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Abstract
Current weakly-supervised semantic segmentation
(WSSS) methods with image-level labels mainly
adopt class activation maps (CAM) to generate the
initial pseudo labels. However, CAM usually only
identifies the most discriminative object extents,
which is attributed to the fact that the network
doesn’t need to discover the integral object to rec-
ognize image-level labels. In this work, to tackle
this problem, we proposed to simultaneously learn
the image-level labels and local visual word labels.
Specifically, in each forward propagation, the fea-
ture maps of the input image will be encoded to vi-
sual words with a learnable codebook. By enforc-
ing the network to classify the encoded fine-grained
visual words, the generated CAM could cover more
semantic regions. Besides, we also proposed a hy-
brid spatial pyramid pooling module that could pre-
serve local maximum and global average values of
feature maps, so that more object details and less
background were considered. Based on the pro-
posed methods, we conducted experiments on the
PASCAL VOC 2012 dataset. Our proposed method
achieved 67.2% mIoU on the val set and 67.3%
mIoU on the test set, which outperformed recent
state-of-the-art methods.

1 Introduction
Semantic segmentation, aiming to assign a specific label for
each pixel in an image, is a fundamental and hot topic in
computer vision [Zhang et al., 2019]. Usually, to train a
semantic segmentation model with good performance, huge
amount of images with pixel-level labels are indispensable.
However, the annotation process of pixel-level labels is very
expensive and time-consuming [Everingham et al., 2015].
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To alleviate this problem, In recent years, researchers have
been dedicated to developing weakly-supervised semantic
segmentation (WSSS) models which use weaker and cheaper
labels, such as image-level labels [Ahn and Kwak, 2018;
Wei et al., 2018], point labels [Bearman et al., 2016], bound-
ing boxes [Wang et al., 2019], and scribbles[Lin et al., 2016].

Among them, semantic segmentation with image-level la-
bels is the most challenging one. Existing methods typically
follow a multi-step pipeline. They firstly train classification
networks to generate the initial coarse pixel-level labels. The
generated labels are then refined by methods such as Dense
CRF [Chen et al., 2017] and pixel affinity-based methods
[Ahn and Kwak, 2018; Ahn et al., 2019]. Based on the re-
fined pseudo labels, a segmentation network will be trained
as the final model for WSSS task using image-level labels.

The first step of the pipeline, i.e. generating the initial
pseudo labels, is vital to the final semantic segmentation per-
formance [Wang et al., 2020; Chang et al., 2020]. Prevail-
ing image-level WSSS methods often train a classification
network to produce class activation maps (CAM) [Zhou et
al., 2016] as the initial pseudo labels. However, CAM typi-
cally only identifies the most discriminative extents of a vi-
sual object. This problem is attributable to that the training
process of network is guided by the classification loss which
only aims to distinguish different classes. Since locating the
most discriminative regions usually leads to better discrim-
inability, there’s no need for networks to discover the integral
object. To tackle this problem, in this work, we proposed to
simultaneously learn to classify the global image-level labels
and local visual word labels. By enforcing the network to
classify the global and local labels, more object extents could
be discovered, so that the generated CAM could be more ac-
curate. Since the visual word labels are not available in the
image-level WSSS task, in each forward pass, they are gen-
erated in an unsupervised way. Concretely, the feature maps
produced by CNN backbone are encoded by the cosine sim-
ilarities with each visual word in a trainable codebook.

Meanwhile, as shown in Fig 1, it’s noted the choice of the
feature aggregation layer also impacts largely on the quality
of CAM. Empirically, the widely-used global average pool-
ing (GAP) [Zhou et al., 2016] often overestimates the object
sizes and involves too much background since it averages all
pixels in feature maps. On the contrary, global max pool-
ing (GMP) [Oquab et al., 2015], which only takes one pixel
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Figure 1: The generated CAM of our proposed method and baselines
with GMP and GAP. Our results typically cover more object extents
and less background.

in feature maps as output, usually underestimates the object
sizes. To alleviate this problem, we proposed a new feature
aggregation approach, named hybrid spatial pyramid pooling
(HSPP), which incorporates both the global average and lo-
cal maximums of feature maps as the output. As illustrated
in Fig 3, In HSPP, the feature maps are firstly partitioned to
multiple bins from coarse to fine levels as in spatial pyramid
pooling [He et al., 2015]. For bins in the same level, we pool
them separately using GMP and average the aggregated fea-
tures, so that only local maximums are involved. The features
from different levels and the output feature of GAP are then
averaged as the final output of HSPP. On this account, more
discriminative object extents and fewer background regions
are preserved in feature maps, which will improve the accu-
racy of the generated CAM.

To verify the effectiveness of our proposed approaches,
we conducted extensive experiments on the frequently-used
PASCAL VOC 2012 dataset [Everingham et al., 2015]. The
experimental results showed that our method could remark-
ably improve the performance of the generated CAM. After
further refinement with IRNet [Ahn et al., 2019] and training
a DeepLabv2 segmentation network [Chen et al., 2017] with
the generated pseudo labels, we achieved 67.2% and 67.3%
mIoU on the val and test set, respectively, which surpassed
the recent image-level WSSS methods.

The main contributions of this work are summarized as fol-
lows.

• We proposed to learn and classify the local visual word
labels, which could enforce the network to discover
more object extents and thus improve the quality of the
generated pseudo pixel-level labels.

• We presented HSPP, a novel pooling method, which av-
eraged the local maximum and global average features
to alleviate the problem that the widely-used GAP and
GMP can’t estimate the objects accurately.

• We achieved 67.2% and 67.3% mIoU on the val and test
set of the PASCAL VOC 2012 dataset, which is the new
state-of-the-art performance.

The rest of this paper is structured as follows. In Section 2,
we’ll introduce some related works within the context of our
work. The proposed method is depicted in Section 3. Our
experimental results are presented in Section 4.

2 Related Work

2.1 WSSS with Image-level Labels
WSSS with image-level labels is the most challenging one
among all forms of supervisions. [Kolesnikov and Lampert,
2016] proposed the SEC principle to expand the initial seed
cues to align the object boundaries. This framework is fol-
lowed by many subsequent works [Huang et al., 2018; Roy
and Todorovic, 2017]. [Hou et al., 2018; Wei et al., 2017;
Zhang et al., 2018] explored the erase strategy to erase the
most discriminative region in each iteration so that more ob-
ject extents could be discovered. [Ahn and Kwak, 2018]
and [Ahn et al., 2019] proposed pixel-level semantic affinity-
based approaches with random walk inference [Vernaza and
Chandraker, 2017] to refine the generated initial seed cues,
which also achieved brilliant performance.

2.2 Generating Better Pseudo Labels
Recently, some works also dedicated to generating better ini-
tial pseudo labels. [Wei et al., 2018] utilized the dilated con-
volution [Chen et al., 2017] to enlarge the receptive field and
discover more discriminative parts. FickleNet randomly
dropped the convolution kernels in each forward pass to en-
force the network discover more object extents [Lee et al.,
2019]. Inspired by the fact that the segmentation masks
should be scale-invariant, [Wang et al., 2020] proposed to
minimize the difference between the CAM of different scales.
[Chang et al., 2020] iteratively clusters the images to sub-
classes so that the CAM could activate more discriminative
regions to differentiate different classes.

In this work, we also focus on semantic segmentation with
image-level supervision and aim to improve the quality of ini-
tial pseudo labels.

3 Proposed Method
As illustrated in Fig 2, the proposed network for inferring
CAM is mainly composed of a CNN backbone to extract
convolutional feature maps, a Visual Word Encoder mod-
ule (VWE) to encode local visual words and a hybrid spatial
pyramid pooling (HSPP) layer to aggregated beneficial object
information.

3.1 CNN Backbone
The CNN backbone in Fig 2 is composed of a sequence of
convolutional layers and pooling layers. Let X be the set of
N images in the train set. The i-th image in X , denoted
as X , will be passed through the CNN backbone to obtain
the convolutional feature map F with a spatial size of h ×
w. Technically, any CNN architecture could be used as the
backbone after removing its fully-connected layers. In this
work, we used ResNet50 as the backbone network.

3.2 Visual Word Encoder
CAM guided by image-level labels often only covers the most
discriminative extents of objects. The reason is that network
doesn’t need to discover the integral object to recognize dif-
ferent image classes. Our motivation is that if the network
could be supervised with more fine-grained labels in the train-
ing procedure, it will be enforced to discover more semantic
regions so that the generated CAM should be more accurate.
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Figure 2: Overview of our proposed network. Our major contributions are the visual word encoder (VWE) and hybrid spatial pyramid pooling
(HSPP) module.

To this end, we presented the visual words encoder for the
WSSS task.

Since only image-level annotations are available in our
task, to leverage local visual word labels to guide the train-
ing of networks, we designed an unsupervised visual word
encoder (VWE). In the VWE module, a matrix C ∈ Rk×d

is defined as the codebook, where k is the number of words
and d is the feature dimension. C is utilized to encode the
extracted convolutional feature map F ∈ Rh×w×d to specific
visual words. Here we use the cos distance to measure the
similarity between the pixel at position i in F and the j-th
word in C. The similarity matrix S is thus given as:

Sij = cos(Fi, Cj) =
F>i Cj

||Fi||2||Cj ||2
. (1)

After obtained S, it will be normalized row-wise using
softmax function to compute the probability of the i-th pixel
in F belonging to j-th word in codebook C.

Pij = softmax(Si) =
exp(Sij)∑k

n=1 exp(Sin)
. (2)

The visual word label of the Yi for Fi is then given as the
word with the maximum probability, i.e., the index of the
maximum value in the i-th row of Pij , which is denoted as

Yi = argmax
j
Pij . (3)

For the input image X , its visual word labels are given as
a k-dimensional vector yword, where yword

j = 1 if the j-th
word is in Y , and yword

j = 0, otherwise. yword will be used
to guide the training procedure of classification network to
enforce it to discover more discriminative extents.

In a BoVW model, the histogram distributions of each vi-
sual word are collected as the feature descriptor by count-
ing their frequencies. However, this hard quantization ap-
proach will introduce non-continuities and is proved to make
the training process intractable [Passalis and Tefas, 2017]. In
this work, we compute the frequency of each word by accu-
mulating the probabilities in P . Therefore, the soft frequency

assignment of the j-th word is

fword
j =

1

hw

hw∑
i=1

Pij , (4)

where fword
j denotes the appearance frequency of the j-th

word in F . As shown in Fig 2, fword will be used to learn
the image-level labels, i.e., modelling the mapping relations
between local visual words and image-level labels.

In a classic BoVW model, the codebook is usually identi-
fied as the clustering centroids of the feature representations
extracted from all local visual words. However, in our model,
the feature representations for visual words are online up-
dated as the training procedure. Therefore, the codebook C
should also be online updated. Following the approach in
[Passalis and Tefas, 2017], in this work, the codebook C is
set as a trainable parameter so that it could be learned auto-
matically via the backpropagated gradients.

3.3 Hybrid Spatial Pyramid Pooling
To overwhelm the aforementioned disadvantages of GAP and
GMP, in this work, we presented the hybrid spatial pyra-
mid pooling (HSPP) which aggregates multi-scale local max-
imums and global averages of the convolutional map.

Consider the output feature map F with size of h× w × d
of the last convolutional layer, we first partition it to multi-
scale divisions. As illustrated in Fig 3, each division with
size of h

r ×
w
r × d is pooled to a d-dimensional vector via

max pooling, where r ∈ {1, 2, 4} denotes the split size. F
is thus aggregated to Fmax with size of r × r × d. It’s con-
spicuous that Fmax only involves local maximum pixels so
that less background is considered. We then pool Fmax for
the subsequent classification task. The pooled feature fmax

r
with split size r is given by

fmax
r =

1

r2

r∑
i=1

r∑
j=1

Fmax
i,j,: (5)

It’s noted that operation in Eq 5 only preserves the maxi-
mum responses of local objects, which may corrupt the com-
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Figure 3: Illustration of the proposed HSPP.

pleteness of objects. To encourage the completeness of ob-
jects, in HSPP module, we also incorporate the results of
GAP. Given the pooled feature of GAP layer, which is com-
puted as

fgap =
1

hw

h∑
i=1

w∑
j=1

Fi,j,:, (6)

the final output of HSPP module is calculated by weighting
the outputs in Eq 5 and Eq 6, computed as

fhspp =
1

γ + 3
(

∑
r∈{1,2,4}

fmax
r + γfgap), (7)

where γ is a weight factor that controls the proportion of the
feature map of GAP. Leveraging Eq 7, more regions of fore-
ground objects and less background are captured for classifi-
cation, so that the generated CAM is more accurate.

3.4 Loss Function
Since only image-level annotations are available, the classi-
fication loss is indispensable to train the network. After ob-
taining fhspp via Eq 7, the classification score for image label
is computed with an additional 1 × 1 conv layer, denoted as
pimg = conv(fhspp,W img), where W img is the weight ma-
trix of this layer. As a common practice, the multi-label soft
margin loss [Paszke et al., 2019] is employed to compute the
classification loss

Lcls(p
img, yimg) =

1

L

L∑
i=1

[yimg
i log

exp(pimg
i )

1 + exp(pimg
i )

+ (1− yimg
i ) log

1

1 + exp(pimg
i )

],

(8)

where yimg denotes the ground-truth image label and L is the
number of image classes. To capture more semantic regions,
the pooled feature is also utilized to predict the visual word la-
bel yword generated in previous steps. It’s noted that yword is
generated based on all pixels in feature map F . Therefore, we
use GAP here instead of HSPP to perform feature aggregation
for predicting yword. The predicted visual word score is thus
denoted as pword = conv(fgap,Wword), where Wword is
the weight matrix of the prediction layer. The classification
loss for visual words is then denoted as Lcls(p

word, yword),
which is in the same form as Eq 8.

Classification
scores

Feature map

Visual words

CAM

HSPP

Figure 4: The procedure of CAM inference. The generated CAM is
composed of 2 branches.

To model the mapping relations between visual words and
image classes, the visual word frequency fword acquired in
Eq 4 is projected into the class probability space with an 1×
1 conv layer with weight matrix Ww2i. The predicted score
is denoted by pw2i, such that the loss function is given as
Lcls(p

w2i, yimg).
The overall loss of the proposed network is finally formu-

lated as the sum of the aforementioned loss terms.

L = Lcls(p
img, yimg) + Lcls(p

word, yword)

+ Lcls(p
w2i, yimg).

(9)

3.5 CAM Inference
After trained the network with the loss function in Eq 9, the
fixed parameters are used to infer CAM as the initial pseudo
labels. As illustrated in Fig 4, the generated CAM is com-
posed of 2 branches. In the top branch, we follow the origi-
nal way in [Zhou et al., 2016] to directly produce CAM with
the feature map of the last conv layer and the weight matrix
in prediction layer. Specifically, CAM for class c is given by
weighting each feature map in F with its contribution to class
c

M img
c =

d∑
i=1

(W img
i,c F:,:,i). (10)

M img
c is further passed through a relu layer to eliminate

the negative values, which is denoted as M̂ img
c . In the bot-

tom branch, we use the encoded visual word maps and the
learned weight matrix Ww2i to complement local informa-
tion for original CAM.

Mword
c =

k∑
i=1

(Ww2i
i,c P:,:,i). (11)

Mword
c will also be passed through a relu layer and gets

M̂word
c . To capture more information, the final CAM is given

by complementing the CAMs from two branches, which is
denoted as

Mc = max(M̂ img
c , M̂word

c ). (12)
The generated Mc will be used to produce the pseudo seg-

mentation labels by segmenting the background and fore-
ground with a background score threshold.
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4 Experiments
4.1 Implementation Details
Dataset and Evaluation Criteria
The proposed network is trained and evaluated on the PAS-
CAL VOC 2012 dataset [Everingham et al., 2015]. This
dataset includes 21 semantic categories, including 20 fore-
ground classes and the background class. Following the com-
mon practice, this dataset is augmented with SBD dataset
[Hariharan et al., 2011]. The train and val set of the aug-
mented dataset consist of 10582 and 1449 images, respec-
tively. For all experiments, the mean Intersection-over-Union
(mIoU) ratio is used as the evaluation criteria.

Classification Network
As annotated in Fig 2, ResNet50 [He et al., 2016] is employed
as backbone to extract convolutional feature maps. The clas-
sification network is trained for 6 epochs, with batch size of
16. SGD optimizer is used during training. The initial learn-
ing rate is initially set to 0.01 for backbone parameters and
0.1 for the other parameters, The learning rate decays every
iteration with a polynomial decay strategy. The number of
visual words and the weight factor γ in Eq 7 are respectively
set to 256 and 2. More details and the impacts of hyperpa-
rameters are reported in the supplementary material.

Refinement and Segmentation Network
To refine the generated initial pseudo labels, we adopted IR-
Net [Ahn et al., 2019]. We used the official code released at
GitHub without changing any settings 1. The refined labels
will be used to train a segmentation network. In our work,
DeepLabv2 [Chen et al., 2017] with ResNet101 [He et al.,
2016] as backbone is used as the segmentation network.

4.2 Ablation Study and Analysis
We first reported the ablation study results of our method in
Table 1. Compared with the baseline, the proposed VWE
module could bring an improvement of 2.8% on the train set
and 3.2% on the val set. The HSPP module also achieved
2.3% and 3.0% mIoU improvement on the train and val set,
respectively. After incorporating them together, the mIoU of
the generated pseudo labels was further promoted to 52.9%
on the train set and 52.0% on the val set.

Baseline VWE HSPP train val

X 48.3 47.0
X X 51.1 50.2
X X 50.6 50.0
X X X 52.9 52.0

Table 1: Ablation studies of our proposed methods on the train and
val set. Baseline: ResNet50. VWE: Visual Word Encoder. HSPP:
Hybrid Spatial Pyramid Pooling. The best results are highlighted in
bold.

To verify whether the learned codebook could encode the
input images reasonably, in each row of Fig 5, we visualized

1https://github.com/jiwoon-ahn/irn

Figure 5: Samples of the learned words. In each row, images with
green frame denote the dominant samples from this category, while
images with red frame denote wrong words.

some samples of the learned visual words. The columns with
green frames denoted the dominant samples in this category,
while the last column with red frames presented some error
samples. Fig 5 showed that the codebook could distinguish
different visual words reasonably, which indicated the pro-
posed VWE model works satisfactorily. It’s also observed
that different parts of a visual object could be effectively en-
coded. For example, the visual words in Row 2, Row 3, and
Row 6 could be roughly interpreted as head, arm, and leg of
person, respectively. With the supervision of the generated
local visual words, the network could discover more object
details, which is the source of the performance improvements
in Table 1.

4.3 Comparison with State-of-the-art
In Table 2, we reported the mIoU of the generated initial
and refined pseudo semantic segmentation labels and com-
pared them with some recent approaches. Table 2 showed
that, for the initial pseudo labels, our method remarkably out-
performed the AffinityNet [Ahn and Kwak, 2018] and IRNet
[Ahn et al., 2019] baselines by∼5% and SC-CAM [Chang et
al., 2020] by∼2%. After further refinement using IRNet, our
method still outperformed other recent methods on both the
train and val set.

Fig 6 showed the qualitative comparison between the gen-
erated CAM of classification network with GMP (the second
row), GAP (the third row), and our proposed method using
VWE and HSPP (the last row). Our method typically cap-
tured more regions of foreground objects and fewer back-
ground regions.

Based on the refined pseudo labels using IRNet, we trained
a DeepLabv2 segmentation network with ResNet101 as the
backbone and evaluated the results on the val and test set.
The evaluated results along with some other methods were
presented in Table 3. Table 3 showed that our method
achieved 67.2% mIoU on the val set and 67.3% mIoU on the
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Method Refinement train val

AffinityNet CVPR’2018 48.0 46.8
IRNet CVPR’2019 48.3 -
SC-CAM CVPR’2020 50.9 49.6
Ours 52.9 52.0
IRNet CVPR’2019

+ IRNet
66.5 -

1Stage CVPR’2020 66.9 65.3
Ours 67.7 65.7

Table 2: Evaluation and comparison of the generated pseudo labels
in mIoU. The best results are highlighted in bold.

Figure 6: Visualization of the generated CAM. From top row to bot-
tom row: input images, results of IRNet with GMP, results of IRNet
with GAP, our results.

Sup Backbone val test

WideResNet38
F

WideResNet38 80.8 82.5
DeepLab VGG16 69.8 -
DeepLabv2 ResNet101 76.3 77.6
BoxSup ICCV’2015 B VGG16 50.7 51.7
BCM CVPR’2019 VGG16 66.8 -
ScribbleSup CVPR’2016 S VGG16 63.1 -
SEC ECCV’2016

I

VGG16 50.7 51.7
AffinityNet CVPR’2018 WideResNet38 61.7 63.7
DSRG CVPR’2018 ResNet101 61.4 63.2
IRNet CVPR’2019 ResNet50 63.5 64.8
SSDD ICCV’2019 WideResNet38 64.9 65.5
SC-CAM CVPR’2020 ResNet101 66.1 65.9
SEAM CVPR’2020 WideResNet38 64.5 65.7
BES ECCV’2020 ResNet101 65.7 66.6
MCIS ECCV’2020 ResNet101 66.2 66.9
Ours w/o CRF I ResNet101 66.3 66.3
Ours w/ CRF ResNet101 67.2 67.3

Table 3: Evaluation of the semantic segmentation results in mIoU
and comparison with other state-of-the-art methods. The best re-
sults are highlighted in bold. The supervision type (Sup) indicates:
F -Fully supervised, B-Bounding box supervision, S-Scribble su-
pervision, I-Image-level supervision.

test set, which surpassed most recent other WSSS methods
using image-level labels. Surprisingly, the proposed method
also achieved better performance than recent methods with
stronger supervision, such as bounding-box supervision and
scribble supervision. The detailed mIoU results of each class
on the val and test set are available in the supplementary ma-
terial.

Figure 7: The predicted semantic segmentation masks of the PAS-
CAL VOC val dataset. From top row to bottom row: input image,
ground truth, results of LIID [Liu et al., 2021], a fully-supervised
DeepLabv2, and our weakly-supervised results.

In Fig 7, we presented the predicted semantic segmentation
masks of the proposed method, a fully-supervised DeepLabv2
and LIID [Liu et al., 2021], which’s a recent WSSS work us-
ing image-level labels. Fig 7 showed that our method attained
comparable performance with its fully-supervised counter-
part, and both of them outperformed LIID . Our results are
also very close to the ground truth labels.

5 Conclusion
In this work, we proposed an unsupervised visual word learn-
ing module to generate local visual word labels. By enforc-
ing the classification network to learn the global image-level
classes and the generated local labels, the generated CAM
could discover more object extents. Meanwhile, we proposed
a novel pooling approach that could preserve the local and
global discriminative information and give more accurate es-
timations of objects. The experimental results demonstrated
the effectiveness of our proposed methods and showed the
proposed method achieved new state-of-the-art performance.
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