss.

Ranking Distribution Loss. As discussed above, previ-
ous methods make use of 1x1 convolution layer to regress
continuous values for each pixel in estimated map. DM-
Count [Wang er al., 2020a] also estimates the count map un-
der points supervision in the same way. Because the ground
truth maps are reshaped to 1/8 of input size. So the head
counts of pixels are summed values of non-overlapped lo-
cal patches in original ground truth maps, not only 1s and
0s. However, according to our statistics, there exists severe
imbalanced distribution of head counts among all datasets.
[Chen er al., 2013] has demonstrated that conventional re-
gression models are difficult to estimate accurately under
such distribution.

Notably, head counts are strongly correlated and neighbor-
ing values have closer similarities than those further apart,
e.g. the count number of 2 is more similar to that of 3 than
that of 6. To leverage the observation, we encode the im-
plicit ranking relation into ranking distribution. It reduces
the bad effect of imbalanced distribution because additional
supervision can be provided implicitly based on the plenty
of neighboring head counts. Moreover, compared with one-
hot labels for classification, the proposed ranking distribution
not only keeps the characteristic of classification but also pro-
vides richer ranking information.

For a specific pixel in the ground truth map, its count num-
ber cis encoded as a distribution Z of K + 1 dimension, with
its element z; expressed as follows:

e~ (—v)?

(i—y)?

_— 3
Zz‘K:O e ©

Z5 =
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where K denotes the maximum count number of specific
dataset. According to our statistics, most of popular datasets
almost share the same number. Hence, the element z; denotes
the probability that count number is j. By doing so, the prob-
ability distribution is formulated by the Euclidean distance of
its inter-class and numbers closer to the ground truth number
have higher probabilities, as shown in Figure 3.

To measure the difference between prediction and target
distribution, we use Kullback-Leibler (KL) divergence. So
the proposed ranking distribution loss is defined as follows:

Z > KL(%p2g) + Y KL(%,20))
i: (p,g)EM peEU
4

where B is the number of images in the batch, £, is the es-
timated distributions, z, and zq are the ground truth distribu-
tions with and without head counts respectively.

rank

Regression Loss. By computing the expectation of pre-
dicted distribution for each pixel, the estimated count map
can be acquired in the ranking domain. Apart from this, we
also leverage the original regression loss to further refine the
estimated count map in the continuous domain, which is ex-
pressed as follows:

B
L R

=1 (p,9)eM

where ¢, and ¢, are the estimated and ground truth numbers
respectively.

— ol + Y 16— 0)

peU
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Count Loss. The goal of crowd counting is to make the
overall estimated count as close as possible to ground truth
number. So it is essential to utilize the count loss to optimize
network auxiliary, and the count loss is defined as the abso-
lute difference between them:

Z ICi = Cil

where C’i and C; denotes the overall estimated and ground
truth counts for 4, image respectively.

(6)

count

Overall Loss. By weighting the above three loss functions,
the counting network is trained using the following objective
function:

L = Leount + aLygni + /BL'reg (7

where « and /3 are the weights to balance the ranking distri-
bution loss, regression loss and count loss.
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Figure 3: Example for ranking distribution with ¢ = 3 and K = 6.

4 Experiments

In this section, we first describe the details of experiment set-
tings. Then we compare our proposed method with recent
state-of-the-art methods on four public challenging datasets.
Finally, ablation studies are further conducted to demonstrate
the effectiveness of each component of our method.

4.1 Experiment Settings

Learning Settings. For a fair comparison, we use the
same network(VGG-19) as [Ma et al., 2019] and [Wang
et al., 2020a] that utilize point supervision. Adam opti-
mizer is applied with fixed learning rate at le-5 and weight
decay of le-4. And the network is trained with batch
size of 10 following DM-Count on an NVIDIA 2080Ti
GPU. We evaluate our method on four crowd counting
datasets: UCF-QNREF [Idrees et al., 2018], NWPU [Wang
et al., 2020b], ShanghaiTech [Zhang et al., 2016] and JHU-
CROWD++ [Sindagi et al., 2020]. Moreover, due to large
sizes of images in UCF-QNRF and NWPU datasets, we limit
the shorter size of image within 2048 and 1920 respectively.
Also, random crops are taken for training and crop sizes are
based on the datasets. Specifically, 256 for ShanghaiTech
Part A, 512 for ShanghaiTech Part B and UCF-QNREF, 384
for NWPU and JHU-CROWD++.

Evaluation metrics. Following the existing works [Zhang
etal.,2016; Ma et al., 2019; Wang et al., 2020b; Wang et al.,
2020a], we adopt the mean absolute error (MAE) and root
mean squared error (RMSE) as metrics to evaluate the accu-
racy of crowd counting estimation, which are defined as:

N
1 .
MAE = & |G — Cil, RMSE = 2 (8)

i=1

where N is the total number of testing images, CA’Z and C;
denotes the overall estimated and ground truth counts for iy,
image respectively.

4.2 Comparisons with State-of-the-art

Quantitative Results. The experimental results are shown
in Table 1. Previous state-of-the-art methods are based on
density-map supervision or point supervision. Specifically,
density-map based methods pay attention to the design of
complex networks by utilizing multi-scale features or aux-
iliary information to boost performance, leading to more pa-
rameters and slow inference. Contrarily, point based methods
concentrate on the effective ways of point supervision while
ignore the network architectures.
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UCF-QNRF NWPU Shanghai A Shanghai B JHU++
Method Reference | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
density-map:
CSRNet [Li et al., 2018] CVPRI18 | 110.6 190.1 | 121.3 387.8 | 682 1150 | 10.6 16.0 859  309.2
SANet [Cao ef al., 2018] ECCV18 - - 190.6 4914 | 67.0 1045 8.4 13.6 91.1 3204
CAN [Liu et al., 2019b] CVPR19 | 107.0 183.0 | 106.3 386.5 | 62.3  100.0 7.8 122 | 100.1 314.0
SFCN [Wang et al., 2019] CVPR19 | 102.0 171.0 | 105.7 424.1 | 64.8 107.5 7.6 13.0 775  297.6
S-DCNet [Xiong et al., 2019] ICCV19 1044 176.1 | 90.2  370.5 | 583 95.0 6.7 10.7 - -
DSSINet [Liu et al., 2019a] ICCV19 99.1 159.2 - - 60.6 96.0 6.8 10.3 | 1335 4165
PaDNet [Tian et al., 2020] TIP20 96.5 170.2 - - 59.2 98.1 8.1 12.2 - -
CG-DRC [Sindagi et al., 2020] PAMI20 955 1643 - - 60.2 94.0 7.5 12.1 71.0  278.6
KDMG [Wan et al., 2020] PAMI20 99.5 173 100.5 4155 | 63.8 99.2 7.8 12.7 69.7  268.3
RPNet [Yang et al., 2020] CVPR20 - - - - 61.2 96.9 8.1 11.6 - -
ASNet [Jiang et al., 2020] CVPR20 91.6  159.7 - - 57.8 90.2 - - - -
AMRNet [Liu et al., 2020] ECCV20 86.6 1522 - - 61.6 98.4 7.0 11.0 - -

NoisyCC [Wan and Chan, 2020]  NeurIPS20 | 85.8 150.6 | 969 5342 | 61.9 99.6 7.4 11.3 67.7  258.5

point:

Pixel-wise Loss [Ma et al., 2019] ICCV19 106.8  183.7 - - 68.6 110.1 8.5 13.9 - -
Bayesian Loss [Ma er al., 2019] ICCV19 88.7 154.8 | 1054 4542 | 628 101.8 7.7 12.7 75.0  299.9
DM-Count [Wang et al., 2020a] ~ NeurIPS20 | 85.6  148.3 | 88.4  383.6 | 59.7 95.7 74 11.8 639  268.7

BM-Count(ours) - 812 138.6 | 834 3584 | 573 90.7 7.3 114 61.5 263

Table 1: Comparisons between state-of-the-art methods based on density-map supervision and point supervision on four datasets.

For point based methods, our proposed method achieves
the state-of-the-art performance on all datasets, when used in
the same network architecture and training procedure. Specif-
ically, on the UCF-QNRF dataset, BM-Count reduces the
MAE and RMSE of the DM-Count from 85.6 to 81.2 and
from 148.3 to 138.6 respectively. On the NWPU dataset,
our method improves 5.65% in MAE and 7.77% in RMSE.
On the ShanghaiTech dataset, proposed method reduces the
MAE of Part A and Part B from 59.7 to 57.3 and from 7.4
to 7.3 respectively. Moreover, for the JHU++ dataset, BM-
Count reduces the MAE from 63.9 to 61.5 and the RMSE
from 268.7 to 263.

Compared with density-map based methods, BM-Count
still achieves overall best performance on all datasets with-
out using complex network architectures. Specifically, on the
UCF-QNRF dataset, BM-Count improves 5.36% in MAE and
7.97% in RMSE compared with NoisyCC. Notably, on the
NWPU dataset, our method improve the performance signif-
icantly compared with S-DCNet, 7.54% in MAE and 3.27%
in RMSE. Moreover, BM-Count achieves comparable MAE
and RMSE on the ShanghaiTech dataset compared with AS-
Net and S-DCNet. Also, on the JHU++ dataset, proposed
method improves 9.15% in MAE significantly and achieves
comparable RMSE compared with NoisyCC.

Qualitative Results. As shown in Table 2, our proposed
method produces much higher PSNRs and SSIMs compared
with DM-Count on all datasets, which demonstrates that our
estimated maps are more close to the ground truths. Also,
Figure 4 presents the estimated density maps that perform
better than DM-Count in both sparse and dense areas.

4.3 Ablation Studies

Hyper-parameter study. The matching cost of bipartite
matching introduces the weight factor A\ to control the im-
portance between value difference and spatial distance. As
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DM-Count BM-Count
Dataset PSNR SSIM | PSNR SSIM
UCF-QNRF | 40.68 0.6966 | 45.59 0.7093
NWPU 46.39 0.8641 | 50.37 0.8658
Shanghai A | 34.43 0.4463 | 39.54 0.5123
Shanghai B | 44.09 0.8533 | 47.08 0.8537
JHU++ 41.85 0.6951 | 4695 0.7034

Table 2: Qualitative results on different datasets.

can be seen from the curves in Figure 5, varying A between
1 and 4, the results are robust and comparable, with the best
performance at A = 2. Also, the proposed three losses utilize
« and [ to balance these items. And our method acquires
the best performance with « = 2 and 8 = 3. Thus, we adopt
these configurations on all the datasets.

Contribution of each component. To validate the effec-
tiveness of our proposed losses, we train the model with five
different combinations: 1) Count Loss; 2) Count, Reg and
Rank Loss; 3) Count and Reg+ Loss; 4) Count and Rank+
Loss; 5) Count, Reg+ and Rank+ Loss. As shown in Ta-
ble 3, the proposed Reg+ Loss with matching pairs improves
the MAE from 65.3 to 59.8 and RMSE from 106.5 to 96.2,
compared with the Count Loss. With Rank+ Loss, it im-
proves the MAE from 65.3 to 58.9 and RMSE from 106.5
to 93.7 when models crowd counting as distribution learning
problem, which proves the superiority of the novel learning
framework. And the combination of all three losses achieves
the best performance, 57.3 in MAE and 90.7 in RMSE. Com-
pared with the combination without bipartite matching, it im-
proves 8.2% in MAE and 9.6% in RMSE significantly.

Training time study. To validate the efficiency of our pro-
posed method, we also conduct comparison experiments of
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Figure 4: Visualization of density maps. BM-Count localizes people better in both sparse and dense areas compared with DM-Count.
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Figure 5: The effect of A\, a and 3 on ShanghaiTech A dataset

Component Combinations
Count Loss v v v v v
Reg Loss v

Rank Loss v

Reg Loss+ v v

Rank Loss+ v v
MAE 653 624 598 589 573
RMSE 106.5 100.3 96.2 93.7 90.7

Table 3: Effect of each component on ShanghaiTech A dataset. The
symbol + denotes the methods using bipartite matching.

training time between BM-Count and DM-Count. Results are
listed in Table 4. As seen in the table, BM-Count reduces the
average training time for one epoch by a large margin on all
datasets. Specifically, 1.5x on the UCF-QNRF dataset, 2x
on the NWPU and JHU++ datasets, 3x on the ShanghaiTech
A dataset. The experiment has demonstrated the efficiency of
bipartite matching compared with optimal transport.

Robustness to noisy annotations. It is essential to measure
the robustness of proposed method based on point supervi-
sion to noisy annotation. Because the process of points an-
notation for crowd is ambiguous and could lead to inevitable
noises. Following DM-Count, we also add the same uniform
random noise to the original annotation. As shown in Table
5, our method outperforms all previous point based methods
and reduces the MAE and RMSE of DM-Count by a large
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Method QNRF NWPU JHU++ ShanghaiA
DM-Count  92.2s 179.4s 155.8s 19.0s
BM-Count  60.2s 84.5s 75.5s 6.1s

Table 4: Comparisons of average training time for one epoch on
different datasets.

Method Pixel Bayesian DM-Count BM-Count
MAE 144.1 108.4 105.6 96.1
RMSE 2325 187.2 181.6 161.3

Table 5: Robustness to noisy annotations on UCF-QNREF dataset.

margin, from 105.6 to 96.1 in MAE and from 181.6 to 161.3
in RMSE. Compared with original annotation, DM-Count re-
duces 23.4% in MAE and 22.5% in RMSE while BM-Count
only reduces 18.3% in MAE and 16.4% in RMSE, which
demonstrates the stable robustness to noisy annotations.

5 Conclusion

In this paper, we propose a bipartite matching based method
called BM-Count for crowd counting to alleviate the effect
of inevitable annotation noises. Moreover, a novel ranking
distribution learning framework that leverages ranking rela-
tion of head counts is proposed to address the imbalanced
distribution problem of head counts. Extensive experiments
have demonstrated the advantage of our proposed method in
terms of accuracy, efficiency and robustness. And the cur-
rent framework is fairly general and can be easily incorpo-
rated with existed networks to further improve performance.
However, BM-Count is still not able to locate the position of
each person with original resolution. And we will extend our
method to crowd localization task in the future.
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