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Abstract
Multi-modal cues presented in videos are usually
beneficial for the challenging video-text retrieval
task on internet-scale datasets. Recent video re-
trieval methods take advantage of multi-modal cues
by aggregating them to holistic high-level seman-
tics for matching with text representations in a
global view. In contrast to this global alignment,
the local alignment of detailed semantics encoded
within both multi-modal cues and distinct phrases
is still not well conducted. Thus, in this paper, we
leverage the hierarchical video-text alignment to
fully explore the detailed diverse characteristics in
multi-modal cues for fine-grained alignment with
local semantics from phrases, as well as to cap-
ture a high-level semantic correspondence. Specif-
ically, multi-step attention is learned for progres-
sively comprehensive local alignment and a holistic
transformer is utilized to summarize multi-modal
cues for global alignment. With hierarchical align-
ment, our model outperforms state-of-the-art meth-
ods on three public video retrieval datasets.

1 Introduction
Vision and language play important roles in the way humans
learn to associate visual entities to abstract concepts and vice
versa. With the rapid emergence of videos on the Inter-
net, video-text retrieval has become challenging, since both
videos and language texts contain rich and structured details.

As shown in Figure 1, a single piece of text is able to
demonstrate complicated interactions among various entities,
where actions (e.g. ‘playing’ and ‘standing’) are denoted by
verbs and entities refer to noun phrases (e.g. ‘horse’ and
‘bucket’). Meanwhile, these complicated cues can be well de-
scribed by constituent modalities of the video data including
appearance, motion, audio, overlaid text, speech, etc. There-
fore, more and more recent works focus on taking advantage
of multi-modal video information for accurate video-text re-
trieval. For example, benefiting from multi-modal features
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a young horse playing with a bucket beside standing another horse

Video A

Video B

Figure 1: An example of text-to-video retrieval. High-level seman-
tics can be summarized from video cues of ‘young horse’, ‘playing’,
‘bucket’, ‘standing’, ‘another horse’, etc. Methods only aligning
high-level semantics may not know whether ‘young horse beside
standing another horse’ or ‘young horse playing with a bucket’ is
the key to distinguish the videos, since the former one is also dis-
tinctive among the retrieval videos in a large dataset. In this paper,
hierarchical alignment is utilized to help mitigate this issue.

extracted by multiple off-the-shelf expert models, compact
global video representations are learned in [Liu et al., 2019;
Gabeur et al., 2020; Patrick et al., 2020]. These global
video representations aggregate high-level semantics and are
able to be well aligned to the corresponding encoded global
text representations. These methods usually achieve promis-
ing results for video-text pairs containing distinct semantics.
However, miss matching may occur for these methods when
video-text pairs contain similar dominant semantics. It is
because global alignment among high-level semantics may
overlook important details or local relationships contained in
local phrases or specific video modalities.

To demonstrate the above issue more concretely, we give
an example of text-to-video retrieval in Figure 1 where video
A and B contain similar dominant semantics. The two videos
both contain modality cues of ‘young horse’, ‘playing’,
‘bucket’, etc, as mentioned in the text. Global-alignment-
based methods learn to summarize all these cues and their
relationships into a consistent and compact embedding. But
they may not know whether ‘young horse beside standing an-
other horse’ or ‘young horse playing with a bucket’ is the
key to distinguish the two videos, since the former one is
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Figure 2: Illustration of our model for text and video bi-directional retrieval. Arrows in black denote the data flow direction, those in red
denote loss function, and those in dotted denote multi-step path. Best view in color.

also distinctive among the retrieval videos in a large dataset.
This suggests the importance of introducing local alignment.
However, if only aligning each word embedding in texts with
each modality in videos and ignoring relatively higher-level
(e.g., phrases in texts) semantics, both video A and B can be
the retrieval result. Therefore, it is essential for video-text
retrieval to capture detailed correspondences and meanwhile
avoid being trapped in local optimum matching.

In this paper, we propose to dig into multi-modal cues
for video-text bi-directional retrieval with hierarchical align-
ment. For the multi-modal cues, our model learns detailed
modality-specific semantics and their local relationships, and
also the global induction of high-level semantics. Hierarchi-
cal alignment is carried out to align all the local semantics
and relations, and meanwhile to ensure a high-level corre-
spondence. Specifically, to extract detailed semantics, several
modality-specific transformers are utilized to capture intrinsic
characteristics of each modality such as the temporal and spa-
tial contextual properties. Then, local alignment is achieved
by attending modality-specific video representations to the
embedding of each word by multi-step cross attention. The
importance of each word in a sentence is thus learned, and
the relations of the words and diverse multi-modal cues are
captured. Moreover, a holistic transformer is used for ag-
gregating high-level semantics (e.g., descriptions of various
events in videos) into the global video representation. The
representation is then used for global alignment to the global
text embeddings and for retrieval ranking.

Extensive experiments are conducted on the MSR-VTT
[Xu et al., 2016], ActivityNet [Caba Heilbron et al., 2015],
and LSMDC [Torabi et al., 2016] to evaluate video-text bi-
directional retrieval performance. Experimental results show
that our proposed model can achieve state-of-the-art results
on all the above datasets. Ablation studies are carried out to
evaluate the effectiveness of each part of our model.

The contributions of our work are two folds. 1) We pro-
pose a model that leverages the hierarchical video-text align-
ment to fully explore the detailed and diverse characteristics
in multi-modal cues for fine-grained alignment with local tex-
tual semantics, as well as to capture a high-level semantic cor-
respondence. 2) Our proposed model can achieve new state-
of-the-art results on three benchmark datasets, demonstrating

its effectiveness and generalization.

2 Related Works
2.1 Self-supervised Learning of Video
[Luo et al., 2020; Miech et al., 2020; Rouditchenko et al.,
2020; Zhu and Yang, 2020] extracted text or audio infor-
mation in videos and used it for self-supervised learning on
large datasets like HowTo100M [Miech et al., 2019]. [Luo et
al., 2020; Zhu and Yang, 2020] introduced new Transformer
blocks for textual and visual feature encoding and learning.
[Miech et al., 2020] proposed an approach named MIL-NCE
to learn strong video representations from scratch. And [Rou-
ditchenko et al., 2020] proposed a network that learns audio-
visual language representations directly from randomly seg-
mented video clips and their raw audio waveform.

2.2 Text-Video Retrieval
For better feature matching in the text-video retrieval task,
[Chen et al., 2020a; Wei et al., 2020] focused on metric learn-
ing methods that assigning weights to positive and negative
pairs respectively during network training. An encoding ar-
chitecture based entirely on convolutional neural networks is
proposed by [Li et al., 2020] for better text and video feature
encoding. And [Zhao et al., 2020] focused on the long-range
dependency in videos and texts by introducing a multi-scale
dilated convolutional block.

Several works explored the relationships within texts and
videos.[Chen et al., 2020c; Yang et al., 2020] built semantic
trees for words in texts to match the corresponding informa-
tion in videos in a coarse-to-fine manner. [Feng et al., 2020;
Wang et al., 2020] constructed relation graphs using features
from both texts and videos for better aligning similar informa-
tion during retrieval. Since multi-modal cues are not utilized
by these works, their retrieval performance is not promising.

For multi-modal learning, [Liu et al., 2019; Gabeur et al.,
2020] utilized pre-trained models from other tasks to extract
multi-modal video features for text and video bi-directional
retrieval. And [Patrick et al., 2020] further replaced the orig-
inal retrieval texts with texts generated by a decoder taking
video features from support sets as input.
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3 Methodology
Our model carries out hierarchical alignment for video re-
trieval, which takes a text T = {wi}li=1 and a video’s multi-
modal features V = {mj}nj=1 as inputs. We define l as the
length of T , wi as the i-th word, n as the number of modali-
ties in the video, and mj as the features of the j-th modality.

The main architecture of our model is illustrated in Fig-
ure 2, which is composed of four main components, i.e., a text
encoder for text feature encoding, several modality-specific
transformers [Vaswani et al., 2017] for multi-modal video
feature encoding, a Local Alignment Module for multi-modal
local information alignment and a Holistic Ranking Module
for semantic relationship learning and holistic similarity cal-
culation. In the following of this section, we first introduce
how we encode text and video features into representations,
then describe the two modules, respectively, and finally de-
fine the objective function of our model.

3.1 Local Feature Encoding
For text encoding, a pre-trained Bert model [Devlin et al.,
2018] (defined as Φ(·)) is used for fine-tuning, the [CLS]
output (T c = Φ(T )[c]) and word embedding output (Tw =
{wi|wi = Φ(T )(i)}li=1) of which are fed to the Holistic
Ranking Module and Local Alignment Module.

For multi-modal video feature encoding, the multi-modal
video features V are acquired by feeding retrieval videos to n
video experts pre-trained on other video-related large-scale
datasets following [Liu et al., 2019; Gabeur et al., 2020].
Then, the features of each modality are pre-processed and
fed to the modality-specific transformers for detailed repre-
sentation learning. Specifically, all these transformers ΨM

j (·)
follow the architecture of the encoder of Transformer in
[Vaswani et al., 2017], consisting of multi-head attention and
fully-connected layers. Since transformers take embeddings
as input, we pre-process video features V as follows.

Firstly, since video features V output from different models
have different dimensions, we learn n linear layers {Fj}nj=1
to project the features into a unified dimension duni:

V uni =
{
muni

j |muni
j = Fj (mj)

}n
j=1

(1)

For input of the modality-specific transformers, feature and
temporal embeddings are calculated. To initialize the feature
embeddings, a max-pooling aggregation is utilized for all fea-
tures in each muni

j , i.e., magg f
j = maxpool(muni

j ), and the
feature embeddings of the j-th modality-specific transformer
Ef

j is defined as the concatenation of the corresponding ag-
gregated and unified features, i.e., Ef

j = [magg f
j ,muni

j ]. To
use temporal cues in videos, we embed each second’s features
inmuni

j together as [Gabeur et al., 2020] to achievemtmp
j and

calculate the corresponding aggregated features magg t
j . The

temporal embeddings of the j-th transformer Et
j is defined as

[magg t
j ,mtmp

j ].
The input of the j-th transformer min

j is defined as the ad-
dition of Ef

j and Et
j , and its output equals to ΨM

j (min
j ). We

combine the [CLS] output of all the nmodality-specific trans-
formers as the video representation V rep for hierarchical at-
tention learning and holistic ranking learning:

V rep =
{
mrep

j |m
rep
j = ΨM

j

(
min

j

)[c]}n

j=1
(2)

3.2 Local Alignment Module
Inspired by the Stacked Cross Attention proposed by [Lee et
al., 2018], we attend word embeddings Tw and video rep-
resentation V rep for cross attention calculation. Multi-step
alignment is then conducted for hierarchical learning.

For each sample in Tw (i.e., wi) and V rep (i.e., mrep
j ), we

first calculate the cosine similarity sij between them:

sij =
(wi)

T ·mrep
j

‖wi‖ ·
∥∥mrep

j

∥∥ , i ∈ [1, l], j ∈ [1, n] (3)

Then we normalize it by using a relu function (i.e.,
relu(x) = max(0, x)) as in [Gabeur et al., 2020]:

sij =
relu(sij)√∑l
i=1 relu(sij)2

(4)

Attention is performed over V rep given wi in Tw, and the
attended video representation vector ai is defined as:

ai =
n∑

j=1

αij ·mrep
j , αij =

exp(λsij)∑n
j=1 exp(λsij)

(5)

where λ is the inverse temperature parameter of the softmax
function [Chorowski et al., 2015] to adjust the smoothness of
the attention distribution.

Each element in A = {ai}li=1 captures related semantics
shared by each word embedding wi in Tw and the whole
V rep. And such context information will help to determine
the shared semantics with respect to V rep in the next match-
ing step, forming a multi-step computation process.

For multi-step hierarchical alignment of knowledge in Tw

and V rep, an aggregating function f(·) is utilized to update
wi in Tw for the next alignment by aggregating them with the
corresponding alignment features in A (i.e., ai) dynamically:
w∗i = f(wi, ai). Inspired by [Chen et al., 2020b], we define
our aggregating function as a modified gating mechanism:

f(wi, ai) = gi · wi + (1− gi) · oi
gi = gate(Fg[wi, ai] + bg)

oi = tanh(Fo[wi, ai] + bo)

(6)

where gi performs as a gate to select the most salient infor-
mation, and oi is a fused feature that enhances the interaction
between wi and ai. Fg , Fo, bg , and bo are to-be-learned pa-
rameters. As defined in Equation 6, both wi itself and oi are
utilized by the gating mechanism to refinewi. The gate gi can
not only help to filter inconsequential information in Tw, but
enable the representation learning of each wi to focus more
on its shared semantics with V rep.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1115



We combine all the equations in the above of this subsec-
tion (i.e., Equation 3 to 6) as Fa, which takes Tw and V rep

as inputs and is performed K times iteratively:

Ak, T
w
k = Fa(Tw

k−1, V
rep), k ∈ [1,K] (7)

where k is utilized to denote the k-th step of alignment, Tw
k

and Tw
k−1 indicate the step-wise features of word embeddings.

And when k = 0, Tw
0 = Tw.

In order to determine the importance of each word given
the video modalities, relevance between the i-th word and the
video modalities is defined as cosine similarity between the
attended vector ai and each word embedding wi:

S(Tw, V rep) =
K∑

k=1

l∑
i=1

(wki)
T · aki

‖wki‖ · ‖aki‖
(8)

The Triplet loss is utilized to enforce paired video-text
pairs to be close and unpaired ones to be separated in the em-
bedding spaces as in many previous works [Lee et al., 2018;
Chen et al., 2020b]. Following [Faghri et al., 2017], we only
concentrate on the hardest negatives in a mini-batch instead
of comparing with all negatives:

LTri =
B∑

b=1

relu (∆− S(Tw
b , V

rep
b ) + S(Tw

b , V
rep
b∗ ))

+
B∑

b=1

relu (∆− S(Tw
b , V

rep
b ) + S(Tw

b∗ , V
rep
b ))

(9)

where S(Tw, V rep) is the semantic similarity between Tw

and V rep, B is the batch size during training. ∆ is a margin
value. Tw and V rep with the same subscript b are paired
samples. Hard negatives are indicated by the subscript b∗.

The advantage of our multi-step hierarchical alignment is
that the loss function can directly supervise the learning of
video-text correspondences at each matching step, helping
the model to yield a higher quality of the alignment.

3.3 Holistic Ranking Module
For holistic feature learning, global information of texts and
videos should be extracted and aligned.

We denote the [CLS] output of the Bert model as T c and
learn gated embedding module Fg following [Miech et al.,
2018] to match the size of T c with that of videos:

T g = Fg(T c) (10)

Since the video representation V rep only present features
of each modality in a video, the holistic video features need
to be extracted. We utilize a holistic transformer ΨH(·) for
holistic video feature learning, thus the relationships of each
modality can be learned at the same time. We compute the
feature embeddings of V rep (i.e., V agg f ) the same way as
described in Section 3.1, and we don’t calculate the tempo-
ral embeddings since temporal information is not available in
V rep. The concatenation of vrep and its corresponding fea-
ture embeddings are fed to the holistic transformer:

V h = ΨH([V agg f , vrep]) (11)

We utilize Sh(T g, V h) to denote the similarity of holistic
information in videos and texts, which is supervised by the bi-
directional max-margin ranking loss [Karpathy et al., 2014]:

LMar =
B∑

b=1

∑
d 6=b

(relu(Sh(T g
b , V

h
d )− Sh(T g

b , V
h
b ) + Θ)

+ relu(Sh(T g
d , V

h
b )− Sh(T g

b , V
h
b ) + Θ))

(12)
where Θ is the margin. Different from the Triplet loss defined
in Equation 9, this loss utilizes all the samples in one mini-
batch for back-propagation, and it enforces the similarity for
true video-text pairs (i.e., Sh(T g

b , V
h
b )) to be higher than the

similarity of negative samples (Sh(T g
b , V

h
d ) or Sh(T g

d , V
h
b )),

for all b 6= d, by at least Θ.
The advantage of our modality-specific-to-holistic trans-

former structure over the state-of-the-art MMT [Gabeur et al.,
2020] and Support Set [Patrick et al., 2020] is that our model
can learn modality-specific features (containing temporal fea-
tures in each modality) and holistic features (containing re-
lationships among all modalities) independently, rather than
learning the overall features simultaneously. The learning
ability of Transformers is better explored.

3.4 Overall Objective Function
The overall objective function of our model is defined as the
weighted addition of the Triplet Loss LTri and bi-directional
max-margin ranking loss LMar:

L = LMar + β ∗ LTri (13)

where β balances the two objectives.

4 Experiments
We evaluate the performance of our model on several public
datasets. In the following of this section, we first introduce
the datasets and metrics for result comparison, and imple-
mentation details, then illustrate the overall performance of
our model on the datasets, and finally present ablation studies
to evaluate the effectiveness of each component of our model.

4.1 Datasets and Metrics
HowTo100M
HowTo100M [Miech et al., 2019] consists of more than
one million instructional videos from YouTube. The
automatically-extracted speech transcriptions are utilized to
form the text for retrieval. Since this text is naturally noisy
and often do not describe the visual content accurately, we
only utilize this dataset for pre-training as [Gabeur et al.,
2020; Patrick et al., 2020].

MSR-VTT
MSR-VTT [Xu et al., 2016] contains ten thousand YouTube
videos, each of which is paired with 20 natural sentences de-
scribing it. We follow [Yu et al., 2018] and utilize the ‘1k-A’
split, where 9,000 samples are utilized for training and the
other 1,000 samples are utilized for test.
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Methods Text −→ Video Video −→ Text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

[Miech et al., 2019] 12.1 35.0 48.0 12.0 - - - - - -
[Liu et al., 2019] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
[Gabeur et al., 2020] 24.6 54.0 67.1 4.0 26.7 24.4 56.0 67.8 4.0 23.6
[Patrick et al., 2020] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -
Ours 28.8 60.0 73.3 3.0 22.1 28.4 61.0 72.9 3.0 19.3
[Zhu and Yang, 2020]* 8.6 23.4 33.1 36.0 - - - - - -
[Miech et al., 2019]* 14.9 40.2 52.8 9.0 - 16.8 41.7 55.1 8.0 -
[Luo et al., 2020]* 18.7 44.4 58.9 7.0 - - - - - -
[Gabeur et al., 2020]* 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
[Patrick et al., 2020]* 30.1 58.5 69.3 3.0 - 28.5 58.6 71.6 3.0 -
Ours* 31.2 62.8 76.4 3.0 18.9 29.4 63.4 75.0 3.0 17.7

Table 1: Retrieval performance on the MSR-VTT dataset. Methods marked with * denote they are pre-trained on the HowTo100M dataset.

Methods Text −→ Video Video −→ Text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

[Liu et al., 2019] 11.2 26.9 34.8 25.3 - - - - - -
[Gabeur et al., 2020] 13.2 29.2 38.8 21.0 76.3 12.1 29.3 37.9 22.5 77.1
[Gabeur et al., 2020]* 12.9 29.9 40.1 19.3 75.0 12.3 28.6 38.9 20.0 76.0

Ours 15.6 32.6 41.8 16.0 71.8 13.7 33.1 42.0 17.0 70.2
Ours* 15.8 34.1 43.6 14.3 71.4 14.3 33.7 43.6 15.5 68.1

Table 2: Retrieval performance on the LSMDC dataset. Methods marked with * denote they are pre-trained on the HowTo100M dataset.

ActivityNet Captions
ActivityNet Captions [Caba Heilbron et al., 2015] is com-
posed of twenty thousand YouTube videos temporally anno-
tated with sentence descriptions. Following the approach of
[Zhang et al., 2018], we concatenate all the descriptions of
one video to form a paragraph. We evaluate our model on the
‘val1’ split, where 10,009 videos are utilized for training and
4,917 videos are utilized for test.

LSMDC
LSMDC [Torabi et al., 2016] consists of 118,081 video clips
extracted from 202 movies. The corresponding text of each
video clip is extracted from the script or video description.
1,000 videos are utilized for test and the other videos are uti-
lized for training.

Metrics
The performance of our model is evaluated with standard re-
trieval metrics used by many retrieval methods like [Lee et
al., 2018; Gabeur et al., 2020; Patrick et al., 2020]: recall
at rank N (R@N, higher is better), mean rank (MnR, lower
is better), and median rank (MdR, lower is better). For the
MSR-VTT and LSMDC datasets, we report N = {1, 5, 10},
and for the ActivityNet dataset, we reportN = {1, 5, 50} fol-
lowing [Gabeur et al., 2020; Patrick et al., 2020]. For all the
results presented by our model, we report the mean experi-
ments with 5 random seeds.

4.2 Implementation Details
We follow [Gabeur et al., 2020] and utilize seven modalities
for feature encoding, which are Motion using S3D [Xie et al.,

2018] pre-trained on the Kinetics dataset, Audio using VG-
Gish [Hershey et al., 2017] pre-trained on the YT8M, Scene
using DenseNet-161 [Huang et al., 2017] pre-trained on the
Places365, Appearance using SENet-154 [Hu et al., 2018]
pre-trained on ImageNet, and OCR, Face, and Speech using
models presented by [Gabeur et al., 2020]. For MSR-VTT
and LSMDC datasets, we utilize all the above modalities and
set n = 7, and for datasets that contain longer videos, e.g.,
HowTo100M and ActivityNet, we only utilize Motion and
Audio modalities and set n = 2.

The max text length l of the MSR-VTT and LSMDC
datasets equals to 30 and that of the ActivityNet and
HowTo100M equals to 100. The inverse temperature param-
eter of the softmax function λ in Equation 5 equals to 9, the
iteration time K in Equation 7 equals to 3, the mini-batch
size B equals to 32 for the MSR-VTT, LSMDC, and Activi-
tyNet and equals to 64 for the HowTo100M. The margin value
∆ in LTri equals to 0.2, and the margin value Θ in LMar

equals to 0.05. β utilized to balance the two losses equals to
1e-4 for the MSR-VTT, LSMDC, and equals to 1e-5 for the
HowTo100M and ActivityNet.

The HowTo100M is only used for pre-training, and we
present the results on the other three datasets. We utilize
Adam optimizer for all our experiments. The modalities are
used only for feature extraction rather than model training.
The learning rate of all our experiments is initialized as 5e-5.
We train our model on the HowTo100M for 2 million opti-
mization steps and decay the learning rate by a multiplicative
factor of 0.98 every ten thousand steps. For the MSR-VTT
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Methods Text −→ Video Video −→ Text
R@1↑ R@5↑ R@50↑ MdR↓ MnR↓ R@1↑ R@5↑ R@50↑ MdR↓ MnR↓

[Liu et al., 2019] 18.2 47.7 91.4 6.0 23.1 17.1 46.6 90.9 6.0 24.4
[Gabeur et al., 2020] 22.7 54.2 93.2 5.0 20.8 22.9 54.8 93.1 4.3 21.2
[Patrick et al., 2020] 26.8 58.1 93.5 3.0 - 25.5 57.3 93.5 3.0 -
Ours 27.5 59.0 93.7 3.0 19.8 25.8 58.3 93.6 3.0 20.5
[Liu et al., 2019]* 27.3 61.1 94.4 - - 27.9 61.6 95.0 - -
[Wei et al., 2020]* 28.5 62.6 94.9 - - 27.9 61.9 94.1 - -
[Gabeur et al., 2020]* 28.7 61.4 94.5 3.3 16.0 28.9 61.6 94.3 4.0 17.1
[Patrick et al., 2020]* 29.2 61.6 94.7 3.0 - 28.7 60.8 94.8 2.0 -
Ours* 30.2 63.5 95.3 3.0 15.5 30.1 63.8 95.2 3.0 15.7

Table 3: Retrieval performance on the ActivityNet dataset. Methods marked with * denote they are pre-trained on the HowTo100M dataset.

and LSMDC, we train our model for 100 thousand steps and
decay the learning rate by 0.95 every one thousand steps. And
for the ActivityNet, we train our model for 100 thousand steps
and decay the learning rate by 0.90 every 1,000 steps.

For the text encoder in our model, we utilize the ‘bert-base-
uncased’ checkpoint of the Bert model and fine-tune it with
a dropout rate of 0.1 during training. Our modality-specific
transformers and the holistic transformer are composed of 2
layers and 4 attention heads, a dropout rate of 0.1, a hidden
size duni of 1024, and an intermediate size of 3072.

Our experiments are conducted on NVIDIA V100 32G
GPUs. Taking the MSR-VTT dataset for example, train-
ing our model from scratch on this dataset on a single GPU
takes about 15 GPU hours for 100 epochs. The average GPU
hours/epochs speed of our model is about half of the speed of
[Gabeur et al., 2020] and quadruple of that of [Patrick et al.,
2020]. The inference speed of text and video bi-directional
retrieval for 1000 text-video pairs is around 5 seconds.

4.3 Experimental Results
Overall Performance
We compare the bi-directional retrieval (i.e., both text-to-
video and video-to-text) performance of our method to other
recent works. Table 1 to 3 show results on the MSR-VTT,
LSMDC, and ActivityNet datasets with and without pre-
training on the HowTo100M. Without pre-training, our model
outperforms all the other methods on all datasets. With pre-
training, except for the median rank of video-to-text on the
ActivityNet, our model outperforms other methods.

Specifically, as shown in Table 1, the results of our model
on the MSR-VTT dataset without pre-training almost outper-
form results of [Patrick et al., 2020] with pre-training. As
shown in Table 2, on the LSMDC dataset, the results of our
model without pre-training have already outperformed results
of [Gabeur et al., 2020] with pre-training, not to speak of
their results without pre-training. These suggest the stronger
retrieval ability of our model.

The improvement of results brings by our model on the
ActivityNet is not as large as that on the MSR-VTT and
LSMDC. This is because we utilize more words in each text
and fewer video modalities for feature learning in the Activi-
tyNet for fair comparisons with recent works [Liu et al., 2019;

             Motion Appearance Audio   Scene   Speech   OCR     Face   
MMT    0.8173      0.0972    0.0678  0.0168  0.0005  0.0003  0.0002  
Ours      0.6728      0.1175    0.1362  0.0692  0.0033  0.0004  0.0006

             Motion Appearance Audio   Scene     OCR     Face   Speech
MMT    0.6974      0.1151    0.1041  0.0775  0.0033  0.0013  0.0013
Ours      0.4772      0.2451    0.1323  0.1106  0.0052  0.0028  0.0269

Figure 3: Some visualization results of the weights of each modality
in the holistic ranking module. As can be seen, our model can utilize
more information in modalities besides “Motion”.

Gabeur et al., 2020; Patrick et al., 2020], the hierarchical in-
formation alignment is harder in this case.

More Visualizations
Figure 3 and 4 are provided to show the advantages of the
two modules and to prove that our method indeed tackles the
issue mentioned in our motivation discussion. As in Figure3,
the discrimination of certain video modality is dug out by our
method for better alignment. Figure 4 shows that our local
alignment module gradually focuses on important words.

Ablation Studies
In Table 4, we illustrate the results of ablation studies carried
out for effectiveness evaluation of each part of our model.

To evaluate the effectiveness of modality-specific trans-
formers (denoted as MSTs in Table 4), we replace them
with the multi-modal transformer proposed by [Gabeur et al.,
2020]. Experimental results demonstrate that our MSTs can
achieve better results, suggesting better information learning
ability of our model. When the Local Alignment Module or
Holistic Ranking Module (LAM or HRM in Table 4) is absent
in our model, the retrieval results drop to lower values. Note
that even without one module, our model can still outperform
the method in [Gabeur et al., 2020] as shown in Table 4. We
also conduct experiments with K = 1&2. As can be ob-
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Methods Text −→ Video Video −→ Text
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

[Gabeur et al., 2020] 24.6 54.0 67.1 4.0 26.7 24.4 56.0 67.8 4.0 23.6
Ours with XLNet 26.1 56.8 70.2 4.0 23.9 27.1 56.5 70.1 4.0 20.9
Ours with n = 6 27.2 58.5 71.6 3.0 23.4 27.6 59.3 70.5 3.0 20.5
Ours w/o MSTs 27.3 58.5 71.2 4.0 22.9 27.1 59.3 70.8 4.0 20.0
Ours w/o HRM 26.6 58.6 69.8 4.0 25.1 26.7 58.2 69.0 4.0 22.1
Ours w/o LAM 26.5 57.8 70.8 4.0 23.9 26.4 58.5 69.7 4.0 20.9
Ours with K = 1 27.4 59.6 71.7 3.5 22.5 27.9 60.1 71.9 3.0 20.2
Ours with K = 2 28.0 59.7 72.6 3.0 22.3 28.1 60.6 72.3 3.0 19.8
Ours 28.8 60.0 73.3 3.0 22.1 28.4 61.0 72.9 3.0 19.3

Table 4: Ablation studies on the MSR-VTT dataset, where MSTs denote the modality-specific transformers, LAM denotes the Local Align-
ment Module, HRM denotes the Holistic Ranking Module.

man in a black wet suit surfing waves at the beach on an over cast or cloudy day
0.4576       0.4194               0.4591                0.4463                               0.4550
0.4618       0.4166               0.4647                0.4535                               0.4627
0.4620       0.4122               0.4696                0.4596                               0.4700

man in a black wet suit surfing waves at the beach on an over cast or cloudy day
0.3445       0.3478               0.3942                0.3780                               0.3971
0.3883       0.3985               0.3865                0.3766                               0.3811
0.3935       0.3984               0.3315                0.3159                               0.3333

1.0

0.92

Stage1:
Stage2:
Stage3:

Stage1:
Stage2:
Stage3:

Figure 4: Visualizations of our local alignment module. The top left
corner of the left frames show the similarities between the video and
text. The top video is the ground-truth. For phrases, we report the
averaged weights of each word in the phrase. As shown, the module
can gradually find and focus on the important words it supposes.

served, experimental results in the last four lines in Table 4
are gradually better from top to bottom. This suggests that 1)
aligning word embeddings with modality-specific video rep-
resentation is better than not conducting local alignment, and
2) aligning modality-specific video representation to word
embeddings with more steps brings better results.

We also analyze the limitation of our work. As [Liu et
al., 2019; Gabeur et al., 2020; Patrick et al., 2020], we uti-
lize multiple models pre-trained on video-related large-scale
datasets as experts for video feature extraction. On one hand,
the ability of retrieval models is restricted by the capacity of
the extracted features. On the other hand, the feature extrac-
tion and learning pipeline is rather complicated and may not
be suitable to be applied to end-to-end applications. In the
future, we will focus on end-to-end and more lightweight so-
lutions for text and video bi-directional retrieval.

Which Modality Is More Important?
As described above, we utilize n = 7 modalities for the
MSR-VTT [Xu et al., 2016] and LSMDC [Torabi et al.,
2016] datasets, and n = 2 modalities for the ActivityNet

Modality Importance

Motion 0.4060
Appearance 0.2681
Audio 0.1529
Scene 0.0830
Speech 0.0516
OCR 0.0278
Face 0.0106

Table 5: The averaged importance of each modalities in the ‘1k-A’
test set of the MSR-VTT.

[Caba Heilbron et al., 2015]. It is natural to think that whether
the utilized modalities are of equal importance, and if not,
which modality is more important for retrieval.

After model training, we acquire the importance of the
seven modalities belonging to each sample in the ‘1k-A’ test
set of the MSR-VTT, which contains 1000 videos. The av-
eraged importance of each modality is calculated and shown
in Table 5. As can be observed, Motion and Appearance are
much more important than other modalities, suggesting that
the two modalities are commonly described in texts and are
more semantically cognizable.

More Modalities, Better Performance?
As shown in Table 5, the importance of OCR and Face is
much lower than the Motion and Appearance. It is natural
to think that if only utilizing the relatively more important
modalities, whether the performance of our model can still
be acceptable.

To evaluate this thought, we conduct an experiment with
the top 6 modalities in Table 5 and without the Face modality.
We utilize the same experimental settings as in Section 4.2
for setting n = 6 and the results are shown in Table 4 Line 3.
Compared to the best results presented in the last line of the
table, even without the ‘least’ important modality for training,
the performance of the model drop by around 1-2%. This
suggests that more modalities may bring better results.

Better Text Encoders, Better Performance?
Better text encoders usually brings better results. [Gabeur et
al., 2020] has demonstrated that Bert [Devlin et al., 2018] is
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better than GrOVLE [Burns et al., 2019] for text encoding
and [Patrick et al., 2020] has demonstrated that T5 [Raffel et
al., 2019] is better than W2V [Pennington et al., 2014] for
text encoding.

However, we argue that this may not always happen. We
conduct experiments with XLNet [Yang et al., 2019] as the
text encoder, which has been demonstrated to be more pow-
erful than Bert on some NLP tasks. We utilize the same ex-
perimental settings as described in our manuscript except for
the text encoder and the results are shown in Table 4 Line 2.
Compared to the best results presented in our manuscript the
model presents worse results when XLNet is utilized.

5 Conclusion
In this paper, we propose a model that first captures local
semantics by utilizing multiple modality-specific transform-
ers, and then explores hierarchical structural relationships
among local semantics by multi-step video modality-word
alignment, and meanwhile uses a holistic transformer to en-
sure the global alignment. Experimental results on three pub-
lic video retrieval datasets demonstrate the advantages of our
model. Ablation studies are also carried out to verify the ef-
fectiveness of each part of our model.
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