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Abstract

Replacing objects in images is a practical function-
ality of Photoshop, e.g., clothes changing. This task
is defined as Unsupervised Deformable-Instances
Image-to-Image Translation (UDIT), which maps
multiple foreground instances of a source domain
to a target domain, involving significant changes
in shape. In this paper, we propose an effec-
tive pipeline named Mask-Guided Deformable-
instances GAN (MGD-GAN) which first generates
target masks in batch and then utilizes them to syn-
thesize corresponding instances on the background
image, with all instances efficiently translated and
background well preserved. To promote the quality
of synthesized images and stabilize the training, we
design an elegant training procedure which trans-
forms the unsupervised mask-to-instance process
into a supervised way by creating paired examples.
To objectively evaluate the performance of UDIT
task, we design new evaluation metrics which are
based on the object detection. Extensive experi-
ments on four datasets demonstrate the significant
advantages of our MGD-GAN over existing meth-
ods both quantitatively and qualitatively. Further-
more, our training time consumption is hugely re-
duced compared to the state-of-the-art. The code
could be available at https://github.com/sitongsu/
MGD_GAN

1 Introduction

Image-to-Image (I2I) translation aims to learn the mapping
between the source and target domain, and begins to emerge
as the proposal of Generative Adversarial Networks [Good-
fellow er al., 2014]. Since then, increasing attention has
been paid to this task because several visual tasks could be
transformed into I2I translation such as: style transfer [Liu
et al., 2017], super-resolution [Ledig er al., 2017], label-
to-image [Park et al., 2019][Gao et al., 2020] and image-
inpainting [Yi et al., 2020]. Moreover, great progress has
been made in recent years. For example, CycleGAN [Zhu ef
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al., 2017] proposes to exert cycle consistency on the genera-
tors. Furthermore, UNIT [Liu et al., 2017] extends the Cou-
pled GAN [Liu and Tuzel, 2016] based on the assumption
of a shared latent space. To meet the demand of generating
diverse images, MUNIT [Huang et al., 2018], DRIT [Lee et
al., 2018], etc. are introduced by recombining the disentan-
gled image representation. The methods above only focus on
transferring styles on the whole image without considering
characteristics of instances.

Under such condition, Instance-level Image-to-Image
Translation is proposed to focus on the specific foreground
instances. Generally, it can be classified into two categories:
translating both of the background stuff and foreground in-
stances; only translating specific foreground instances while
preserving the original background. For the former one,
INIT [Shen et al., 2019] firstly raises the idea of translating
foreground instances and background areas independently
with different styles. Nevertheless, at test time, INIT dis-
cards instance information which is contrary with its initial
target. To make up for the defect, DUNIT [Bhattacharjee
et al., 2020] proposes a unified framework where instances
could also be leveraged at test time. As for the latter category,
previous methods like AGGAN [Mejjati ef al., 2018] and
Attention-GAN [Chen er al., 2018] generate attention maps
of instances to distinguish the foreground and background.

So far, Instance-level Image-to-Image Translation methods
like DUNIT [Bhattacharjee ef al., 2020] or AGGAN [Mejjati
et al., 2018] are only capable of transferring low-level fea-
tures like styles. However, in applications like clothes change
game, if pants-to-skirt change is required, only transferring
the color will be unsatisfactory. To meet the demand, the
task of Unsupervised Deformable-Instances Image-to-Image
Translation (UDIT) is proposed. The task aims to translate
foreground instances of a source domain into a target domain,
with significant shape deformation in foreground instances
and preservation in background. Contrasting-GAN [Liang et
al., ] firstly achieves the task by cropping and translating in-
stances. However, it could only deal with few objects and
the generated images look unnatural. Thus, multiple inde-
pendent instance masks are incorporated in InstaGAN [Mo
et al., 2019]. To guide the instance translation, single mask
feature and aggregated mask features are concatenated with
image features sequentially.

Yet, as the state-of-the-art in UDIT, there exists several is-
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Figure 1: The overall architecture of our MGD-GAN model. The light orange rectangular below represents the Masks Morph part which
generates target instance masks efficiently. The light blue rectangular above refers to the Image Generation part which synthesizes vivid
instances according to the generated target instance masks while yielding a natural full image.

sues in InstaGAN [Mo et al., 2019]. Firstly, lots of instances
fail to translate even if the shapes of generated masks are
correct. The simple concatenation of mask and image fea-
tures leads to the incomplete utilization of shape informa-
tion. Moreover, sequential training will cause severe time
consumption with the increase of instance amount per image.
Another defect is that the generated images are unconvincing
since the original visual information is partially retained.

To tackle the above issues, we introduce our MGD-GAN to
achieve efficient yet accurate multi-instances image-to-image
translation with shape deformation. Unlike existing models
generating masks and images of the target domain simulta-
neously, our method decomposes this challenging task into
two sequential relatively simpler tasks. The target masks are
firstly translated in batch and used to guide the image gen-
eration. Thus, the image generation task can fully utilize
the shape information, largely relieving the failure cases of
inconsistency between generated images and masks. Com-
pared with the sequential training scheme introduced in In-
staGAN [Mo er al., 20191, synthesizing the target masks in
batch can reduce time-consumption. Besides, we compact
all the masks into one map to guide the generation process,
thus allowing for multiple instances translation simultane-
ously without increasing time consumption. We also pro-
pose an elegant training scheme which transforms the unsu-
pervised mask-to-instance process into a supervised one by
creating paired examples. The designed training scheme not
only promotes the generated instance quality, but also con-
tributes to the background quality, since we remove the origi-
nal instances from the source image and use the inpainted one
to be the input of generator.
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The major contributions of our work can be summarized as
the following manifolds:

1) We propose an effective pipeline for Unsupervised
Deformable-instances Image-to-Image Translation (UDIT).
The target masks are firstly synthesized to guide the instance
generation, thus allowing full utilization of the mask infor-
mation and avoiding the inconsistency between the generated
masks and images.

2) To promote the quality of synthesized images and sta-
bilize the training, we design an elegant training procedure
which transforms the unsupervised mask-to-instance process
into a supervised way by creating paired examples.

3) We first propose three objective evaluation metrics for
UDIT. Extensive experiments are conducted on four datasets
constructed from MS COCO [Lin et al., 2014] and Multi-
Human Parsing [Zhao et al., 2018]. Quantitative and qualita-
tive results prove that our method surpasses others by a large
margin.

2 Method

The overview of our method is illustrated in Fig. 1. Generally,
it consists of two major parts: 1) Masks Morph, to synthesize
target masks; and 2) Image Generation, to generate target in-
stances under the guidance of synthesized masks, and render
the final image.

2.1 Masks Morph

As depicted in the light orange rectangular in Fig. 1, the
source image IS, source instance masks M¢ and target do-
main label 17, which is represented by a one-hot label, are



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

fed into our mask generator G,,,si. Consequently, we obtain
the generated target masks M 7. Note that the notation ’
dicates that the image or mask is synthesized. The generation
process can be described as follows:
M7 = Gras (15, M5,17). )
Feature extraction. The mask translation process is sup-
posed to acquire the size and location information of in-
stances, which is usually implemented by encoding functions.
Instead of encoding each instance mask sequentially, we en-
code the whole source image 1° by an encoder F,,,sk to ob-
tain the encoded image feature F;,,,. Then, each instance
feature F;,, ;) is extracted by multiplying its corresponding
resized instance mask with F;;,,4. By this means, time con-
sumption significantly decreases, since the repeated mask en-
coding processes are replaced by a single image encoding.
The operations above can be described as:
Fimg :Emask:(IS)a Nins,

@
where o indicates pixel-wise multiplication. M‘(Si) is the re-
sized mask of i-th instance and N,,, means the amount of
instances in I®. By concatenating all the instance features in
the first channel, we obtain all the foreground instance fea-
tures F;,, in IS.

Fimg =1, ...,

S
Fins(i) = M(z) ©

Masks generation. Given the instance features F;,s, we
aim to translate them to corresponding target masks. To this
end, we firstly inject target domain information into genera-
tion by concatenating F;, s with embedded target label fea-
ture leT. Then, labeled instances features are passed through
several cascaded Minilncep ResNets to be fully detected and
fused. Our Minilncep ResNet, like ResNet [He et al., 2016],
consists of a forward and a shortcut branch. In the forward
branch, several convolutions of different kernel sizes are ar-
ranged in parallel to better capture instance information of
different sizes. Further, we propose a coarse-to-fine gener-
ation scheme to generate multi-scale masks for fine-grained
generation. In details, the features are upsampled level by

level. In each level k, generated target masks MkT are out-
putted, and K denotes the total amount of levels.

Four novel loss functions are proposed to assure the mask
generation.

Multi-scale mask adversarial loss. To guide the mask
generation, we design a discriminator D, s adapted from
PatchGAN [Isola et al., 2017]. Our generated masks M/Iz— are
taken as fake inputs and masks M7 sampled from target do-
main are real ones. Then we draw the outputs from the last
two layers of D,,,sx for multi-scale discrimination. More-
over, the masks are fed into D, independently so that the
overlapped information will not be neglected. The adversar-
ial loss function is designed in hinge version [Lim and Ye,
2017]. The adversarial loss for mask generator is defined as:

mask - ZE ladv mask( K )} (3)

where D!, is the output of i-th layer in D,y Similarly,
we calculate the adversarial loss for mask discriminator as:

1

‘Cmask 2 ;(E[ladv( mask(MK )] (4)

—HE[ladv ( mask (MT)])

Mask pseudo-cycle loss. We propose Mask Pseudo-Cycle
Loss L, to exert extra supervision since we cut off cycle
architecture. Specifically, we inject the source label 1° into
Gmask and hope to generate unchanged masks. The loss
function is:

ﬁpc = ||MS - Gmask(Ivasﬂls)Hl ! (5)

Mask consistency loss. Making sure that generated masks
of different sizes are consistent may stabilize the training.
Thus, we define Mask Consistency Loss Lconst as:

K
Looner = HM/deM/T H , 6
t ,; T —amy)| (6)

where MllT are the masks of the smallest size, and d(-) means
the downsample function for resizing.

Mask regularization loss. According to the experiments,
the generated masks tend to be fragmented. To cope with this,
we design Mask Completeness Loss Lo, to force the aggre-
gation of fragments. The generated masks are downsampled
and then upsamlped to the original size. Then, we establish
consistent loss between the original one and the operated one.
To prevent the generated masks from oversize, Mask Penalty
Loss Lpenalty is proposed. The two functions are summed up
as Mask Regularization Loss, which can be calculated as:

Epenalty: Z M]z—a £c0m,: HMfz—fu(d(MI?))Hl
HW (7

ﬁrag = Accnrvccom + )\pe77,alty£penalty7

where d(-) and u(-) respectively denote the downsample and
upsample functions. Acom and Apenaity represent the weights
of Leom and Lpenairy, respectively.

With all the aforementioned losses, the loss functions for
Masks Morph could be summarized as follows:

»Cmask :‘Cmask + ‘Cmask + )\PC‘CPC

8
+ )\const»cconst + /\reg»creg; ( )

where Apc, Aconst, Areg indicate the weights of Ly,c, Leonst
and L,.4, respectively.

2.2 Image Generation with Designed Supervision

In this subsection, we introduce the architecture of our image
generator G4, and its training scheme.

Image generation. To fulfill the image generation task
above, based on SPADE [Park et al., 2019] which is a ma-
ture segmentation-to-image framework, we propose our novel
Adapted-SPADE Generator (APADE) as Gy, 4. As shown in
Fig. 1, aside from the original generator part SPADE owns,
we add an extra encoder E to help extract background feature.
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Figure 2: Comparison on sheep&giraffe, elephant&zebra, bottle&cup and pants&skirt datasets. Translation is bi-directional.(e.g., The first
row shows results of sheep2giraffe and giraffe2sheep) Our MGD-GAN synthesizes better masks and images than state-of-the-arts.

T
seg
to make the SPADE adaptable with our task. M;Zg is com-
posed of summed masks, label information, and aggregated
edges for every mask. Furthermore, in order to compensate
for the defected generated region in the inpainting process,
we also incorporate the background masks into M;Zg. At in-
‘T

seg’
the background image BS of the source image as input, and
produces the target foreground image I/f7g— as well as a fusion

Additionally, we design a novel input segmentation part M

ference time, under the guidance of M our Gimyg takes

map o'T . Since directly pasting foregrounds to backgrounds
would cause sharp and unnatural margins, we use the fusion
map to blend I;ﬂg— with B® in a natural way, and obtain the

final synthesized image I'7. The generation and blending
above can be expressed as:

’ ’ S ’ ’ ’ ’ S ’
L7 o T =GimgB° M) IT =170 T+B%.(1-a'7).
®
Even with the guidance of gener-
ated segmentation Mszg, training Gy,g is still challenging
seeing that there is no ground truth image corresponding to

M;Zg. The direct way to fix the problem is to “create” pair-
wise training samples for G,4. In the created pair, the input

Designed supervision.
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of Gimyg is the background B” of the target image I7. While
the ground truth is I7 itself. As depicted in Fig. 1, we obtain
the background by adopting the pretrained image inpainting
network called HiFill [Yi et al., 2020]. Given the inpainted
background B”, we aim to restore the removed foreground
instances according to the instance masks M7 of I7. The
restoration is trained in a supervised manner, since the ground
truth I7 and M7 are provided. In this way, we can establish
the Designed Supervision following the Eq. 9. In the training
phase, the inputs of G4 in Eq. 9 are B” and M7,, made

seg
from M7 . After the supervised training, G, Will be able
to synthesize instances on a background image according to
given masks. We set several losses for the supervised training
process. First, to assure that the fusion map a'T mostly indi-
cates the foreground part, we use a binary cross entropy loss:

Limap=-M" -loga’T —(1-M7)-log(1—a'T). (10)

Following SPADE [Park et al., 20191, we adopt the multi-
scale discriminator D;,,,. The adversarial losses for genera-
tor and discriminator are defined as £, - and £ - Note that
VGG similarity loss £,44 and feature matching loss £ feq; in
SPADE [Park et al., 2019] are also adopted to promote the
performance. Consequently, the overall loss for image gener-
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Figure 3: Qualitative ablation study on sheep&giraffe dataset. In (A), we illustrate the ablation study results of mask generation. In (B), we
show the image results. Our model with all components performs the best in terms of mask and image generation.

ation L;;,4 could be defined as:
G
Eimy :‘Cimg + ‘Cszg + )\fmapﬁfmap
+ AvggLogg + AfeatLfeat-
A fmaps Mvggs Afeat are weights of £ ¢ap, Logg and Lgeqt.

an

2.3 Reversal Fine-tuning of Masks
After Gimg and Giqasp are both well trained, we use Gipng

to generate I'7 based on the predicted masks from G,qsk-
Once the generated masks from G,,,4s; do not follow the re-
quired data distribution, the generated foreground instances
from G,y would be potentially judged as “fake” by Dig.
Thus, G,,qsx Would be encouraged to provide better mask
generation. We name this fine-tuning rule after Reversal Fine-
tuning of Masks, because the guidance from mask to image is
forward directional. Note that, we fix all parameters in Gy, g
and D;,,, when we conduct the fine-tuning training.

3 Experiments and Analysis

3.1 Implementation Details

We set batch size N = 2 for training. The mask, image and
the fine-tuning part are trained for 100, 200 and 50 epochs,
respectively. For hyper-parameters, we set Apenaity as 0.1,
Aconst and Areg as 1, Ape, Acoms Afmaps Avgg and Afeqr as
10. The Adam optimizer is adopted with 81 = 0.5 and 3, =
0.999 and the learning rate I = 0.002. All experiments are
conducted on a NVIDIA Titan Xp GPU.

3.2 Datasets

MS COCO [Lin et al, 2014]: Three domain pairs,
sheep&giraffe, elephant&zebra and bottle&cup, are selected
from MS COCO. Masks of each instance are provided.

Multi-Human Parsing [Zhao et al., 2018]: Each image in
MHP contains at least two persons (average 3) in crowd
scenes. For each person, 18 semantic categories are defined
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and annotated, e.g. “skirt”. Each annotated part corresponds
to a binary mask. We select pair pants&skirt from MHP.

3.3 Evaluation Metrics

Existing evaluation metrics are not suitable for UDIT since
UDIT focuses on the instance-level translation with no spe-
cific corresponding real guidance. Obviously, the more real-
istic the generated instances are, the more easily they would
be detected. Inspired by this, we propose three novel metrics:
Mean Match Rate (MMR), Mean Object Detection Score
(MODS) and Mean Valid IoU Score (MVIS).

Specifically, we feed the generated images into the pre-
trained Mask-RCNN [He et al., 2020] to get predicted labels,
scores and masks. Then we use the generated masks to match
the predicted ones as a retrieval process. MMR measures the
ratio of the matched masks amount to the total masks amount.
Since the predicted scores represent the confidence of being
classified into the specific category, we use MODS to calcu-
late average scores of being classified into the target domain.
Besides, we design MVIS to evaluate the average IoU be-
tween the predicted masks and the generated ones. The three
metrics measure the distance between the generated instances
and the real ones comprehensively. The higher they are, the
more realistic the generated instances are. Details of the met-
rics are illustrated in the appendix.

3.4 Comparison with State-of-the-arts

We choose two state-of-the-arts : CycleGAN [Zhu ef al.,
2017] and InstaGAN [Mo et al., 2019] as our competi-
tors. For fairness, we augment CycleGAN with segmenta-
tion masks which is named as CycleGAN+seg. The quanti-
tative and qualitative results are demonstrated in Tab. 1 and
Fig. 2. For giraffe2sheep translation, as we can observe in
Tab. 1, our model significantly surpasses InstaGAN by 31.0,
26.5 and 24.9 in MMR, MODS and MVIS metrics. The gaps
become 34.7, 19.4 and 16.7 when it comes to sheep2giraffe
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sheep/giraffe elephant/zebra bottle/cup
Method MMR MODS MVIS MMR MODS MVIS MMR MODS MVIS
GT 63.3/88.8  72.9/94.77 62.5/77.6 | 80.5/87.1 87.2/949 77.3/79.4 | 36.8/46.1 37.2/46.4 34.3/44.7
InstaGAN | 16.7/30.3 19.5/50.0 17.8/37.2 | 53.8/61.3 67.7/80.8 60.0/59.6 | 8.3/22.7 11.3/20.8  9.9/20.6
MGD-GAN | 47.7/65.0 46.0/69.4 42.7/53.9 | 76.0/83.7 81.2/85.9 71.4/72.0 | 17.4/20.0 17.0/18.0 15.3/19.0

Table 1: Quantitative results of different methods on sheep &giraffe, elephant&zebra and bottle & cup datasets. For all metrics, higher is better.
Note that ‘GT’ indicates ‘Ground Truth’. ‘sheep’ means the results of generated sheep image from giraffe2sheep translation.

Method sheep/giraffe The quantitative and qualitative results of our ablation study
MMR MODS MVIS are shown in Tab. 2 and Fig. 3, respectively.

A) MGD-GAN 47.7/65.0  46.1/69.4  42.7/53.9 First, the Mask Regression Loss L4 is discarded in base-

B) A w/o reg 14.7/65.1 = 14.0/71.5 12.2/54.0 line B. In Tab. 2, we can observe the huge gap between B

C) A wlo const 38.1/60.0  37.5/66.9  35.6/51.4 and A in sheep domain, though B is slightly higher than A

D) A w/o finetune | 46.7/67.1 45.48/74.7 41.07/59.8 in giraffe domain. That proves L, is key to the training

E) A w/e2e 45.3/18.1  38.2/23.8 38.9/18.6 balance. Besides, less constraints lead to failed mask genera-

Table 2: Quantitative ablation results on sheep&giraffe dataset.

translation. Averagely, our MGD-GAN obtains nearly dou-
ble scores than our best competitor InstaGAN. In the results
of zebra2elephant translation, we win InstaGAN by a margin
of 22.2, 13.5, 11.4 in MMR, MODS and MVIS metrics. As
for elephant2zebra translation, the gaps are 22.4, 5.1, 12.4.
Especially, our results approach the scores of ground truth
which shows our high image quality. Though the scores of
InstaGAN on bottle2cup translation are slightly higher than
ours, the visual results still prove the effectiveness of ours as
shown in the third row of Fig. 2. Moreover, the scores of In-
staGAN on bottle2cup and cup2bottle are unbalanced, while
our model achieves balanced results on all the datasets which
proves the stability of our model.

The qualitative results in Fig. 2 show that, the visual results
our model yields are more compelling. For the sheep2giraffe,
our generated giraffes are more vivid. Contrary to the other
two competitors, our generated sheep image owns better vi-
sual results without any sign of original instances. This
proves the effectiveness of the inpainting operation. Com-
paratively, as demonstrated in Fig. 2, our generated elephants
and zebras are still more lifelike though translation between
the two domains is pretty easy. Since the bottles and cups are
pretty similar in shape, InstaGAN and CycleGAN both fail to
morph the masks. In contrast, as depicted in the third row of
Fig. 2, our model successfully translates both the masks and
the images. As for the clothes change shown in the last row
of Fig. 2, though the InstaGAN morphs the skirt mask to the
pants mask, it still fails to generate corresponding instance.
While ours translates both which argues that the shape infor-
mation is fully utilized in our model.

In particular, our model hugely cuts off the training time
budget compared to our best competitor InstaGAN. Quantita-
tively, for the training of sheep &giraffe, our model consumes
57 hours totally, while InstaGAN takes about 150 hours.

3.5 Ablation Study

To demonstrate the effectiveness of our proposed functions
and components, we conduct ablation study on sheep &giraffe
dataset. We build four baseline models (B, C, D, E) totally.
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tion, which can be verified in the fourth column in Fig. 3(A).
Second, we train our model without Mask Consistency Loss
Lconst as baseline C. The scores of C are far behind A in both
domains, which inversely proves the effectiveness of Loy s¢-
The generated masks of C shown in fifth column of Fig. 3(A)
become unrecognized, as the training process becomes unsta-
ble. Third, when we remove the mask fine-tuning process, as
shown in Fig. 3(A), the mask generator fails to perform well
on each instance. Besides, in Fig. 3(B), model without fine-
tuning generates instances with obvious holes. Although in
Tab. 2, baseline D surpasses our full model A slightly on the
giraffe domain, visualization still proves the effectiveness of
the fine-tuning. Fourth, we train our baseline model E in the
end-to-end manner, which means we abandon the Designed
Supervision and train the Gpqs, and Gy together. The
scores of E in Tab. 2 decrease significantly in all metrics. The
generated masks and images in Fig. 3(A) and Fig. 3(B) both
demonstrate the bad performance of E. This argues the im-
portance of our proposed training scheme. Combining Fig. 3
and Tab. 2, we can conclude that, our MGD-GAN with all
components performs the best in mask and image generation.

4 Conclusion

In this paper, we propose an effective pipeline named
MGD-GAN for Unsupervised Deformable-Instances Image-
to-Image Translation (UDIT), which first generates target
masks in batch and then utilizes them to guide the instance
synthesis while rendering the whole image in a natural way.
An elegant training procedure named Designed Supervision
is proposed to transform the unsupervised mask-to-instance
to a supervised one thus greatly promoting the image quality
and the training stability. Experiments on four datasets argue
that our method outperforms the state-of-the-art qualitatively
and quantitatively.
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