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Abstract
There is a growing interest in the community in
making an embodied AI agent perform a compli-
cated task while interacting with an environment
following natural language directives. Recent stud-
ies have tackled the problem using ALFRED, a
well-designed dataset for the task, but achieved
only very low accuracy. This paper proposes a new
method, which outperforms the previous methods
by a large margin. It is based on a combination of
several new ideas. One is a two-stage interpreta-
tion of the provided instructions. The method first
selects and interprets an instruction without using
visual information, yielding a tentative action se-
quence prediction. It then integrates the prediction
with the visual information etc., yielding the final
prediction of an action and an object. As the ob-
ject’s class to interact is identified in the first stage,
it can accurately select the correct object from the
input image. Moreover, our method considers mul-
tiple egocentric views of the environment and ex-
tracts essential information by applying hierarchi-
cal attention conditioned on the current instruction.
This contributes to the accurate prediction of ac-
tions for navigation. A preliminary version of the
method won the ALFRED Challenge 2020. The
current version achieves the unseen environment’s
success rate of 4.45% with a single view, which is
further improved to 8.37% with multiple views.

1 Introduction
There is a growing interest in the community in making an
embodied AI agent perform a complicated task following nat-
ural language directives. Recent studies of vision-language
navigation tasks (VLN) have made significant progress [An-
derson et al., 2018b; Fried et al., 2018; Zhu et al., 2020].
However, these studies consider navigation in static environ-
ments, where the action space is simplified, and there is no
interaction with objects in the environment.

To consider more complex tasks, a benchmark named AL-
FRED was developed recently [Shridhar et al., 2020]. It re-
quires an agent to accomplish a household task in interac-
tive environments following given language directives. Com-

pared with VLN, ALFRED is more challenging as the agent
needs to (1) reason over a greater number of instructions and
(2) predict actions from larger action space to perform a task
in longer action horizons. The agent also needs to (3) lo-
calize the objects to manipulate by predicting the pixel-wise
masks. Previous studies (e.g., [Shridhar et al., 2020]) employ
a Seq2Seq model, which performs well on the VLN tasks [Ma
et al., 2019]. However, it works poorly on ALFRED. Over-
all, existing methods only show limited performance; there is
a huge gap with human performance.

In this paper, we propose a new method that leads to
significant performance improvements. It is based on sev-
eral ideas. Firstly, we propose to choose a single instruc-
tion to process at each timestep from the given series of in-
structions. This approach contrasts with previous methods
that encode them into a single long sequence of word fea-
tures and use soft attention to specify which instruction to
consider at each timestep implicitly [Shridhar et al., 2020;
Singh et al., 2020a]. Our method chooses individual instruc-
tions explicitly by learning to predict when the agent com-
pletes an instruction. This makes it possible to utilize con-
straints on parsing instructions, leading to a more accurate
alignment of instructions and action prediction.

Secondly, we propose a two-stage approach to the inter-
pretation of the selected instruction. In its first stage, the
method interprets the instruction without using visual inputs
from the environment, yielding a tentative prediction of an
action-object sequence. In the second stage, the prediction is
integrated with the visual inputs to predict the action to do and
the object to manipulate. The tentative interpretation makes
it clear to interact with what class of objects, contributing to
an accurate selection of objects to interact with.

Moreover, we acquire multiple agent egocentric views of
a scene as visual inputs and integrate them using a hierar-
chical attention mechanism. This allows the agent to have a
wider field of views, leading to more accurate navigation. To
be specific, converting each view into an object-centric rep-
resentation, we integrate those for the multiple views into a
single feature vector using hierarchical attention conditioned
on the current instruction.

Besides, we propose a module for predicting precise pixel-
wise masks of objects to interact with, referred to as the mask
decoder. It employs the object-centric representation of the
center view, i.e., multiple object masks detected by the object
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detector. The module selects one of these candidate masks
to specify the object to interact with. In the selection, self-
attention is applied to the candidate masks to weight them;
they are multiplied with the tentative prediction of the pairs
of action and an object class and the detector’s confidence
scores for the candidate masks.

The experimental results show that the proposed method
outperforms all the existing methods by a large margin and
ranks first in the challenge leaderboard as of the time of
submission. A preliminary version of the method won the
ALFRED Challenge 20201. The present version further im-
proved the task success rate in unseen and seen environ-
ments to 8.37% and 29.16%, respectively, which are signif-
icantly higher than the previously published SOTA (0.39%
and 3.98%, respectively) [Shridhar et al., 2020].

2 Related Work
2.1 Embodied Vision-Language Tasks
Many studies have been recently conducted on the prob-
lem of making an embodied AI agent follow natural lan-
guage directives and accomplish the specified tasks in a three-
dimensional environment while properly interacting with it.
Vision-language navigation (VLN) tasks have been the most
extensively studied, which require an agent to follow naviga-
tion directions in an environment.

Several frameworks and datasets for simulating real-world
environments have been developed to study the VLN tasks.
The early ones lack photo-realism and/or natural language
directions [Kempka et al., 2016; Kolve et al., 2017; Wu et
al., 2018]. Recent studies consider perceptually-rich sim-
ulated environments and natural language navigation direc-
tions [Anderson et al., 2018b; Chen et al., 2019; Hermann
et al., 2020]. In particular, since the release of the Room-to-
Room (R2R) dataset [Anderson et al., 2018b] that is based
on real imagery [Chang et al., 2017], VLN has attracted in-
creasing attention, leading to the development of many meth-
ods [Fried et al., 2018; Wang et al., 2019; Ma et al., 2019;
Tan et al., 2019; Majumdar et al., 2020].

Several variants of VLN tasks have been proposed. A study
[Nguyen et al., 2019] allows the agent to communicate with
an adviser using natural language to accomplish a given goal.
In a study [Thomason et al., 2020], the agent placed in an
environment attempts to find a specified object by commu-
nicating with a human by natural language dialog. A re-
cent study [Suhr et al., 2019] proposes the interactive envi-
ronments where users can collaborate with an agent by not
only instructing it to complete tasks, but also acting along-
side it. Another study [Krantz et al., 2020] introduces a con-
tinuous environment based on the R2R dataset that enables
an agent to take more fine-grained navigation actions. A
number of other embodied vision-language tasks have been
proposed such as visual semantic planning [Zhu et al., 2017;
Gordon et al., 2019] and embodied question answering [Das
et al., 2018; Gordon et al., 2018; Wijmans et al., 2019;
Puig et al., 2018].

1The ALFRED Challenge 2020 https://askforalfred.com/EVAL

2.2 Existing Methods for ALFRED
As mentioned earlier, ALFRED was developed to consider
more complicated interactions with environments, which are
missing in the above tasks, such as manipulating objects. Sev-
eral methods for it have been proposed so far. A baseline
method [Shridhar et al., 2020] employs a Seq2Seq model
with an attention mechanism and a progress monitor [Ma et
al., 2019], which is prior art for the VLN tasks. In [Singh
et al., 2020a], a pre-trained Mask R-CNN is employed to
generate object masks. In [Corona et al., 2020], a modular
architecture is proposed to exploit the compositionality of in-
structions. These methods have brought about only modest
performance improvements over the baseline. A concurrent
study [Singh et al., 2020b] proposes a modular architecture
design in which the prediction of actions and object masks are
treated separately, as with ours. Although it achieves notable
performance improvements, the study’s ablation test indicates
that the separation of the two is not the primary source of
the improvements. Closely related to ALFRED, ALFWorld
[Shridhar et al., 2021] has been recently proposed to com-
bine TextWorld [Côté et al., 2018] and ALFRED for creating
aligned environments, which enable transferring high-level
policies learned in the text world to the embodied world.

3 Proposed Method
The proposed model consists of three decoders (i.e., instruc-
tion, mask, and action decoders) with the modules extracting
features from the inputs, i.e., the visual observations of the
environment and the language directives. We first summarize
ALFRED and then explain the components one by one.

3.1 Summary of ALFRED
ALFRED is built upon AI2Thor [Kolve et al., 2017], a sim-
ulation environment for embodied AI. An agent performs
seven types of tasks in 120 indoor scenes that require interac-
tion with 84 classes of objects, including 26 receptacle object
classes. For each object class, there are multiple visual in-
stances with different shapes, textures, and colors.

The dataset contains 8,055 expert demonstration episodes
of task instances. They are sequences of actions, whose av-
erage length is 50, and they are used as a ground truth action
sequence at training time. For each of them, language direc-
tives annotated by AMT workers are provided, which consist
of a goal statement G and a set of step-by-step instructions,
S1, . . . , SL. The alignment between each instruction and a
segment of the action sequence is known. As multiple AMT
workers annotate the same demonstrations, there are 25,743
language directives in total.

We wish to predict the sequence of agent’s actions, given
G and S1, . . . , SL of a task instance. There are two
types of actions, navigation actions and manipulation ac-
tions. There are five navigation actions (e.g., MoveAhead
and RotateRight) and seven manipulation actions (e.g.,
Pickup and ToggleOn). The manipulation actions accom-
pany an object. The agent specifies it using a pixel-wise mask
in the egocentric input image. Thus, the outputs are a se-
quence of actions with, if necessary, the object masks.
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1 Walk to the kitchen..
2 Pick up a dirty mug..
3 Turn around, walk to.
4 Wash the mug in sink.
5 Pick up the mug to t.
6 Put it in the coffee.
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Figure 1: Architecture overview of the proposed model. It consists of the modules encoding the visual inputs and the language directives
(Sec. 3.2), the instruction decoder with an instruction selector (Sec. 3.3), the action decoder (Sec. 3.4), and the mask decoder (Sec. 3.5).

3.2 Feature Representations

Object-centric Visual Representations
Unlike previous studies [Shridhar et al., 2020; Singh et al.,
2020a], we employ the object-centric representations of a
scene [Devin et al., 2018], which are extracted from a pre-
trained object detector (i.e., Mask R-CNN [He et al., 2017]).
It provides richer spatial information about the scene at a
more fine-grained level and thus allows the agent to localize
the target objects better. Moreover, we make the agent look
wider by capturing the images of its surroundings, aiming to
enhance its navigation ability.

Specifically, at timestep t, the agent obtains visual obser-
vations from K egocentric views. For each view k, we en-
code the visual observation by a bag of N object features,
which are extracted the object detector. Every detected ob-
ject is associated with a visual feature, a mask, and its con-
fidence score. We project the visual feature into Rd with a
linear layer, followed by a ReLU activation and dropout reg-
ularization [Srivastava et al., 2014] to obtain a single vec-
tor; thus, we get a set of N object features for view k,
V k
t = (vkt,1, . . . , v

k
t,N ). We obtain V 1

t , . . . , V
K
t for all the

views.

Language Representations
We encode the language directives as follows. We use an em-
bedding layer initialized with pretrained GloVe [Pennington
et al., 2014] vectors to embed each word of the L step-by-
step instructions and the goal statement. For each instruction
i(= 1, . . . , L), the embedded feature sequence is inputted to
a two-layer LSTM [Hochreiter and Schmidhuber, 1997], and
its last hidden state is used as the feature si ∈ Rd of the in-
struction. We use the same LSTM for all the instructions with
dropout regularization. We encode the goal statement G in
the same manner using an LSTM with the same architecture
different weights, obtaining hG ∈ Rd.

3.3 Instruction Decoder
Selecting Instructions
Previous studies [Shridhar et al., 2020; Singh et al., 2020a]
employ a Seq2Seq model in which all the language direc-
tives are represented as a single sequence of word features,
and soft attention is generated over it to specify the portion
to deal with at each timestep. We think this method could
fail to correctly segment instructions with time, even with the
employment of progress monitoring [Ma et al., 2019]. This
method does not use a few constraints on parsing the step-by-
step instructions that they should be processed in the given
order and when dealing with one of them, the other instruc-
tions, especially the future ones, will be of little importance.

We propose a simple method that can take the above con-
straints into account, which explicitly represents which in-
struction to consider at the current timestep t. The method
introduces an integer variable mt(∈ [1, L]) storing the index
of the instruction to deal with at t.

To update mt properly, we introduce a virtual action repre-
senting the completion of a single instruction, which we treat
equally to the original twelve actions defined in ALFRED.
Defining a new token COMPLETE to represent this virtual ac-
tion, we augment each instruction’s action sequence provided
in the expert demonstrations always end with COMPLETE. At
training time, we train the action decoder to predict the aug-
mented sequences. At test time, the same decoder predicts an
action at each timestep; if it predicts COMPLETE, this means
completing the current instruction. The instruction index mt

is updated as follows:

mt =

{
mt−1 + 1, if argmax(pa

t−1) = COMPLETE

mt−1, otherwise,
(1)

where pa
t−1 is the predicted probability distribution over all

the actions at time t− 1, which will be explained in Sec. 3.4.
The encoded feature smt

of the selected instruction is used in
all the subsequent components, as shown in Fig. 1.
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Figure 2: An example illustrates how we reinitialize the hidden
states of the two LSTMs in the instruction encoder by smt to predict
actions and objects tentatively when mt = mt−1 + 1 (mt = 4).

Decoder Design

As explained earlier, our method employs a two-stage ap-
proach for interpreting the instructions. The instruction de-
coder (see Fig. 1) runs the first stage, where it interprets the
instruction encoded as smt without any visual input. To be
specific, it transforms smt into the sequence of action-object
pairs without additional input. In this stage, objects mean the
classes of objects.

As it is not based on visual inputs, the predicted action-
object sequence has to be tentative. The downstream com-
ponents in the model (i.e., the mask decoder and the action
decoder) interpret smt again, yielding the final prediction of
an action-object sequence, which are grounded on the visual
inputs. Our intention of this two-stage approach is to increase
prediction accuracy; we expect that using a prior prediction of
(action, object class) pairs helps more accurate grounding.

In fact, many instructions in the dataset, particularly those
about interactions with objects, are sufficiently specific so
that they are uniquely translated into (action, object class)
sequences with a perfect accuracy, even without visual in-
puts. For instance, “Wash the mug in the sink” can be trans-
lated into (Put, Sink), (TurnOn, Faucet), (TurnOff,
Faucet), (PickUp, Mug). However, this is not the case
with navigation instructions. For instance, “Go straight to the
sink” may be translated into a variable number of repetition of
MoveAhead; it is also hard to translate “Walk into the draw-
ers” when it requires to navigate to the left/right. Therefore,
we separately deal with the manipulation actions and the nav-
igation actions. In what follows, we first explain the common
part and then the different parts.

Given the encoded feature smt
of the selected instruction,

the instruction decoder predicts the action and the object class
to choose at t. To be precise, it outputs the probability distri-
butions pia

t (∈ RNa) and pio
t (∈ RNo) over all the actions and

the object classes, respectively; Na and No are the numbers
of the actions and the object classes.

These probabilities pia
t and pio

t are predicted separately by
two LSTMs in an autoregressive fashion. The two LSTMs
are initialized whenever a new instruction is selected; to be
precise, we reset their internal states as hia

t−1 = hio
t−1 = smt

for t when we increment mt as mt = mt−1 + 1 ( see the
example in Fig. 2). Then, pia

t and pio
t are predicted as follows:

pia
t = softmax(WiaLSTM(Ea(p

ia
t−1), hia

t−1) + bia), (2a)

pio
t = softmax(WioLSTM(Eo(pio

t−1), hio
t−1) + bio), (2b)

where Wia ∈ RNa×d, bia ∈ RNa , Wio ∈ RNo×d, and bio ∈
RNo are learnable parameters; Ea maps the most likely action
into the respective vectors according to the last predictions
pia
t−1 using a dictionary with Na×d learnable parameters; Eo

does the same for the object classes. The predicted pia
t and

pio
t are transferred to the input of these LSTMs at the next

timestep and also inputted to the downstream components,
the mask decoder and the action decoder.

Now, as they do not need visual inputs, we can train the two
LSTMs in a supervised fashion using the pairs of instructions
and the corresponding ground truth action-object sequences.
We denote this supervised loss, i.e., the sum of the losses for
the two LSTMs, by Laux. Although it is independent of the
environment and we can train the LSTMs offline, we simulta-
neously train them along with other components in the model
by adding Laux to the overall loss. We think this contributes
to better learning of instruction representation smt

, which is
also used by the mask decoder and the action decoder.

As mentioned above, we treat the navigation actions dif-
ferently from the manipulation actions. There are three dif-
ferences. First, we simplify the ground truth action sequence
for the navigation actions if necessary. For instance, suppose
an instruction “Turn left, go ahead to the counter and turn
right” with a ground truth action sequence “RotateLeft,
MoveAhead, MoveAhead, MoveAhead, MoveAhead,
RotateRight”. The repetition of MoveAhead reflects
the environment and cannot be predicted without visual in-
puts. Thus, by eliminating the repeated actions, we convert
the sequence into the minimum-length one, “RotateLeft,
MoveAhead, RotateRight”, and regard it as the ground
truth sequence, training the instruction decoder. Second, as
there is no accompanied object for the navigation actions,
we use the object-class sequence “None, None, None”
as the ground truth. Third, in the case of navigation actions,
we do not transfer the outputs pia

t and pio
t to the mask decoder

and the action decoder and instead feed constant (but learn-
able) vectors pia

nav ∈ RNa and pio
nav ∈ RNo to them. As the

instruction decoder learns to predict the minimum-length ac-
tion sequences as above, providing such predictions will be
harmful for the action decoder. We avoid this by feeding pia

nav
and pio

nav.

3.4 Action Decoder
The action decoder receives four inputs and predicts the ac-
tion at t. The inputs are as follows: the encoded instruction
smt

, the output pia
t and pio

t of the instruction decoder2 and ag-
gregated feature vt of visual inputs, which will be described
below.

Hierarchical Attention over Visual Features
As explained in Sec. 3.2, we use the multi-view object-centric
representation of visual inputs. To be specific, we aggregate

2These are replaced with pia
nav and pia

nav if argmax(pia
t ) is not a

manipulation action, as mention above.
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N ×K outputs of Mask R-CNN from K ego-centric images,
obtaining a single vector vt. The Mask R-CNN outputs for
view k(= 1, . . . ,K) are the visual features (vkt,1, . . . , v

k
t,N )

and the confidence scores (ρkt,1, . . . , ρ
k
t,N ) of N detected ob-

jects.
To do this feature aggregation, we employ a hierarchical

approach, where we first search for the objects relevant to the
current instruction in each view and then merge the features
over the views to a single feature vector. In the first step, we
compute and apply soft-attentions over N objects for each
view. To be specific, we compute attention weights αk

s ∈ RN

across vkt,1, . . . , v
k
t,N guided by smt

as

αk
s,n = softmax((vkt,n)>W k

s smt
), (3)

where W k
s ∈ Rd×d is a learnable matrix, for k = 1, . . . ,K .

We then apply the weights to theN visual features multiplied
with their confidence scores for this view, yielding a single
d-dimensional vector as

vkt =
N∑

n=1

αk
s,nv

k
t,nρ

k
t,n, (4)

where ρkt,n is the confidence score associated with vkt,n.
In the second step, we merge the above features v1t , . . . , v

K
t

using gated-attention. We compute the weight αk
g(∈ R) of

view k(= 1, . . . ,K) guided by smt
as

αk
g = sigmoid((vkt )>Wgsmt), (5)

whereWg ∈ Rd×d is a learnable matrix. Finally, we apply the
weights to {vkt }k=1,...,K to have the visual feature vt ∈ Rd

as

vt =
K∑

k=1

αk
g v

k
t . (6)

As shown in the ablation test in the appendix of our Arxiv ver-
sion, the performance drops significantly when replacing the
above gated-attention by soft-attention, indicating the neces-
sity for merging observations of different views, not selecting
one of them.

Decoder Design
The decoder predicts the action at t from vt, smt , pia

t and pio
t .

We employ an LSTM, which outputs the hidden state ha
t ∈ Rd

at t from the previous state ha
t−1 along with the above four

inputs as

ha
t = LSTM([vt; smt

; pia
t ; pio

t ], ha
t−1), (7)

where [; ] denotes concatenation operation. We initialize the
LSTM by setting the initial hidden state ha

0 to hG, the encoded
feature of the goal statement; see Sec. 3.2. The updated state
ha
t is fed into a fully-connected layer to yield the probabilities

over the Na + 1 actions including COMPLETE as follows:

pa
t = softmax(Wah

a
t + ba), (8)

where Wa ∈ R(Na+1)×d and ba ∈ RNa+1. We choose the
action with the maximum probability for the predicted action.
In the training of the model, we use cross entropy loss Laction
computed between pa

t and the one-hot representation of the
true action.

3.5 Mask Decoder
To predict the mask specifying an object to interact
with, we utilize the object-centric representations V c

t =
(vct,1, . . . , v

c
t,N ) of the visual inputs of the central view (k =

c). Namely, we have only to select one of the N detected ob-
jects. This enables more accurate specification of an object
mask than predicting a class-agnostic binary mask as in the
prior work [Shridhar et al., 2020].

To do this, we first apply simple self-attention to the vi-
sual features V c

t , aiming at capturing the relation between
objects in the central view. We employ the attention mech-
anism inside the light-weight Transformer with a single head
proposed in [Nguyen et al., 2020] for this purpose, obtaining
ĀV c

t
(V c

t ) ∈ RN×d. We then apply linear transformation to
ĀV c

t
(V c

t ) using a single fully-connected layer having weight
W ∈ RN×d and bias b ∈ Rd, with a residual connection as

V̂ c
t = ReLU(W ĀV c

t
(V c

t ) + 1K · b>) + V c
t , (9)

where 1K is K-vector with all ones.
We then compute the probability pm

t,n of selecting n-th
object from the N candidates using the above self-attended
object features along with other inputs smt

, pia
t , and pio

t .
We concatenate the latter three inputs into a vector gm

t =
[smt

; pia
t ; pio

t ] and then compute the probability as

pm
t,n = sigmoid((gm

t )>Wmv̂
c
t,n), (10)

where Wm ∈ R(d+Na+No)×d is a learnable matrix. We
select the object mask with the highest probability (i.e.,
argmaxn=1,...,N (pm

t,n)) at inference time. At training time,
we first match the ground truth object mask with the object
mask having the highest IoU. Then, we calculate the BCE
loss Lmask between the two.

4 Experiments
4.1 Experimental Configuration
Dataset. We follow the standard procedure of ALFRED;
25,743 language directives over 8,055 expert demonstration
episodes are split into the training, validation, and test sets.
The latter two are further divided into two splits, called seen
and unseen, depending on whether the scenes are included in
the training set.
Evaluation metrics. Following [Shridhar et al., 2020], we
report the standard metrics, i.e., the scores of Task Success
Rate, denoted by Task and Goal Condition Success Rate, de-
noted by Goal-Cond. The Goal-Cond score is the ratio of
goal conditions being completed at the end of an episode. The
Task score is defined to be one if all the goal conditions are
completed, and otherwise 0. Besides, each metric is accom-
panied by a path-length-weighted (PLW) score [Anderson et
al., 2018a], which measures the agent’s efficiency by penal-
izing scores with the length of the action sequence.
Implementation details. We use K = 5 views: the center
view, up and down views with the elevation degrees of ±15◦,
and left and right views with the angles of ±90◦. We em-
ploy a Mask R-CNN model with ResNet-50 backbone that
receives a 300 × 300 image and outputs N = 32 object can-
didates. We train it before training the proposed model with
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Model
Validation Test

Seen Unseen Seen Unseen
Task Goal-Cond Task Goal-Cond Task Goal-Cond Task Goal-Cond

Single view
[Shridhar et al., 2020] 3.70 (2.10) 10.00 (7.00) 0.00 (0.00) 6.90 (5.10) 3.98 (2.02) 9.42 (6.27) 0.39 (0.80) 7.03 (4.26)
[Singh et al., 2020a] 4.50 (2.20) 12.20 (8.10) 0.70 (0.30) 9.50 (6.10) 5.41 (2.51) 12.32 (8.27) 1.50 (0.70) 8.08 (5.20)
[Singh et al., 2020b] 19.15 (13.60) 28.50 (22.30) 3.78 (2.00) 13.40 (8.30) 22.05 (15.10) 28.29 (22.05) 5.30 (2.72) 14.28 (9.99)
Ours (1 visual view) 18.90 (13.90) 26.80 (21.90) 3.90 (2.50) 15.30 (10.90) 15.20 (11.79) 23.95 (20.27) 4.45 (2.37) 14.71 (10.88)

Multiple views
Ours (5 visual views) 33.70 (28.40) 43.10 (38.00) 9.70 (7.30) 23.10 (18.10) 29.16 (24.67) 38.82 (34.85) 8.37 (5.06) 19.13 (14.81)
Ours (5 visual views)� 14.30 (10.80) 22.40 (19.60) 4.60 (2.80) 11.40 (8.70) 12.39 (8.20) 20.68 (18.79) 4.45 (2.24) 12.34 (9.44)

Human - - - - - - 91.00 (85.80) 94.50 (87.60)

Table 1: Task and Goal-Condition Success Rate. For each metric, the corresponding path weighted metrics are given in (parentheses). The
highest values per fold and metric are shown in bold. Our winning entry in the ALFRED Challenge 2020 is denoted with � .

Sub-goal
[Shridhar et al., 2020] [Singh et al., 2020b] Ours
Seen Unseen Seen Unseen Seen Unseen

Goto 51 22 54 32 59 39
Pickup 32 21 53 44 84 79
Put 81 46 62 39 82 66
Slice 25 12 51 55 89 85
Cool 88 92 87 38 92 94
Heat 85 89 84 86 99 95
Clean 81 57 79 71 94 68
Toggle 100 32 93 11 99 66
Average 68 46 70 47 87 74

Table 2: Sub-goal success rate. All values are in percentage. The
agent is evaluated on the Validation set. Highest values per fold are
indicated in bold.

800K frames and corresponding instance segmentation masks
collected by replaying the expert demonstrations of the train-
ing set. We set the feature dimensionality d = 512. We train
the model using imitation learning on the expert demonstra-
tions by minimizing the following loss:

L = Lmask + Laction + Laux. (11)

We use the Adam optimizer with an initial learning rate of
10−3, which is halved at epoch 5, 8, and 10, and a batch
size of 32 for 15 epochs in total. We use a dropout with the
dropout probability 0.2 for the both visual features and LSTM
decoder hidden states.

4.2 Experimental Results
Table 1 shows the results. It is seen that our method shows
significant improvement over the previous methods [Shridhar
et al., 2020; Singh et al., 2020a; Singh et al., 2020b] on all
metrics. Our method also achieves better PLW (path length
weighted) scores in all the metrics (indicated in the paren-
theses), showing its efficiency. Notably, our method attains
8.37% success rate on the unseen test split, improving ap-
proximately 20 times compared with the published result in
[Shridhar et al., 2020]. The higher success rate in the un-
seen scenes indicates its ability to generalize in novel envi-
ronments. Detailed results for each of the seven task types
are shown in the appendix in our Arxiv version3.

3Our Arxiv version is available: https://arxiv.org/abs/2106.00596

The preliminary version of our method won an interna-
tional competition, whose performance is lower than the
present version. It differs in that (pia

t , p
io
t ) are not forwarded

to the mask decoder and the action decoder and the number of
Mask R-CNN’s outputs is set toN = 20. It is noted that even
with a single view (i.e., K = 1), our model still outperforms
[Shridhar et al., 2020; Singh et al., 2020a] in all the metrics.

Sub-goal success rate. Following [Shridhar et al., 2020],
we evaluate the performance on individual sub-goals. Table 2
shows the results. It is seen that our method shows higher
success rates in almost all of the sub-goal categories.

4.3 Ablation Study
We conduct an ablation test to validate the effectiveness of
the components by incrementally adding each component to
the proposed model. The results are shown in Table 3.

Model
Components Validation

Instruction Two-stage Multi-view Mask Seen / UnseenSelection Interpretation Hier. Attn Decoder

1 7 7 7 3 2.8 / 0.5
2 3 7 7 3 12.9 / 2.9
3 3 3 7 3 18.9 / 3.9
4 3 3 7 7 3.8 / 0.7
5 3 3 3 3 33.7 / 9.7

Table 3: Ablation study for the components of the proposed
model. We report the success rate (Task score) on the validation
seen and unseen splits. The 7 mark denotes that a corresponding
component is removed from the proposed model.

The model variants 1-4 use a single-view input (K = 1);
they do not use multi-view inputs and the hierarchical atten-
tion method. Model 1 further discards the instruction decoder
by replacing it with the soft-attention-based approach [Shrid-
har et al., 2020], which yields a different language feature satt
at each timestep. Accordingly, pio

t and pia
t are not fed to the

mask/action decoders; we use gm
t = [satt;h

a
t]. These changes

will make the method almost unworkable. Model 2 retains
only the instruction selection module, yielding smt

. It per-
forms much better than Model 1. Model 3 has the instruction
decoder, which feeds pio

t and pia
t to the subsequent decoders.

It performs better than Model 2 by a large margin, showing
the effectiveness of the two-stage method.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

928

https://arxiv.org/abs/2106.00596


   Turn right, go to the
fridge, face the lettuce
on the counter, ...

1
 Turn right, bring
the lettuce to the
fridge on the right. 

3 Pick up the lettuce
on the counter.

2

  Take the chilled
lettuce to the counter

5    Put the chilled
lettuce on the counter
6

  Chill the lettuce in
the fridge

4

1 1

  Chill the lettuce in
the fridge

4

t = 1 t = 7 t = 22

LookDown RotateRight MoveAhead PickupObject MoveAhead OpenObject

CompletePutObjectMoveAheadCloseObjectPickupObjectPutObject

  Chill the lettuce in
the fridge

4  Chill the lettuce in
the fridge

4

t = 28

t = 43 t = 46 t = 47 t = 51

t = 31

t = 65

t = 42

t = 66

Figure 3: Our agent completes a Cool & Place task “Put chilled lettuce on the counter” in an unseen environment.

Model 4 replaces the mask decoder with the counterpart of
the baseline method [Shridhar et al., 2020], which upsamples
a concatenated vector [gmt ; vt] by deconvolution layers. This
change results in inaccurate mask prediction, yielding a con-
siderable performance drop. Model 5 is the full model. The
difference from Model 3 is the use of multi-view inputs with
the hierarchical attention mechanism. It contributes to a no-
table performance improvement, validating its effectiveness.

4.4 Qualitative Results
Entire Task Completion
Figure 3 shows the visualization of how the agent completes
one of the seven types of tasks. These are the results for the
unseen environment of the validation set. Each panel shows
the agent’s center view with the predicted action and object
mask (if existing) at different time-steps. See the appendix
in our Arxiv version for more results.

Mask Prediction for Sub-goal Completion
Figure 4 shows an example of the mask prediction by the
baseline [Shridhar et al., 2020] and the proposed method. It
shows our method can predict a more accurate object mask
when performing Slice sub-goal. More examples are shown
in the appendix in our Arxiv version. Overall, our method

Pred: Toaster

Slice the lettuce in front of you

(a) [Shridhar et al., 2020]

Slice the lettuce in front of you

Pred: Lettuce

(b) Ours

Figure 4: The prediction masks generated by Shridhar et al.and our
method where the agents are moved to the same location to accom-
plish Slice sub-goal.

shows better results, especially for difficult sub-goals like
Pickup, Put, and Clean, for which a target object needs to
be chosen from a wide range of candidates.

5 Conclusion
This paper has presented a new method for interactive in-
struction following tasks and applied it to ALFRED. The
method is built upon several new ideas, including the explicit
selection of one of the provided instructions, the two-stage
approach to the interpretation of each instruction (i.e., the
instruction decoder), the employment of the object-centric
representation of visual inputs obtained by hierarchical at-
tention from multiple surrounding views (i.e., the action
decoder), and the precise specification of objects to inter-
act with based on the object-centric representation (i.e., the
mask decoder). The experimental results have shown that
the proposed method achieves superior performances in both
seen and unseen environments compared with all the exist-
ing methods. We believe this study provides a useful baseline
framework for future studies.
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