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Abstract

Zero-shot sketch-based image retrieval (ZS-SBIR),
which aims to retrieve photos with sketches un-
der the zero-shot scenario, has shown extraordi-
nary talents in real-world applications. Most ex-
isting methods leverage language models to gen-
erate class-prototypes and use them to arrange the
locations of all categories in the common space
for photos and sketches. Although great progress
has been made, few of them consider whether such
pre-defined prototypes are necessary for ZS-SBIR,
where locations of unseen class samples in the em-
bedding space are actually determined by visual
appearance and a visual embedding actually per-
forms better. To this end, we propose a novel
Norm-guided Adaptive Visual Embedding (NAVE)
model, for adaptively building the common space
based on visual similarity instead of language-
based pre-defined prototypes. To further enhance
the representation quality of unseen classes for both
photo and sketch modality, modality norm discrep-
ancy and noisy label regularizer are jointly em-
ployed to measure and repair the modality bias of
the learned common embedding. Experiments on
two challenging datasets demonstrate the superior-
ity of our NAVE over state-of-the-art competitors.

1 Introduction

Sketch-based image retrieval (SBIR), which conveniently al-
lows users to search desired photos with free-hand sketches,
has a broader prospect with the explosive growth of mo-
bile internet and touch screens. Since it is hard to guaran-
tee that the training set can cover all query categories at the
application stage, a more realistic setting termed zero-shot
sketch-based image retrieval (ZS-SBIR) has emerged. ZS-
SBIR[Shen e al., 2018], which combines zero-shot learning
and SBIR, aims to retrieve photos with the query sketches
whose categories are no longer limited to the classes that have
shown in the training set. ZS-SBIR not only needs to narrow
the domain gap between modalities, but needs to facilitate the
knowledge transfer from seen categories to unseen ones.
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Figure 1: An illustration of the conflict between semantic similar-
ity and visual similarity. ‘Piano’ is semantically similar to ‘guitar’
and ‘trumpet’, since it has a high co-occurrence frequency with the
instruments in the corpus. However, it looks more like furniture,
which is close to a ‘bench’ or ‘table’ from the visual perspective on
both sketch and photo modalities.

Most previous ZS-SBIR approaches intend to learn a
projection that maps sketches/photos to a latent embed-
ding space, where sketches and photos from the same cat-
egory are mapped close to a pre-defined common class-
prototype. Specifically, they first utilize pre-trained lan-
guage models (e.g., Word2Vec [Mikolov et al., 2013] or Ji-
Cn [Jiang and Conrath, 1997]), to translate labels of seen
classes into high-dimensional vectors and consider them as
the class-prototypes in the common space. Then, they learn to
project both sketches and photos close to their corresponding
class-prototypes. Based on this paradigm, various architec-
tures (e.g., GANs [Dutta and Biswas, 2019], graph [Shen et
al.,2018; Zhang et al., 2020], and cycle reconstruction [Dutta
and Akata, 2019; Deng et al., 2020]) have been employed to
estimate the projection. They expect that such learned map-
pings can leverage the side-information from language model
to project unseen class sketches/photos close to their seman-
tically similar seen classes, and thus the distances among the
sketches and photos from the same category are minimized.
However, the locations of unseen class samples in the latent
space are actually determined by their visual similarity with
seen classes rather than the semantic relationship, which is
the result of knowledge transfer from seen classes [Hsu et al.,
2018; Han et al., 2019]. And we argue that such pre-defined
class-prototypes are actually not proper for ZS-SBIR task.

There is the conflict between semantic similarity and visual
similarity. The semantic similarity from language models is
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based on the word co-occurrence frequency in large corpus,
and thus the semantically similar classes may not be simi-
lar in visual appearances (an example is given in Figure 1).
Therefore, models that aim to fit the language-based simi-
larity would inevitably neglect the inter-class visual similar-
ity knowledge, leading to a visually confusing embedding
projection and poor performance on unseen classes. Mean-
while, the visual representation space from a classification-
based CNN is already a meaningful space [Chen erf al., 2018;
Zeiler and Fergus, 2014], where the distance between visually
similar classes (e.g., table and bench) is smaller than the dis-
tance between visually dissimilar ones (e.g., table and trum-
pet). And we experimentally find that directly using such vi-
sual embedding as the common space performs well on ZS-
SBIR with much discriminative representations generated for
both unseen sketches and photos. It inspires us to rethink
whether language-based pre-defined class-prototypes are nec-
essary for ZS-SBIR.

To this end, instead of using language-based side-
information, we propose a novel method named Norm-
guided Adaptive Visual Embedding (NAVE), which adap-
tively builds the common embedding based on the visual sim-
ilarity of seen classes and ImageNet. Due to the domain gap,
there is also the conflict of visual inter-class similarity be-
tween sketch and photo modality. Without proper guidance,
the common embedding may be biased and only meaningful
for one modality, negatively affecting the knowledge transfer.
We thus introduce the modality-mean-feature-norm discrep-
ancy and a noisy label regularizer to measure and repair the
modality bias of the learned embedding space. With their
interaction, our NAVE can adaptively learn a balanced com-
mon embedding where the inter-class similarity is visually
meaningful for both sketch and photo modalities, boosting the
knowledge transferring for both modalities. Consequently,
the final ZS-SBIR performance is improved.

The main contributions of this work can be summarized:

e We analyze the conflict of language-based similarity
with visual similarity and its effect on unseen classes
for ZS-SBIR task. To the best of our knowledge, this is
the first work to consider whether pre-defined language-
based prototypes are necessary for ZS-SBIR task.

e We propose the NAVE model for ZS-SBIR task that
adaptively builds a common embedding space based on
visual similarity instead of language-based pre-defined
class-prototypes.

e To make the common embedding visually meaningful
for both sketches and photos, we propose modality-
mean-feature-norm discrepancy and noisy label regular-
izer to jointly measure and repair the modality bias of
the learned embedding.

e Extensive experimental results on two popular bench-
marks demonstrate that our NAVE outperforms the state-
of-the-arts by a significant margin.

2 Related Work

Sketch-based Image Retrieval (SBIR). The main challenge
in traditional SBIR is the domain gap between sketch and

photo. Most existing SBIR methods intend to narrow the gap
by learning a shared embedding space. Furthermore, mul-
tifarious tools (e.g., Siamese architecture [Qi et al., 2016],
pairwise loss [Liu et al., 2017], ) are adopted to obtain a bet-
ter retrieval metric in the common space.

Zero-shot Learning (ZSL). ZSL aims to recognize ob-
jects from novel categories that are not shown in training
set with additional side-information. Most ZSL approaches
utilize visual attribute side-information (e.g., “has wings”)
to generate the class prototypes in the semantic space [Fu
et al., 2018]. And some early works [Socher er al., 2013;
Frome er al., 2013] choose language model as an alterna-
tive. As a classification task, ZSL needs to assign samples
with labels, where class-prototypes play the agents of labels
in the semantic space. While ZS-SBIR, which is actually an
open-set retrieval task, only aims to retrieve the visually sim-
ilar photo with sketches. If the model can directly grasp the
generic visual features of two modalities and generalize them
to unseen classes, it is not a requisite for ZS-SBIR models to
pre-define such semantic prototypes.

Zero-shot Sketch-based image retrieval (ZS-SBIR).
Most existing ZS-SBIR methods follow the common space
paradigm and pre-define class-prototypes with language
models. Graph [Zhang er al., 2020; Shen et al., 2018], cy-
cle consistency [Dutta and Akata, 2019; Deng et al., 2020]
and content-style disentanglement [Dutta and Biswas, 2019])
are employed to learn the projection to map sketches/photos
close to such prototypes. [Dutta and Akata, 2019] proposes a
selection layer to refine the prototypes and reduce the dimen-
sionality of retrieval features. Graph-based method [Zhang et
al., 2020] adjust the language-based adjacency matrix with
visual information. [Liu et al., 2019] proposes a teacher-
student framework to preserve discriminative representations
from ImageNet and coordinates the representations close to
language-based prototypes. [Dutta et al., 2020] takes into
account the class imbalance problem in ZS-SBIR. Although
some refinements for the language prototypes have been uti-
lized, few of them consider whether such prototypes are nec-
essary for ZS-SBIR.

3 Language Prototypes in ZS-SBIR

To investigate whether pre-defined language-based proto-
types are beneficial to knowledge transfer in ZS-SBIR task,
we adopt the baseline illustrated in [Dutta er al., 2020] and
train it with various semantic class-prototypes extracted from
different pre-trained language models. We follow the stan-
dard ZS-SBIR data partitioning on Sketchy Ext. [Liu erf al.,
2017] / TU-Berlin Ext. [Zhang et al., 2016] to randomly se-
lect 25/30 classes as unseen classes C*. And the rest 100/220
classes are considered as seen classes C* for training.

The baseline model use two branches to extract fea-
ture representations of photos/sketches, namely f(™) =
Fm(z™);0,,), where 2("™) is the sketch/photo input and
m € {sk,ph}. And pre-trained language models are uti-
lized to vectorize the labels of seen classes y € C* as their
corresponding class-prototypes h(y). The distances among
these prototypes in the common space preserve the knowl-
edge from language models. Then, the model is trained to
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Model Name Sketchy Ext. TU-Berlin Ext.
dim | SBIR | SBSR | PBPR | dim | SBIR | SBSR | PBPR
Fast [Joulin et al., 2017] 0.323 | 0413 | 0.436 0.302 | 0.418 | 0478
Glove [Pennington ef al., 2014] 300 0.324 | 0417 | 0434 300 0.294 | 0.411 | 0.465
Word2Vector [Mikolov et al., 2013] 0.318 | 0.411 | 0.433 0.305 | 0.415 | 0.462
Classifier 0.452 | 0.578 | 0.657 0.406 | 0.581 | 0.631
Ji-Cn [Jiang and Conrath, 1997] 0.297 | 0.388 | 0.452 0.295 | 0.387 | 0.406
Lch[Leacock and Chodorow, 1998] 0.285 | 0.362 | 0.431 0.274 | 0.397 | 0.451
Lin [Lin and others, 1998] 354 0.222 | 0.321 | 0.386 664 0.204 | 0.346 | 0.372
Path Length 0.301 | 0.394 | 0.466 0.257 | 0419 | 0414
Wup [Wu and Palmer, 1994] 0.258 | 0.355 | 0.408 0.205 | 0.345 | 0.339
Classifier 0.459 | 0.574 | 0.677 0.411 | 0.574 | 0.644

Table 1: mAP@all of SBIR, SBSR and PBIR on unseen set of models on Sketchy Ext. and TU-Berlin Ext. using different kinds of pre-defined
class-prototypes from language models and the trainable classifier without any side-information.

map sketches/photos close to their corresponding prototypes
with a distance-based cross-entropy loss:

exp(—=d(f"™, h(y:)))
> jecs exp(—d(fm™), h(y;)))’

where d(f™, h(y;)) is the squared Euclidean distance be-
tween the extracted features and its corresponding proto-
type. Thus, the model is expected to leverage language side-
information to learn a projection, which can map unseen
classes sketch/photos clustered around the language similar
seen classes.

We use three text-based models (FastText, Word2Vec and
Glove) and five hierarchy models (Ji-Cn, Lch, Lin, Path and
Wup) to generate language prototypes. The text-based mod-
els translate seen labels into 300-dimensional vectors accord-
ing to the word co-occurrence frequency in the corpus. The
hierarchy models extract 354/664-dimensional prototypes for
Sketchy/TU-Berlin based on WordNet. We also adopt a
classifier to analyze whether language prototypes can ben-
efit knowledge transferring to unseen classes. We use the
classifier to train the branches with standard cross-entropy
loss. Therefore, without the influence of the language side-
information, the classifier model builds the inter-class simi-
larity in the embedding space only based on visual similarity.

Table 1 presents mAP@all of sketch-based image re-
trieval (ZS-SBIR), sketch-based sketch retrieval (ZS-SBSR)
and photo-based photo retrieval (ZS-PBPR) on unseen
classes samples. We use ZS-SBSR and ZS-PBIR to evaluate
the representation quality of unseen classes sketches/photos.
As can be seen, different kinds of language prototypes indeed
have different effects on the final result, which meets the con-
clusions in [Dutta and Akata, 2019]. Moreover, we observe
that the classifier model outperforms all language-based ones
on ZS-SBIR, ZS-SBSR and ZS-PBPR. It indicates that the
classifier model can boost the knowledge transfer to generate
more discriminative representations of both unseen sketches
and photos. However, due to the conflict between visual sim-
ilarity and semantic similarity, forcing the model to fit the
language similarity inevitably makes the model to learn a vi-
sually confusing inter-class relationship. It negatively affects

L(z™, y;) = ~log (1)
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the knowledge transfer from seen to unseen classes and thus
hampers the representation performance on unseen classes.

4 Proposed Approach

Based on the observation above, we propose Norm-guided
Adaptive Visual Embedding (NAVE) for ZS-SBIR. As il-
lustrated in Figure 2, without using any language side-
information, our NAVE adaptively learns the common em-
bedding space based on visual similarity from seen classes
and ImageNet. A parameter-shared Siamese network is ap-
plied to map sketches and photos to the common embedding
space. To acquire better representations of unseen photos, we
follow previous [Liu et al., 2019] using a teacher-student ar-
chitecture to preserve the model’s capability of recognizing
rich photo features from ImageNet. To mediate the visual
similarity conflict between sketch and photo modality, we in-
troduce the modality-mean-feature-norm discrepancy and a
noisy label regularizer to measure and repair of the learned
embedding’s modality bias. Therefore, our NAVE can build
a more balanced embedding space, where the inter-class sim-
ilarity is visually meaningful for both sketches and photos.
It boosts the knowledge transfer for both modalities and im-
proves the final ZS-SBIR performance.

Preliminaries. In ZS-SBIR setting, the whole dataset is
divided into training (seen) and test (unseen) set according to
the categories C*/*. Let S;, = {(x°*,y) | y € C*} represents
the training sketch set and Py, = {(2?",y) | y € C*} be the
training photo set, where z°*/?" and y are sketch/photo and
label respectively. We denote S;. = {(z°F,y)|ly € C*} as
test sketch set and P, = {(2P",y) | y € C“} as test photo
set respectively. To satisfy the zero-shot setting, the train-
ing classes and test classes do not share any category, <.e.,
C*C* = 0. During testing, given a sketch query sample
2°F from S;., the ZS-SBIR model is expected to retrieve cor-
responding photos from the test photo set P.

4.1 Visual Feature Extractor

We use the Siamese CNN pre-trained on ImageNet as
the backbone to extract sketch and photo representations,
i.e., fR/Ph = F(x°/Ph; ). Sharing parameters in Siamese
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Figure 2: Illustration of our proposed NAVE. A Siamese network is employed to extract features for sketches and photos, and a teacher
network is adopted to maintain the rich photo features learned on ImageNet. For each mini-batch, we apply modality-mean-feature-norm
discrepancy Dy, rr to measure the bias of current embedding. If the norm discrepancy exceeds the given range, e.g., (a) and (c), a noisy
label regularizer L,.4 is implemented to the larger-norm modality’s objective until the discrepancy comes back into the given range (b),
which constraints the learned embedding to be balanced and visually meaningful for both sketches and photos.

network can alleviate over-fitting, which has been proven
in [Deng et al., 2020]. After obtaining the visual representa-
tions of each modality, a fully-connected classification layer
with the standard cross-entropy loss is adopted:

exp(27)

> ece exp(zi™)

where m € {sk,ph}, z = W7 f0™ 4+ b, W and b are the
weight and bias of the classification layer.

Meanwhile, we adopt a teacher network that is pre-trained
on ImageNet and keep it fixed during the training phase. It
can better preserve the model’s capability learned on Ima-
geNet to recognize rich photo features learned on ImageNet,
and thus benefits the generalization to unseen classes photos.
For each photo 2P", the teacher network generates a pseudo
soft ImageNet label p which reflects the probability of each
classes C° in ImageNet. Then, the teacher-student objective
is adopted to encourage the backbone to make the same Ima-
geNet prediction for 27"

Lis(z™, p) = — Z Pm 10g(gm), 3)

meCe

m (@™, y;) = —log )

where q = Softmaz (W, fP* +b,) is the softmax output of
the ImageNet classification layer. Different from [Liu et al.,
2019] that fine-tunes the teacher signals close to the language
side-information, our method views the ImageNet supervi-
sion as a prior and adaptively learn a balanced embedding
that is visually meaningful both photos and sketches.

4.2 Norm-guided Modality Balance

Since sketches are made up of sparse shape strokes while
photos contain both texture and shape cues, there is domain
gap between two modalities. Therefore, the visual inter-class
similarity of the two modalities is not the same and also not
proper for the other modality to fit. The ImageNet-trained
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CNNs have shown to be strongly biased towards recognizing
texture features compared with shapes [Geirhos ef al., 2018].
Therefore, the inter-class relationship from ImageNet is not
visually meaningful for sketch modality. Meanwhile, the sim-
ilarity of sketches is also not proper for photo models to fit,
as it makes the photo model ignore the texture features, lead-
ing to poor recognition performance [Nam and Kim, 2019].
We aim to learn a ‘sweet spot’ embedding to mediate the vi-
sual similarity conflict between sketches and photos, and thus
more knowledge for both modalities can be transferred to un-
seen classes. However, without proper guidance, it is hard
to guarantee that the learned embedding is balanced for two
modalities or biased.

Inspired from recent smaller-norm-less-informative as-
sumption [Xu er al., 2019], we adopt the features norms to
measure the bias of the embedding. Specifically, we intro-
duce the modality-mean-feature-norm discrepancy D, fr,
to measure the modality bias of the embedding learned dur-
ing training:

nph

sk

1 b 1 « N
Dy gn = (fnph Z 17115 — <k Z I£2513), @
i=1 j=1

where n°F and nP" is the batch size of sketch and photo
modality. If the discrepancy D, £y is out of the given range:

|Dmmfn - P| > T, (5)

the current embedding is considered as biased towards the
larger-norm modality, where expected discrepancy P and
threshold 7 are hyper-parameters. Since the norm reflects
the model’s inference confidence on the samples, a biased
embedding with large discrepancy is not beneficial for ei-
ther the small norm modality or the large norm one. If the
embedding is not suitable for one modality, the model will
project the features with less confidence or small norm, de-
creasing the knowledge to unseen classes. Meanwhile, too
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large norm indicates that the model is over-confident to the
seen classes, which is also harmful to generalize knowledge
to unseen classes. Consequently, some measures should be
taken to repair the biased embedding to be more balanced.

4.3 Noisy Label Regularizer

Noisy label is introduced as the regularizer, which can pre-
vent the model from being over-confident [Xie et al., 2016]
without spoiling the inter-class similarity knowledge [Miiller
et al.,, 2019]. When the norm discrepancy is out of the
given range, we add the noisy label regularizer to larger-norm
modality’s objective. For each sample (2("™), ;) from the
regularized modality, the noisy label is randomly drawn from
a uniform distribution over all seen classes except the ground-
truth c;:

C~ U({Cl, C2yeeny Cs} - {Cl})
{ vz =1 (6)

Then the regularizer loss £,.4 is computed with the generated
noisy label (z(™), §):

Ly, = Lo (=™, g), ©)

reg

where L7} is the standard cross-entropy loss (i.e., Eq.2)
and m € {sk,ph}. Each regularized sample is therefore
equipped with a ground-truth label and a disturbing one.
For the regularized modality, the disturbing labels regularize
the model to project features with less confidence and small
norm. As a coin has two sides, the common space has to em-
bed both modalities. The disturbing labels, meanwhile, allow
the model to tune the embedding biased towards the other
modality with larger norm features. Therefore, the embed-
ding bias is adjusted.

4.4 Objective Function

The basic training objective of the two modalities are:
Ly, = L3,
Lop = LP) + Lys.

cls

®)

The regularizer L,.4 is adaptively added to one modality’s
objective under the guidance of Dy, f. For example, when
Dy n — P < —7, the current model is biased towards the
larger norm sketch modality and the regularizer is added:

Csk = L:sk + )\reg»creg; (&)

where A4 is a hyper-parameter. More operation details in
the whole training procedure are presented in Algorithm1.

5 Experiments

5.1 Datasets and Settings

Datasets and Setup. We validate our NAVE on two widely-
used benchmarks: Sketchy Ext. [Liu et al., 2017] and TU-
Berlin Ext. [Zhang et al., 2016]. Sketchy Ext. consists of
75,479 sketches and 73,002 photos from 125 categories. TU-
Berlin Ext. contains 20,000 sketches evenly distributed over
250 categories and additional 204,489 photos. Following the
data partitioning in [Liu et al., 2019], we randomly pick 25
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Algorithm 1 NAVE algorithm

Input: training set {Sy,, Py }, hyper-parameter of regularizer
Areg, €xpected discrepancy P and threshold 7.
Parameter: F(z™;0), classification layer (W, b), ImageNet
layer (W,, b,).
1: for each iteration do
2:  Sample sketch batches {(z**,y)}1** from S'" and
photo batches {(zP",y)}. %’ from Py,

3 for each mini-batch do

4 Lo = LF, Lo = L2 + Ly

5: Calculate D, rp, according to Eq.(4)
6: if (Dymypn — P < —7) then

T Esk = ‘Csk + )\regﬁreg;

8: else if (D, 7, — P > 7) then

9: Lph = Eph + )\regﬁreg;
10: end if
11: Update parameters with VL, and VLpp;
12:  end for
13: end for

14: return feature extractor F(z™ ;0).

classes from Sketchy and 30 classes from TU-Berlin as test
set, and regard the rest 100/220 classes as the training set.

Implementation Details. We implement our NAVE with
PyTorch and train it on two Nvidia 1080 Ti GPUs. We use
Adam optimizer for training with an initial learning rate i =
0.0001, 51 = 0.9, B3 = 0.999 and a 0.5 learning rate decay
per epoch. The best hyper-parameters are ..y = 0.2, P =5,
7 = 3 for Sketchy Ext., and A\,cq = 0.1, P = 3,7 = 3
for TU-Berlin Ext. We follow the previous work [Liu et al.,
2019] to take SE-ResNet50 pre-trained on ImageNet as the
feature extractor backbone and the same teacher network for
a fair comparison.

5.2 Comparison with Existing Methods

To verify the superiority of our proposed NAVE, we make
the comparison with six recently published ZS-SBIR meth-
ods. All methods use ImageNet pre-trained network for
weight initialization and utilize language model to extract
side-information. Like most existing methods, we adopt
mean average precision (mAP@all) and precision consider-
ing top 100 (Prec@ 100) for performance evaluation.

As shown in Table 2, our model outperforms all the
language-model equipped competitors, which shows the ef-
fectiveness of our visual embedding model. Among the com-
petitors, SAKE [Liu et al., 2019] is second only to our NAVE.
It wins on the teacher-student architecture that preserves the
ImageNet knowledge for photo modality, which also par-
tially accounts for our adoption of the architecture. However,
SAKE still uses additional constraints to calibrate the teacher
signals close to the language-based side-information, which
results in a visually confusing space. Instead, our NAVE
adaptively builds the common space based on visual similar-
ity of sketches and photos. It boosts the knowledge transfer
for both modalities and thus improves the final ZS-SBIR per-
formance of our NAVE.
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. . Sketchy Ext. TU-Berlin Ext.

Method Dimension =3 p@all | Prec@100 | mAP@all | Prec@I00
ZSTH[Shen et al., 2018] 64 0.258 0.342 0.220 0.291
SEM-PCYC[Dutta and Akata, 2019] 64 0.349 0.463 0.297 0.426
Style-guide[Dutta and Biswas, 2019] 64 0.376 0.484 0.254 0.355
NAVE (Ours) 64 0.508 0.632 0.412 0.519
SketchGCNI[Zhang et al., 2020] 1024 0.382 0.538 0.324 0.505
SAKE[Liu et al., 2019] 512 0.547 0.692 0.475 0.599
AMDReg[Dutta et al., 2020] 512 0.551 0.715 0.447 0.574
NAVE (Ours) 512 0.613 0.725 0.493 0.607

Table 2: Performance comparison (mAP@all and Prec @ 100) of the propose method with state-of-the-art ZS-SBIR methods on Sketchy Ext.

and TU-Berlin Ext. datasets.

Expected discrepancy P
Dataset I —s——5— 5 10 20 30
Sketchy 0.542  0.563 0.601 0.610 0.603 0.593 0.588
TU-Berlin | 0.458 0475 0490 0.4838 0.485 0.480 0.477

Table 3: mAP@all on Sketchy Ext. and TU-Berlin Ext. with differ-
ent expected discrepancy P.

5.3 Effect of Norm Guidance

To illustrate the relationship between modality norm discrep-
ancy Dy, s and the final retrieval performance, we train
our NAVE with different expected discrepancy P on 512-
dimensional features. All models are trained under the same
data partitioning setting and 7 = 3. Table 3 shows ZS-SBIR
mAP@all for models with different expected discrepancy P.
As shown in Table 3, when the discrepancy is too small, the
embedding is biased towards sketch modality and the retrieval
accuracy greatly drops. When the embedding is biased to-
wards photos with a large discrepancy, the accuracy drops
slightly. We suspect that since photos with complex textures
are much harder to recognize than sketches, slightly biased
towards photo modality would push the model to pay more
attention on photos while has a relatively negligible impact
on sketch modality. Hence the photo modality matters more
to the final result. The best performance is obtained when P is
within (0, 10) for both Sketchy Ext. and TU-Berlin Ext. It in-
dicates that a relatively balanced visual embedding with small
discrepancy will improve the final ZS-SBIR performance.

5.4 Ablation Study

In Table 4, we conduct ablation study to demonstrate the ef-
fectiveness of each component in our NAVE. Four variants
are designed including: (a) Train the model only with the
classification loss L5 (i.e., baseline); (b) add the teacher-
student loss L;s to photo modality’s objective; (c) add the
noisy label regularizer L,.q to both modalities during the
whole training phase without the norm discrepancy guidance;
(d) our full NAVE which adaptively adds the noisy label reg-
ularizer under the guidance of norm discrepancy. All ablation
experiments are conducted on 512-dimensional retrieval fea-
tures. Table 4 reports their mAP@all results on Sketchy Ext.
and TU-Berlin Ext. datasets.

Compared with (b) and (a), we can find that the teacher-
student objective indeed improves the performance, since it
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#  Description Sketchy TU-Berlin

(a) Baseline(L.;) 0.475 0.417
(b) Baseline(Lgs) + L 0.535 0.467
(c) Baseline(Ls) + Lis + Lreg 0.587 0.473
(d) NAVE (full model) 0.613 0.493

Table 4: Ablation Studies on our NAVE mAP @all results of several
baselines are shown above.

can maintain the capability of recognizing the rich photo fea-
tures from ImageNet. In (c), we boldly add the noisy label
regularizer to the objective without the guidance of norm dis-
crepancy. As shown in Table 4, the noisy label can improve
the baseline’s performance, as it regularizes the model from
being over-confident to the seen classes. However, due to the
visual conflict between sketches and photos, the learn embed-
ding without proper guidance is probably biased and limits
the knowledge transfer to unseen classes of both modalities.
Finally, among all variants, our full NAVE achieves the high-
est mAP@all on both Sketchy and TU-Berlin. It proves that
with the norm discrepancy guidance, a more balanced em-
bedding is obtained and benefits to generalize more useful
knowledge for both modalities and the final performance.

6 Conclusion

In this work, we first analyzed the effect of language-based
prototypes to ZS-SBIR and observed that such prototypes ac-
tually hamper the knowledge transfer for inferring the un-
seen categories. To this end, we proposed the Norm-guided
Adaptive Visual Embedding (NAVE) method, which builds
the common embedding based on visual similarity rather than
language-based pre-defined prototypes. A norm discrepancy
guidance and a noisy label regularizer were introduced to
measure and repair the embedding bias. Experiments on two
datasets verified our proposed model outperforms existing
ZS-SBIR methods without any language side-information.
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