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Abstract

Several images are taken for the same scene with
many view directions. Given a pixel in any one im-
age of them, its correspondences may appear in the
other images. However, by using existing semantic
segmentation methods, we find that the pixel and
its correspondences do not always have the same
inferred label as expected. Fortunately, from the
knowledge of multiple view geometry, if we keep
the position of a camera unchanged, and only vary
its orientation, there is a homography transforma-
tion to describe the relationship of corresponding
pixels in such images. Based on this fact, we pro-
pose to generate images which are the same as real
images of the scene taken in certain novel view di-
rections for training and evaluation. We also in-
troduce gradient guided deformable convolution to
alleviate the inconsistency, by learning dynamic
proper receptive field from feature gradients. Fur-
thermore, a novel consistency loss is presented to
enforce feature consistency. Compared with pre-
vious approaches, the proposed method gets sig-
nificant improvement in both cross-view consis-
tency and semantic segmentation performance on
images with abundant view directions, while keep-
ing comparable or better performance on the exist-
ing datasets.

1 Introduction

Semantic segmentation, which aims to label each pixel of a
given image with a certain semantic class, is one of the fun-
damental missions in computer vision. Benefiting from the
strong feature learning ability of the Convolutional Neural
Networks (CNNs) and rich datasets, previous semantic seg-
mentation methods have obtained promising performances.
However, the generalization ability related to varying view
direction of semantic segmentation algorithms has not been
paid enough attention yet. When it comes to semantic seg-
mentation, an intuitive motivation is that if we observe the
same object via different view directions at the same view-
point, the semantic labels of the object should be the same.

*Corresponding Author

1054

Figure 1: Two images of the same scene grabbed from “Google
Street View”, by keeping the viewpoint unchanged but only vary-
ing the view direction in the browser. Their semantic segmentation
results are obtained by the same PSPNet method [Zhao et al., 2017].
One may easily find that inferred labels in many parts of the two
images are ambiguous for the same things.

We call it cross-view consistency while varying view direc-
tion. The consistency is crucial to keep stable and robust re-
sults in higher-level computer vision tasks such as 3D recon-
structions, autonomous driving, AR/VR, etc. Unfortunately,
as shown in Fig. 1, we find the existing semantic segmen-
tation algorithms are often not able to keep cross-view con-
sistency while varying view direction. Moreover, images in
popular urban scene datasets such as Cityscapes [Cordts er
al., 2016] and CamVid [Brostow et al., 2008] are acquired
by mounted cameras in moving vehicles. View directions of
these images are often near urban street directions, i.e., along
driving directions, meanwhile images with other view direc-
tions are a minority. The CNN-based models trained on these
datasets will be constrained and overfit in specific view di-
rections due to the lack of data with diverse view directions.
Specifically, the segmentation performance drops a lot on im-
ages with richer view directions. Meanwhile, the inconsis-
tency problem is more severe in urban scenes.

In this work, we aim to modify existing CNN-based se-
mantic segmentation algorithms by enhancing their ability re-
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lated to cross-view consistency while varying view direction.
The modification can be easily applied in any CNN-based se-
mantic segmentation methods. No extra annotated images are
necessarily needed during training, since new manually an-
notated images for semantic segmentation are usually costly
and time-consuming to acquire. In the modification, we pro-
pose three general add-on modules. We first present an on-
line varying view direction (VVD) data generator to provide
images with abundant view directions for training. The key
insight is to utilize carefully generated homography to gen-
erate new image of the same scene in another view direction
and get correspondent pixel pairs. Then we propose gradi-
ent guided deformable convolution module, which can learn
dynamic proper receptive field from feature gradients. Fur-
thermore, a novel consistency loss is proposed to enforce
the consistency between features at corresponding positions
in different feature maps. For evaluation, We derive VVD
datasets which contain annotated images with diverse view
directions from common-used urban datasets. The proposed
method efficiently improves semantic segmentation methods,
especially in terms of the cross-view consistency.

The contributions of this paper can be summarized below:
(1) Our work is the first one that focuses on the problem that
previous semantic segmentation methods may not keep cross-
view consistency even if the viewpoint is unchanged and only
the view direction is varied; (2) To alleviate the inconsistency,
we propose a novel online varying view direction (VVD) data
generator to dynamically generate images in different view
directions using carefully generated homography. The gener-
ated images can be treated as real photos of the scene taken
by the camera with a new direction exactly. We also con-
struct VVD datasets that contain more challenging annotated
images in plentiful view directions for evaluation; (3) We pro-
pose a gradient guided deformable convolution module and
a novel consistency loss, which can be added to segmenta-
tion network easily and enforce network to predict consistent
semantic predictions; (4) The proposed method achieves sig-
nificant improvement on images with abundant directions in
cross-view consistency and segmentation performance, while
keeping comparable or better performance on common-used
datasets.

2 Related Work

Semantic segmentation algorithms. Semantic segmenta-
tion methods based on convolutional neural networks have
got promising performance. The seminal work [Long et al.,
2015] proposed fully convolutional network (FCN) to train
the segmentation network end to end and fit for images of
any size. [Chen et al., 2017a] and [Yang er al., 2018] applied
Atrous/Dilated convolution to enlarge receptive field. Global
information and multi-scale features were incorporated to
boost the network in [Zhao et al., 2017; Ronneberger et al.,
2015; Chen et al., 2016]. Conditional random field (CRF)
was used as post processing in [Chen er al., 2017a] to refine
the predictions or embedded into the network in [Zheng et al.,
2015] to enable end-to-end training. Recent approaches used
attention [Huang et al., 2019; Fu et al., 2019; Li et al., 2019;
Zhao et al., 2018; Yu et al., 2018], dictionary learning [Zhang
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et al., 2018], context relationship [Yuan and Wang, 2018;
Zhang et al., 2019] and get better results. We focus on im-
proving the cross-view consistency in CNN-based image se-
mantic segmentation, which has not been paid enough atten-
tion in the previous methods.

Cross-view consistency. Cross-view consistency is a basic
and natural constrain in computer vision. It requests each
projection of the same 3D object represents the same seman-
tic meaning. Xiao ef al. [Xiao and Quan, 2009] proposed
a graph-based optimization approach to enforce consistency
of the segmentation result across multiple views. Ma et al.
[Ma et al., 2017] warped feature maps into a common refer-
ence view and enforced multi-view consistency with various
constraints based on RGB-D images. In this work, we use
the cross-view consistency in the condition that the view di-
rection is varied and the viewpoint is unchanged. The con-
sistency can be defined by a homography transformation. We
apply it in semantic segmentation of 2D RGB images by eval-
uating and enhancing the cross-view consistency while vary-
ing view direction of any given CNN-based algorithm.

Deformation of convolution. Deform the convolution for a
better receptive field has been well studied. [Jaderberg er al.,
2015] proposed a Spatial Transformer Network (STN) which
estimates a group of global parameters to warp the input fea-
ture maps. [Jeon and Kim, 2017] proposed a convolution unit
with learned offsets to obtain better receptive field for object
classification, by learning fixed offsets for feature sampling
on each convolution. [Dai er al., 2017] proposed a a more
dynamically deformable convolution unit where the image
offsets are learned through a set of parameters. The offsets
in above methods are learned from the feature maps directly.
For our task, when view direction varies, the local receptive
fields are supposed to have similar semantic information with
a local spatial deformation, e.g., homography transformation.
The changes of feature map gradients can reflect the defor-
mation directly. Thus, the offset is learned from the gradient
of the feature maps in our approach.

3 Algorithm

In this section, we introduce three proposed modules for
improving cross-view consistency in semantic segmentation.
Training data are generated by online VVD data generator,
then processed by the network modified with gradient guided
deformable convolution, and finally supervised by additional
consistency loss.

3.1 Online VVD Data Generator

Under the assumption of the pinhole model, we make the ori-
gin of the camera coordinate coincide with the origin of the
world coordinate. The relation between a 3D point P and its
2D projection in an image p can be described as

Zp fz s wo )ép
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1 0o 0 1 17’

where [z, yp, 1]T and [X,, Y}, Z,, 1]T represent the homo-
geneous coordinate of p and P, respectively. The matrix con-
taining focal length f, f,, principal point offset (g, vo) and
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Figure 2: Relationship between two real images (in rectangle b
of the same scene taken in different view directions, while ke
the viewpoint unchanged. The two images can be warped to
other using some specific homography H, exactly. There is n
ference in the overlapping areas.

axis skew s is camera intrinsic matrix. R represents th
tation matrix between the world coordinate system an
camera coordinate system. A is a normalization factor.

When 3D point P appears in two images with different
views directions, the relation between the two projections
(3,5 y,,) and (zp, yp) can be described as
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where R, (o), Ry(3), Ry(7y) represents the rotation matrix
of the two view directions and can be decomposed into three
rotation matrices based on three Euler Angles, respectively.
H is the so-called homography with shape of 3 3. As shown
in Fig. 2, two images of different views are connected with a
homography H. Equation (2) can be used to exhaustively
and accurately find out corresponding pixel pairs that should
have the same semantic label.

In order to get corresponding pixel pairs in images of dif-
ferent view directions, we propose an online VVD data gener-
ator. During training, the proposed online VVD data genera-
tor is used to produce a pair of image patches and the homog-
raphy between them. We randomly crop a patch with the size
of 2a X 2a in the original image for the first one and record
the crop center o. As to the second image, we firstly warp the
original image with a generated homography H. And we find
the correspondent position of o in the warped image, which is
denoted as o’. Then a patch of the same size is cropped in the
warped image with center o’. Thus, the homography matrix
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Figure 3: Illustration of the proposed gradient guided deformable
convolution module. Feature gradients are obtained by gradient ex-
tractor from the input feature maps, and then are fed into offset gen-
erator to get offset map. Deformable convolution is used to get the
final output feature maps. A difference between the proposed mod-
ule and the standard deformable convolution is that the offset of the
former is obtained by the gradient of the feature maps, while the
latter is obtained by the feature maps directly.

between the two image patches can be described as

1 0 a—xzy 1 0 zo—a
H. = [0 1 a—yo/] H [0 1 yo—a], 3)
00 1 0 0 1

where z,, y, denote the z and y coordinate of point 0. =, ,
Yo represent the x and y coordinate of point o', which can be

calculated by
Ty To
A Yo' =H Yo . (4)
1 1

3.2 Gradient Guided Deformable Convolution

Convolution can be seen as a feature sampling followed by
a weighted sum operation. It gathers information from the
receptive field of the convolution kernel in the input feature
maps. After convolution operation, the value of location p on
the output feature map y can be calculated as

y(p) = > w(dp) - =(p+ dp), (5)
SpER
where w is the weight of the convolution kernel and z is the
input feature map. §p enumerates the pixel relative location
in grid R. For a standard 3 x 3 convolution, the regular grid
R is represented as

R ={(-1,-1),(~1,0),..,(1,0),(1,1)}.  (6)

For deformable convolution, R is not constrained in a rigid
formulation and may vary when the position p changes. Thus,
Eq. (5) becomes

y(p) = > w(op) x(p+dp+ Fla.p,op), (D
SpER

where F(x, p, dp) represents the learnable augmented offset.
In standard deformable convolution, the grid is more likely to
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Training Framework

PSPNet50 [Zhao et al., 2017] 72.79
Online VVD 75.57
Online VVD + CLoss 76.35
Online VVD + GGDC + CLoss 77.32

VVD dataset Cityscapes
Segmentation CVC/mloU CVC/pixAcc | Segmentation
82.75 97.32 76.57
85.59 97.69 76.79
87.46 97.84 77.14
87.62 97.94 77.50

Table 1: Results on Cityscapes dataset and the VVD dataset deriving from Cityscapes. From left to right, we show the segmentation results
in mloU and the cross-view consistency results (CVC) in mloU and PixACC on VVD dataset, respectively, followed by the segmentation
results in mIoU on Cityscapes. From top to bottom, We use PSPNet50 [Zhao e al., 2017] as our baseline method. Online VVD, CLoss and
GGDC represent the proposed online VVD data generator, consistency loss and gradient guided deformable convolution, respectively.

be driven by semantic information. For two images contain-
ing the same object via different view directions, the local
receptive fields are supposed to have the similar semantic in-
formation with a local spatial deformation. The changes of
feature map gradients reflect the deformation directly. Thus,
we design a gradient guided deformable convolution module,
in which the grid offset is driven by gradient information from
the input feature maps. The output of the proposed gradient
guided deformable convolution can be represented as

y(p) = > w(dp) z(p+op+F(G(x).p.6p)), 8

OpER

where G(x) represents the gradients of the input feature maps
z. The gradient guided deformable convolution is illustrated
in Fig. 3. In practise, the gradient extractor G and offset gen-
erator J are respectively implemented using Sobel operator
and convolutions for end-to-end training. The novel gradient
guided deformable convolution can readily replace standard
convolution in existing segmentation networks.

3.3 Consistency Loss

To enforce the corresponding pixel pairs have the same in-
ferred labels, we constrain output feature maps with a novel
consistency loss in a deeply self-supervised way during train-
ing. When two images in different view directions are fed into
the network, the feature columns at the corresponding posi-
tions in two feature maps are supposed to be the same. For
the m-th selected layer, let ] and y;" be the ¢-th positions of
corresponding pixel pairs. We use cosine similarity to calcu-
late the distance between two correspondence columns of the
feature maps, followed by a linear operation to normalize and
a log operation to magnify the penalty for the error. The con-
sistency loss for the m-th selected layer can be represented as

m

('ons N log 0 5 + m ) (9)
Z 2 || H IIy 'l

where N is the number of corresponding pixel pairs which

appear in both the images. Assuming that we consider total

M layers in calculating the consistency loss, the final consis-

tency loss can be represented as

M
£cons = Z ‘ngnn)s (10)
m=1

Finally, the total loss £ is the sum of the standard cross
entropy loss in semantic segmentation L., and the proposed
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o 0.1 0.5 1 2 5
76.82 77.03 7732 77.18 76.73

Performance

Table 2: Parameter study of « for the proposed consistency loss.
We train the network on Cityscapes dataset and evaluate it on VVD
dataset. All semantic segmentation results are mloU (in %).

consistency loss L., with a weighting factor «, which can
be written as
L= Lseg + alcons- (11)

4 Experiments

4.1 Implementation Details

Our training and evaluation is implemented in PyTorch.
Resnet50 with the dilated network strategy is used as our
backbone. We replace the last 3 x 3 convolution layer of each
residual block with the proposed gradient guided deformable
convolution module. Outputs of all residual blocks are se-
lected to be supervised by the consistency loss and « is se-
lected to 1 after a parameter study. For training, we use SGD
optimizer and employ the polynomial learning rate policy
[Chen et al., 2017a; Liu et al., 2015] where current learning
rate equals to the initial one multiplying (1 — %)Pow”.
The initial learning rate and the power are set to 0.01 and
0.9, while the momentum and weight decay are set to 0.9 and
0.0001 respectively. Due to GPU memory limitations, we use
a batch size of 8 and crop size of 776 during training.

4.2 Ablation Study on Cityscapes

We conduct an ablation study on a widely adopted urban se-
mantic segmentation dataset Cityscapes [Cordts et al., 2016]
to verify the effectiveness of our method. Cityscapes dataset
contains 5000 high quality pixel-level finely annotated im-
ages including 2975 images for training and 500 for vali-
dation. For evaluating the cross-view consistency and the
segmentation performance of images in diverse view direc-
tions, we derive varying view direction (VVD) dataset from
Cityscapes. New images and annotations are generated by
a warp followed by a crop operation. For each image in the
datasets, we randomly generate a homography matrix accord-
ing to Equation (2). The yaw, pitch and roll angles used in ho-
mography generation are set in range of [—30, 30], [—15, 15]
and [—3, 3] respectively. The focal length f is set to 2262
following [Godard et al., 2017]. (u,v) are set to half of the
width and length of the images. We use the matrix to warp the
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Figure 4: Visual comparisons in semantic segmentation on VVD dataset. (a) are input images and (b) are ground truth. From (c) to (e) are
results of the baseline (PSPNet50) model, baseline model with online VVD data generator and the proposed approach with all three novel
modules. We show the improvement in predicting vehicles and traffic signs.

() (©

Figure 5: Visual comparisons in cross-view consistency on VVD
dataset deriving from Cityscapes. Pixels not keeping the same se-
mantic labels with their corresponding pixels in original images are
shown in white color. The proposed method (c) keeps better cross-
view consistency than the baseline method (b) in the shown images
containing wall (top), sign (middle) and car (bottom).

previous image and crop the maximum inscribed rectangle of
it. The same operation is applied to the annotation. Corre-
spondent pixel pairs of the previous image and the generated
one can be found out using the homography. The constructed
VVD dataset including annotated images containing the same
scenes and in different view directions from Cityscapes and
the corresponding pixel pairs between each image and its
original image.

We employ mean intersection-over-union metric (mloU)
and pixel accuracy for evaluating the consistency. mloU mea-
sures them in a class-balance way while pixel accuracy does
in a pixel-balance way. After inferring an image pair from
the VVD datasets with a given algorithm, we can get two seg-
mentation maps. As the positions of all correspondent pixel
pairs are known according to the homography and the seman-
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Figure 6: Per-class mloU results on Cityscapes. We organize the
classes in the order of results improvement from high to low. For
each class, left(blue) shows the result of PSPNet50 [Zhao et al.,
2017] and the right(orange) shows that of the proposed method.

tic labels of them should be the same, the cross-view con-
sistency can be measured by considering one prediction as
ground truth and evaluating another.

In the ablation study, we use PSPNet50 [Zhao er al., 2017]
consisted of Resnet50 and a pyramid pooling module as our
baseline method. The baseline method is trained with stan-
dard cross entropy loss. We gradually add the proposed mod-
ules including online VVD data generator, consistency loss
and gradient guided deformable convolution. We evaluate the
cross-view consistency using VVD dataset and the segmen-
tation performance using both Cityscapes and VVD dataset.
For the method only using cross entropy loss, the training data
is trained for 90K iterations. For the other methods, to ensure
the network provides nontrivial solutions and make it easier
to converge, the consistency losses are added after 45K itera-
tions warm-up training. The total iterations are set to 90K to
guarantee the fairness of comparison.

The semantic segmentation and cross-view consistency re-
sults are listed in Table 1. We find the segmentation perfor-
mance of the baseline method drops severely when dealing
with images in abundant view directions in VVD dataset. All
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Method SgngD dataée\t] c Cltyssecgapes
DeepLabV3 73.61 82.89 77.13
proposed 76.88 87.24 77.58
CCNet 73.94 81.47 77.62
proposed 76.95 86.82 77.80

Table 3: Comparison based on DeepLabV3 [Chen et al., 2017b]
and CCNet [Huang er al., 2019]. We show segmentation results
on Cityscapes dataset and both segmentation and cross-view consis-
tency (CVC) results in VVD dataset. All values are mIoU (in %).

VVD dataset CamVid
Method Seg cvC Seg
PSPNet50 74.08 83.89 77.32
proposed 76.33 86.88 77.39

Table 4: Comparison using PSPNet50 [Zhao et al., 2017] on
CamVid dataset. All values are mIoU (in %).

the metrics, especially in VVD dataset are improved with the
use of different novel modules. The proposed method with all
three modules gets the best performance in the comparison.
Meanwhile, it obviously reduces the gap between the seg-
mentation performance on VVD dataset and Cityscapes. For
visual comparison, some segmentation examples are shown
in Fig. 4. The proposed method improves the segmentation
performance in vehicles and traffic signs compared with the
baseline method. We also visualize the cross-view consis-
tency results in Fig. 5. We gather the statistic of improvement
for each class in Cityscapes. We get improvement in all 19
classes and present the highest 9 classes for clear visualiza-
tion, as shown in Fig. 6.

A parameter study of « is performed for the consistency
loss to investigate its impact on the performance in VVD
dataset deriving from Cityscapes. Semantic segmentation
performance is considered in this part. We use different «
from 0.1 to 5 in the proposed consistency loss and keep other
experiment details the same. The results are listed in Table 2.
The best choice for « is 1 with respect to segmentation.

4.3 Performance on Different Architectures

We evaluate our method with different network architectures
in this section. The three novel modules are applied on
DeepLabV3 [Chen e al., 2017b] and CCNet [Huang er al.,
2019], respectively. The results are listed in Table 3.

We also evaluate our method in CamVid dataset. CamVid
dataset contains 701 images and their pixel-level segmenta-
tion annotation with size of 720 x 960. We use 468 images to
train and 233 images to validate following [Badrinarayanan
et al., 2017]. We derive new VVD dataset from CamVid for
evaluating the performance. The intrinsic matrix is obtained
using [Li er al., 2010]. Model pretrained on Cityscapes in
used as a start point in the experiment. We train both the
baseline method and our method for 10K iterations. The re-
sults are shown in Table 4.
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Figure 7: Cross-view consistency for a video sequence in Cityscapes
video demo. The proposed method gains an obvious improvement
over the baseline method [Zhao et al., 2017].

4.4 Consistent Video Semantic Segmentation

To evaluate the effectiveness and applicability of the pro-
posed method, we conduct an experiment on video semantic
segmentation on Cityscapes dataset. We select 4 frame se-
quences with total 160 frames from the video demos. In this
case the positions of the two cameras can be considered hav-
ing a small baseline. Although a homography can approx-
imately describe the relationship of the consecutive frames,
we use dense optical flow to find the corresponding pixel
pairs for more accurate measurement. We measure the con-
sistency of the corresponding pixel pairs between consecutive
video frames. Result of one sequence is shown in Fig. 7. The
proposed method achieves an average of 70.4% on total se-
quences, which gains 8.2% over the baseline method. Results
show our approach can improve the consistency in more gen-
eral cases even the position of the camera is changed, though
only view directions of images are varied in the training.

5 Conclusion

This paper focuses on improving cross-view consistency in
semantic segmentation while varying view direction. We find
that the view directions in previous urban datasets are often
near directions of streets. In order to alleviate the bias, we
propose an online VVD data generator that can modify an-
notated images to new plentiful view directions and calcu-
late correspondent pixel pair indices, with carefully gener-
ated homography transformations. Furthermore, to improve
the consistency, we present gradient guided deformable con-
volution that can readily replace standard convolution in ex-
isting segmentation networks. A novel consistency loss is
also proposed for extra supervision during training. With the
proposed consistency metrics, we evaluate the performance
in the generated VVD datasets containing images with abun-
dant view directions compared to the common-used datasets.
Experimental results show that our method improves the seg-
mentation performance of the convolutional neural network,
making it more robust to view direction changes.
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