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Abstract

Though convolutional neural networks (CNNs)
with residual and dense aggregations have obtained
much attention in image denoising, they are inca-
pable of exploiting different levels of contextual in-
formation at every convolutional unit in order to in-
fer different levels of noise components with a sin-
gle model. In this paper, to overcome this short-
coming we present a novel attention-based pyra-
mid dilated lattice (APDL) architecture and inves-
tigate its capability for blind image denoising. The
proposed framework can effectively harness the
advantages of residual and dense aggregations to
achieve a great trade-off between performance, pa-
rameter efficiency, and test time. It also employs a
novel pyramid dilated convolution strategy to effec-
tively capture contextual information correspond-
ing to different noise levels through the training of
a single model. Our extensive experimental inves-
tigation verifies the effectiveness and efficiency of
the APDL architecture for image denoising as well
as JPEG artifacts suppression tasks.

1 Introduction
Image denoising is an active topic in image processing and
computer vision. In fact the performances of many computer
vision systems are highly dependent on the quality of their in-
put images [Chatterjee and Milanfar, 2009]. Thus, restoring
the clean image from a given noisy observation using image
denoising techniques is essential. The goal of image denois-
ing is to attain a clean image x from a noisy image xn which
is formulated by xn = x + v. As the most common assump-
tion in the literature [Dabov et al., 2007; Zhang et al., 2017;
Zhang et al., 2018], which we also follow in this paper, the
noise signal, v, is additive white Gaussian noise (AWGN)
with zero mean and standard deviation σ.

Previously, modeling image priors was a prominent ap-
proach for image denoising for which methods such as
sparsity based models BM3D [Dabov et al., 2007] and
WNMM [Gu et al., 2014] have been developed. Although
these approaches are effective for image denoising, they
suffer from two main shortcomings [Zhang et al., 2017;

Zhang et al., 2018; Peng et al., 2019]. First, they are non-
convex models and their parameters need to be manually cho-
sen. Second, most of the prior-based models involve a com-
plex optimization problem during testing, resulting in poor
computational efficiency.

On the other hand, convolutional neural networks (CNNs)
have shown outstanding performance on many computer vi-
sion and image processing tasks [Gu et al., 2018]. CNNs ef-
fectively address the limitation of prior-model based denois-
ing approaches. Such learning-based frameworks like denois-
ing CNN (DnCNN) [Zhang et al., 2017], and fast and flexible
denoising CNN (FFDNet) [Zhang et al., 2018] represent a
significant leap in denoising performance over previous ap-
proaches.

Residual (ResNets) [He et al., 2016] and dense
(DenseNets) [Huang et al., 2017] aggregations of layer out-
puts have presented further noticeable progress in image
restoration domain. Residual links facilitate passing informa-
tion and gradients efficiently through the network. Dense ag-
gregations offer direct feature re-usage, as deeper layers have
access to the outputs of shallower layers. Many recent image
denoising methods such as RED [Mao et al., 2016], pyra-
mid attention networks (PANET) [Mei et al., 2020], residual
non-local attention networks [Zhang et al., 2019b], and resid-
ual dense network (RDN) [Zhang et al., 2020] tried to take
the advantages of residual and/or dense aggregations tech-
niques and obtained the state-of-the-art image restoration per-
formance.

Despite the success of both residual and dense skip con-
nections, both aggregation types have drawbacks. As shown
in [Nikzad et al., 2020], these techniques may cause informa-
tion loss and/or parameter over allocating as the networks get
deeper or wider. Networks like RDNs [Zhang et al., 2020]
combine the benefits of both aggregation types to extract hi-
erarchical features from all the layers for image restoration
tasks. However, RDNs follow a similar dense aggregation
strategy to DenseNets and possess the same drawback in-
herent from DenseNets. Furthermore, most of the existing
discriminative learning based methods [Zhang et al., 2020;
Zhang et al., 2019b; Plötz and Roth, 2018] are limited and
tailored for some specific given noise levels while in a practi-
cal situation, the noise level is mostly unknown (blind image
denoising). In addition, they are not capable of effectively
handling a wide range of noise levels with training of a sin-
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Figure 1: The proposed pyramid dilated lattice (PDL) topology.
Voxels with different colors demonstrate different levels of contex-
tual information extracted by multiple receptive fields.

gle denoising model. In few cases, a single CNN model (e.g.
DnCNN-B) is trained for blind denoising while it’s perfor-
mance is restricted to the preset noise range in training phase
(e.g. [0, 50]). One reason might be that convolutional units
within these frameworks are not capable of jointly exploit-
ing different levels of contextual information to simultane-
ously infer different levels of noise components with a single
model.

In this paper, we introduce a new structure to fully exploit
the potential of lattice topology for addressing the aforemen-
tioned shortcomings of CNN based image denosing methods.
To this end, first we adopt a unique pyramid dilated convo-
lution (PDC) strategy to effectively widen the receptive field.
As shown in Fig. 1, multiple feature maps which carry con-
textual information from different receptive fields are reused
by local dense aggregations through the height of the lattice.
This property improves blind image denoising ability effec-
tively as the network can exploit diverse context to predict
image details. Further an attention mechanism is employed
to fully exploit information carried by inter-dependencies
among feature channels. We refer to our deep network as
attention-based pyramid dilated lattice network (APDL-Net)
which consists of several stacked APDL blocks.

Our extensive experiments show that the new APDL-Net
is able to produce higher blind image denoising performance
than other benchmark image denosing networks without sac-
rificing computational efficiency in terms of speed and model
size. To verify the generalization capability of the proposed
APDL-Net, we also demonstrate its effectiveness in a JPEG
compression artifact reduction task.

2 Related Works
In the past few years, significant progress has been made for
image denoising by developing discriminative learning-based
methods using deep convolutional neural networks (CNNs).
These methods aim at learning a nonlinear mapping from a
noisy image to its corresponding clear image. Benefited from
CNNs, Mao et al. [Mao et al., 2016] proposed an encoder-
decoder CNN framework to suppress the noise and to restore
the high resolution image. A trainable nonlinear reaction dif-
fusion (TNRD) method [Chen and Pock, 2016] used a flex-
ible convolutional framework to learn the image prior. With

the aid of batch normalization, rectified linear unit (ReLU)
and residual mapping (RL) techniques, DnCNN [Zhang et al.,
2017] achieved the state-of-the-art denoising performance.
FFDNet [Zhang et al., 2018] introduced a CNN model which
utilizes tunable noise level map as input and downsampled
sub-images to improve speed and process of the blind denos-
ing. A universal denoising network (UNLNet) [Lefkimmi-
atis, 2018] used a CNN network which is trained based on
local and non-local variational models and a constrained op-
timization method.

As more recent and advanced denoising methods, di-
lated dense fusion networks (DDFN) [Chen et al., 2019]
adopted a deep topology which takes the advantages of
densely connected links and dilation technique. RDN [Zhang
et al., 2020] employed both residual and dense aggrega-
tions to fully exploit the local and global hierarchical fea-
tures from all convolutional layers. Neural nearest neigh-
bour networks (N3Nets) [Plötz and Roth, 2018] employed
a non-local processing network to exploit self-similarity of
the image’s patches. Likewise, non-local recurrent network
(NLRN) [Liu et al., 2018] attempted to incorporate non-local
techniques into a recurrent neural network (RNN) for image
restoration. Methods like residual non-local attention net-
work (RNAN) [Zhang et al., 2019b], pyramid attention net-
works (PANet) [Mei et al., 2020] focused on adopting atten-
tion mechanism to learn the inter-channel relationships of the
convolutional feature maps.

Although current state-of-the-art CNN-based image
restoration algorithms improve denoising performance,
they cannot present a good trade-off between performance,
model size and running time which is a necessity for a
practical denoising method. For example, N3Nets [Plötz and
Roth, 2018] and NLRN [Liu et al., 2018] can obtain very
good performances with small models while experienced a
very slow inferring phase as they rely on conversion from
the image domain to the patch domain and vice versa.
RDN [Zhang et al., 2020] and RNAN [Zhang et al., 2019b]
suffer from over-allocating parameters and relatively slow
running time. In this paper, we show that the proposed
APDL-Net is capable of addressing the aforementioned
limitations effectively.

3 Attention-based Pyramid Dilated Lattice
3.1 Network Structure
The proposed APDL-Net is shown in Fig. 2. The network
consists ofB APDL blocks, each being constructed by a PDL
block, a global residual (GR) aggregation, and an attention
(Att.) unit. To extract shallow features, a composite function
consisting of a 2D convolution operation followed by batch
normalization (BN) and ReLU activation is adopted at the
first layer of the proposed APDL-Net. We also use a sim-
ple 2D convolution unit as the last layer of the network to
reconstruct residual map. More details about APDL blocks,
attention mechanism, and global residual are given in Sub-
section 3.2.

Since the residual mapping technique is used R(xn) ≈
−v, the clean image is found as: x =xn +R(xn). The resid-
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Figure 2: Overview of the proposed APDL-Net for image denoising.
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indicates element-wise sum operator.

ual mapping,R(xn), can be obtained by:

R(xn) = HAPDL−Net(xn) (1)

where HAPDL−Net denotes the function of the proposed
APDL-Net. We also adopt the following loss function to op-
timize the model:

L(Θ) =
1

2M

M∑
i=1

‖HAPDL−Net(x
i
n,Θ)− (xi − xi

n)‖22

(2)

where {(xi
n, x

i)}Mi=1 and Θ indicate M noisy-clean patch
pairs and trainable parameters in APDL-Net respectively.

3.2 Attention Pyramid Dilated Lattice Block
Our proposed APDL block consists of three main parts: pyra-
mid dilated lattice (PDL), global residual (GR) aggregations,
and attention mechanism. They are explained in detail as fol-
lows.
Pyramid dilated lattice. PDL is a triangular lattice of con-
volutional units. The location of each convolutional unit,Chl,
within the lattice, is specified by height and length coordi-
nates (h, l):

Chl =


C�hl , if h ≤ l, l ≤ H,
CHhl , if h ≤ 2H − l, H < l ≤ L,
∅, otherwise,

(3)

where h = 1, 2, ...,H , and, l = 1, 2, ..., L. C�hl and CHhl
are convolutional units that exist in the left and right trian-
gles of the lattice, respectively. ∅ indicates that the convolu-
tional unit does not exist. The number of convolutional units
in each block is denoted by N , where N is a square number
and N ≥ 4. The height of the lattice is H =

√
N , and the

length is L = 2
√
N − 1. Local dense aggregations of convo-

lutional unit outputs are formed strictly over the height of the
lattice. While PDL block does not allow for total feature re-
usage, densely aggregating only a subset of previous outputs
has been shown to be beneficial. Local residual links are also
adopted, to improve intra block gradient flow

Pyramid Dilated Convolution
Capturing more contextual information by widening the re-
ceptive fields is desired for enhancing the performance of the
CNN. Using a larger kernel size and stacking more convolu-
tional layers are two common ways to expand the receptive
field. However, these techniques increase the number of pa-
rameters and can cause problems such as overfitting. Here,

we propose a new lattice topology by leveraging a simple and
effective pyramid dilated convolution schema. The idea be-
hind the new lattice framework is illustrated in Fig. 1. Specif-
ically, the receptive field of a convolutional unit in the lat-
tice block is controlled via the dilatation rate, d = h. Un-
like other commonly used dilated convolution techniques like
DSNets [Peng et al., 2019] which focus only on expanding
receptive fields, here, we enlarge receptive fields alongside
aggregating different levels of contextual information. This
dilation schema elevates the capacity of the network to ex-
plore and to process wide range of contextual information
exploited by multiple receptive fields. As can be seen from
Fig. 1, the input to a convolutional unit in the left triangle of
the lattice, x�hl , is the dense aggregation of the outputs at
length l − 1, and heights h, h− 1, ..., 1:

x
�
hl =


x11, if l = h = 1

yh(l−1), if l > 1, h = 1 for C�hl[
yh(l−1), x(h−1)l

]
, if l > h, h > 1 for C�hl

x(h−1)l, if l = h, h > 1 for C�hl ,
(4)

where [.] denotes the concatenation operation, and yhl is the
output of the convolution unit at (h, l). We also define func-
tion CI+(.) which returns a set that contains levels of con-
textual information aggregated by x�hl :

CI+(xhl) =


{1}, if l = h = 1

{d}, if l > 1, h = 1 for C�hl
CI+(x(h−1)l) ∪ {d} if l > h, h > 1 for C�hl
CI+(x(h−1)l), if l = h, h > 1 for C�hl ,

(5)

The local dense aggregations in the left triangle of the lat-
tice allow for multiple concise outputs with different level of
contextual information to be progressively formed. Note that
level of contextual information is proportional to the dilation
rate, d, which manages the receptive field of each convolution
unit.

The input to a convolutional unit in the right triangle of the
lattice, xHhl , is the dense aggregation of the outputs at length
l − 1, and heights h, h+ 1, ...,H :

x
H
hl =

{[
yh(l−1), y(h+1)(l−1)

]
, if h = 2H − l for CHhl[

yh(l−1), x(h+1)l

]
, if h < 2H − l for CHhl .

(6)
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In the right triangle of the lattice, the outputs are progres-
sively amalgamated into a single output. Similar to Eq. 5, we
can define function CI−(.) which returns the set of different
levels of contextual information aggregated by xHhl :

CI−(xhl) =

{
{d+ 1, d}, if h = 2H − l for CHhl
CI−(x(h+1)l) ∪ {d}, if h < 2H − l for CHhl .

(7)

By densely aggregating outputs over the height of the lat-
tice, the input size to deeper convolutional units within the
block is also limited and avoids over-parameter allocating.
We refer to the proposed dilated convolution schema as pyra-
mid dilated convolution (PDC) as the feature maps repre-
sented by x�hl and xHhl are stacked and ordered correspond
to CI+(.) = {1, 2, ..., h} and CI−(.) = {H,H − 1, ..., h},
respectively. In particular, for the left half of the PDL the
sizes of receptive fields increase from small to large range
while for the second half of the lattice the trend is opposite as
the height decreases.

To bring more computational efficiency, we use two-step
bottleneck layers. In particular, each layer is a composite
function consisting of three operations, 2D dilated convolu-
tions followed by batch normalisation and ReLU activation.
The first layer has a kernel and output size of k = 1× 1, and
mh

αh
(In this paper we set αh as α1 = 2 and αh = 1(h ≥ 2).),

respectively. The second layer uses a kernel size of k = 3×3
and output size of mh (mh indicates the convolutional unit
output size at each height), as depicted in Fig. 1.
Local residual aggregations. To improve the flow of gra-
dients over the length of the lattice, local residual links are
adopted:

yhl =

{
yhl + xh(l−1), if C�hl or CHhl , l > h

yhl, if C�hl or CHhl , l ≤ h.
(8)

When the number of channels of yhl and xh(l−1) are non-
identical, the residual link is weighted so that xh(l−1) is of
the same number of channels as yhl.
Attention mechanism. Typically, all channel-wise features
are treated equally by CNN based image denoising networks.
This policy hinders the network’s ability to deal with differ-
ent types of information. Here, we adopt a channel-wise at-
tention mechanism by applying squeeze and excitation op-
erations [Hu et al., 2018] at the end of every APDL block.
Specifically, the squeeze operation encodes the global con-
textual information and yields m1 feature descriptors of size
1× 1 as:

zc =
1

h× w

h∑
i=1

w∑
i=1

yc(i, j), (9)

where m1 denotes the input channel dimension. zc(c =
1, ...m1) and yc(i, j) denote the c-th channel descriptor and
the feature value at position (i, j) respectively. The excitation
operator acts as a gating mechanism to learn nonlinear syner-
gies between channels alongside non-mutually-exclusive re-
lationship. Here, we adopt the gating mechanism by form-
ing a bottleneck with two fully-connected (FC) layers. The

first FC layer followed by ReLU non-linearity (δ) reduces the
channel dimension with ratio r (here, we set r = 8) and then
an up-sampling FC layer followed by sigmoid activation re-
turns the input channel dimension (m1). So that the output of
the attention mechanism can be formalized as:

pc = α(U(δ(D(zc)))), (10)

where D and U represent the FC layers for channel reduction
and up-sampling operators respectively. Finally, rescaled in-
put feature maps, ŷc, are adaptively formed by pc as:

ŷc = pc × yc, (11)

Global residual aggregations. Global residual links are
adopted, to further enhance the propagation of information
between PDL and attention blocks. Thus the output of the
APDL block, ybAPDL, is formulated as:

ybAPDL = (xb + yb) + ŷb, (12)

where the superscript is added to the notation to indicate the
block index, b = 1, 2, ..., B. xb, yb, and ŷb denote the input,
output of the PDL block b, and output of the attention unit
respectively.

3.3 Implementation Details
In this work, we set the convolutional unit output size at
each height to mh = m1

2h−1 , where m1 is the output size at
h = 1. This setting ensures that a reduced number of param-
eters are used for feature re-usage. The total number of con-
volutional units for each pyramid dilated lattice (PDL) block
is set to N = 16 (hence, H = 4 and L = 7). We experi-
ment APDL-Net with configurations {B = 3,m1 = 64} and
{B = 6,m1 = 64} which lead to two networks as APDL-
Net(3,64) and APDL-Net(6,64) with sizes of 0.785 and 1.53
million parameters, respectively.

We adopt Adam optimizer with default hyper-parameters
and 10−5 as the weight decay for the training of the proposed
models. All models are trained for 100 epochs with mini-
batch size of 32 and initial learning rate of 0.001 which is
decayed to 10−5 by adopting cosine annealing technique .
All models are trained using a single NVIDIA Geforce Titan
RTX GPU card.

4 Experimental Results and Discussion
4.1 Datasets
We use 400 images of size 180 × 180 from Berkeley seg-
mentation dataset (BSD500) [Arbelaez et al., 2010] as the
training data for the image restoration tasks. Moreover, sub-
image patches with the size of 60× 60 are randomly cropped
from the training images. For test images, three widely-
used datasets for evaluation of Gaussian denoising meth-
ods, “Set12”, “BSD68”, and “Kodak24” [Franzen, 1999] are
adopted. We train APDL-Nets for blind color image denois-
ing (APDL-Net-B) and JPEG image artifact reduction tasks.
Following [Zhang et al., 2017], we adopt the color version
of “BSD68” (i.e. “CBSD68”) for evaluating the color image
denoising task. Further, we use the “Classic5” [Zeyde et al.,
2010] and “LIVE1” [Sheikh et al., 2005] datasets for testing
the JPEG deblocking task as in [Zhang et al., 2017].
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Figure 3: PSNR difference (∆PSNR (dB)) attained by six APDL-
Net(3,64) configuration types: Baseline, GR, LR, LR-GR, LR-GR-
PD, and LR-GR-PD-Att on “Set12” dataset.

4.2 Ablation Study of APDL-Net
In this section we conduct an ablation analysis on the effects
of four different concepts of the proposed APDL-Net over a
wide range of noise levels: local residual links (LR), global
residual links (GR), pyramid dilation strategy (PD) and atten-
tion units (Att). To this end, six APDL-Net(3,64) configura-
tions are examined. The PSNR difference (∆PSNR (dB)) of
each configuration with different noise levels, σ, on dataset
“Set12” is reported in Fig. 3.
Local and global aggregations analysis. As described in
Subsection 3.2, two aggregation types are used in the APDL-
Net topology, including local residual links (LR) and global
residual links (GR). By adding either LR or GR to the base-
line (no LR and GR), it can be seen that a higher overall
PSNR values can be attained compared with the baseline.
However, the GR configuration obtained the lowest PSNR for
noise levels (σ) below 20dB. This shows that inter block in-
formation propagation incorporate well in removing strong
noise and vice versa. On the other hand, LR aggregation im-
proves the baseline’s PSNR values about +0.1dB for most lev-
els of noise. Utilising both LR and GR could enhance over-
all blind denoising performance. This phenomenon demon-
strates that enhanced intra block gradient flow and inter block
information propagation are beneficial to the training of an
APDL-Net for blind image denoising.
Pyramid dilation strategy (PD) analysis. We further ver-
ify the role of pyramid dilation strategy. As can be seen in
Fig. 3, PD can elevate overall denoising performance of LR-
GR. In particular, expanding receptive fields through PD is
more effective in enhancing the restoration performance of
the APDL-Net for stronger noise levels σ ≥ 30 (Fig. 3).
Attention mechanism (Att) analysis. We also investigate
the contribution of the proposed attention mechanism (Att).
As demonstrated in Fig. 3, the positive impact of considering
inter-dependencies among feature maps boosts the restoration
performance considerably.

4.3 Blind Image Denoising Performance
We evaluate the proposed APDL-Net on restoring noisy
images corrupted by AWGN. Table 1 reports comparisons

(a) Original (b) Noisy (c) CBM3D/28.86 dB

(d) CDnCNN/29.46 dB (e) FFDNet/29.54 dB (f) APDL-Net/30.04 dB

Figure 4: Denoising results of an image from “BSD68” dataset at
the noise level of σ = 35.

(a) GT:(PSNR|SSIM) (b) JPEG:(25.79|0.762) (c) ARCNN:(26.92|0.797)

(d) TNRD:(27.11|0.762) (e) DnCNN:(27.59|0.816) (f) APDL-Net(28.24|0.842)

Figure 5: Visual comparison on a JPEG compressed image from
“Classic5” dataset for quality factor (QF) of 10.

with five state-of-the-art color blind denoising models on the
“CBSD68” for a wide range of noise levels. Experimen-
tal results show that the proposed APDL-Net outperforms
all of studied benchmarks by an obvious margin. This phe-
nomenon demonstrates that APDL-Nets utilise larger recep-
tive fields than others and have more capability of removing
different levels of noise. The denoised color image produced
by APDL-Net-B(6,64) is illustrated in Fig. 4 (f). It can be seen
that the APDL-Net shows superior performance with lower
level of detail distortion. Moreover we evaluate the robust-
ness of the proposed APDL-Net-B(6,64) when the noise level
goes beyond the level used during training. As demonstrated
in Table 1, APDL-Net-B(6,64) is robust against higher noise
levels, σ ≥ 55, that is not trained for.

4.4 Blind JPEG Image Deblocking Performance
We further use APDL-Net-B(6,64) to remove artifacts gen-
erated by JPEG image compression process. We compare
our model with four state-of-the-art methods as listed in Ta-
ble 2. PSNR and structural similarity index metric (SSIM) are
adopted for quantitative assessment. The low quality com-
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Methods Noise Level (σ)
5 10 15 20 25 30 35 40 45 50 55∗ 65∗

CBM3D [Dabov et al., 2007] 40.24 35.88 33.49 31.88 30.68 29.71 28.86 28.06 27.82 27.36 26.97 26.29
CDnCNN [Zhang et al., 2017] 40.10 36.11 33.88 32.36 31.22 30.31 29.57 28.94 28.39 27.91 27.46 26.40
CUNLNet5 [Lefkimmiatis, 2018] 40.39 36.20 33.90 32.34 31.17 30.24 29.53 28.91 28.37 27.89 - -
ADNet-B [Tian et al., 2020] - - 33.79 - 31.12 - 29.48 - - 27.83 - -
DURR [Zhang et al., 2019a] - - - - 31.25 - 29.63 - 28.48 - 27.57 26.83
APDL-Net-B(6,64) 40.45 36.41 34.18 32.66 31.54 30.65 29.92 29.30 28.78 28.33 27.89 27.03

Table 1: Comparison of the blind color denoising for different noise levels on the “CBSD68” dataset. We measure the average PSNR (dB).
Noise levels with * are not present in the training data. The best results are indicated in boldface.

Dataset QF ARCNN [Dong et al., 2015] TNRD [Chen and Pock, 2016] DnCNN [Zhang et al., 2017] DDFN [Chen et al., 2019] APDL-Net-B(6,64)

Classic5

10 29.03|0.793 29.28|0.799 29.40|0.803 29.55|0.808 29.70|0.820
20 31.15|0.852 31.47|0.858 31.63|0.861 31.70|0.863 31.93|0.874
30 32.51|0.881 32.78|0.884 32.91|0.886 33.03|0.888 33.17|0.897

LIVE1

10 28.96|0.808 29.15|0.811 29.19|0.812 29.39|0.818 29.43|0.824
20 31.29|0.873 31.46|0.877 31.59|0.880 31.76|0.883 31.84|0.891
30 32.67|0.904 32.84|0.906 32.98|0.909 33.19|0.911 33.24|0.918

Table 2: Comparison of the PSNR (dB)|SSIM of different JPEG image deblocking methods on the “Classic5” and “LIVE1” datasets. We
evaluate the quantitative measurements for three quality factors (QF). The best results are indicated in boldface.

pressed images are produced by the PIL module of python
using three JPEG quality factors (QF= 10, 20, 30). As it can
be seen from Table 2, the proposed APDL-Net outperforms
other compared methods in terms of PSNR and SSIM val-
ues on the “Classic5” and “LIVE1” datasets with all JPEG
quality factors. However, our APDL-Net is trained through
a blind fashion, the difference between the achieved SSIM
values by APDL-Net and other methods are more noticeable
than the PSNR values. This indicates that APDL-Net priori-
tizes structural information restoration and perceptual quality
enhancement rather than absolute error minimization. Visual
results of a JPEG compressed image with quality factors of
10 is shown in Fig. 5.

4.5 Model Size and Running Time Analysis
Fig. 6 visualizes the comparison of the model size, perfor-
mance, and running time between the proposed APDL-Nets
and other advanced image denoising deep networks. Al-
though involving more computation is the inevitable cost of
stacking multiple APDL blocks, APDL-Nets are still quite
efficient in terms of running time. APDL-Nets improved the
performance significantly compared with CDnCNN [Zhang
et al., 2017] and MemNet [Tai et al., 2017] in a cost of neg-
ligible extra parameters. They also have a clear advantage in
speed against the most recent state-of-the-arts RNAN [Zhang
et al., 2019b] and RDN [Zhang et al., 2020]. Though tech-
niques like attention mechanism, residual and dense aggrega-
tions have been also adopted in RNAN [Zhang et al., 2019b]
and RDN [Zhang et al., 2020], the APDL-Net that requires
1.53 million parameters achieved a PSNR value very close to
that of the RNAN [Zhang et al., 2019b] and RDN [Zhang et
al., 2020] that require 4.8× and 14.3× as many parameters
respectively. This shows that APDL-Nets employ these tech-
niques effectively and efficiently, so that a great trade-off be-
tween model size, performance and running time is obtained.

0 2 4 6 8
26

27

28

29

30

31

APDL-Net(3,64):0.59s

APDL-Net(6,64):0.69s

>14××× fewer params

RED:27.69s

DnCNN:0.33s

MemNet:1.20s

RNAN:3.18s

# parameters (×106)

PS
N

R
(d

B
)

21 22 23

RDN:1.63s

Figure 6: Comparison of model size, PSNR, and running time (in
seconds) for noise level of σ = 50 on the “Kodak24” dataset.

5 Conclusion

In this paper, we present a novel attention-based pyramid di-
lated lattice topology (APDL) for image denoising. Unlike
other CNNs that use both residual and dense aggregations,
APDL-Nets take advantage of both aggregation types more
efficiently and effectively. APDL-Nets utilize an effective
attention-based pyramid dilation schema to efficiently exploit
contextual information corresponding to different noise lev-
els. These enable APDL-Nets to obtain a good trade-off be-
tween model size and running time alongside a superior per-
formance than many benchmarks in blind image denoising
and image deblocking methods. Further improvements on the
APDL-Net topology and investigating its capabilities in other
vision applications will be considered as future works.
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