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Abstract

This paper proposes the first tracklet proposal net-
work, named PC-TCNN, for Multi-Object Track-
ing (MOT) on point clouds. Our pipeline first gen-
erates tracklet proposals, then refines these track-
lets and associates them to generate long trajec-
tories. Specifically, object proposal generation
and motion regression are first performed on a
point cloud sequence to generate tracklet candi-
dates. Then, the spatial-temporal features of each
tracklet are exploited, and their consistency is used
to refine the tracklet proposal. Finally, the refined
tracklets across multiple frames are associated to
perform MOT on the point cloud sequence. The
PC-TCNN significantly improves the MOT perfor-
mance by introducing the tracklet proposal design.
On the KITTI tracking benchmark, it attains an
MOTA of 91.75%, outperforming all submitted re-
sults on the online leaderboard.

1 Introduction
Multi-Object Tracking (MOT), which is a key technology for
extracting dynamic information from the environment, has
wide applications in autonomous driving and robotics. Most
existing methods explore MOT on images [Hu et al., 2019;
Mykheievskyi et al., 2020] or LiDAR point clouds [Simon et
al., 2019; Weng et al., 2020a]. These methods usually follow
a tracking-by-detection paradigm that associates the detected
objects across frames, and their tracking performance is often
restricted by inevitable detection failures (e.g., due to heavily
occluded objects).

To tackle detection failures, in image-based MOT, previ-
ous methods [Choi, 2015; Zhang et al., 2020] use short tra-
jectories (tracklets), composed by multiple detections in a
short time, as a basis for object association to form longer
trajectories. Recently, [Sun et al., 2020] directly generates
tracklets from image sequences in an end-to-end manner, and
achieves state-of-the-art performance in image-based MOT.
For point cloud-based MOT, however, such an end-to-end
tracklets-based network design is underexplored. The main
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Figure 1: Our PC-TCNN performs MOT on point clouds by gener-
ating tracklet proposals, refining the proposals, and associating the
refined tracklets to generate long trajectories.

challenge here is how to produce accurate tracklets from ir-
regular and unordered point clouds, as more accurate track-
lets will lead to higher MOT performance. [Luo et al., 2018]
proposes an end-to-end network that decodes tracklets by av-
eraging current detections and previous predictions; however,
its accuracy is sensitive to the quality of the predictions.

The accuracy of a tracklet relies on the quality of detec-
tions inside it. In a tracklet, an object across consecutive
frames shares some consistent spatial-temporal features. For
example, in point clouds, the width, length, and height of
rigid objects (e.g., vehicles) are consistent in consecutive
frames. Even for non-rigid objects (e.g., pedestrians), the
size, volume, and geometry are often similar in consecutive
point cloud frames. Such consistency constraints in spatial-
temporal features can improve the quality of detections. We
investigate to learn and use such features to improve tracklet
accuracy by refining the quality of detections inside tracklets.

The proposal-based methods have been successfully ap-
plied in object detection [Shi et al., 2020], single object track-
ing [Li et al., 2019] and action detection [Hou et al., 2017] by
performing object localization and recognition in a coarse-to-
fine manner. Through such a proposal-based coarse-to-fine
refinement, we could obtain more accurate tracklets, and con-
sequently, better tracking objects in consecutive frames.
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Inspired by this, we develop a novel Tracklet proposal Con-
volutional Neural Network, named PC-TCNN, for MOT on
Point Clouds. Our PC-TCNN performs MOT by (1) gener-
ating tracklet proposals, (2) refining tracklet proposals, and
then (3) associating the refined tracklets, as shown in Fig-
ure 1. Specifically, it first produces a set of high-recall track-
let proposals as regions of interest by performing object pro-
posal generation and motion regression on point cloud se-
quences. Then, PC-TCNN employs a tracklet proposal re-
finement scheme to refine the tracklet detections (detections
inside a tracklet) using spatial-temporal features aggregated
from each tracklet proposal, thereby improving tracklet accu-
racy. Furthermore, to form long trajectories, our PC-TCNN
associates the refined tracklets using a greedy assignment.
Our contributions are summarized as follows:

• We propose the first tracklet proposal network, which
generates tracklet proposals, refines the proposals, and
associates the refined tracklets on point cloud sequences,
leading to significantly improved MOT performance;

• We introduce a tracklet proposal refinement scheme that
uses the consistency constraints in spatial-temporal fea-
tures of each tracklet proposal to refine the tracklet de-
tections, and this can greatly enhance the accuracy of
tracklets;

• Our method achieves the state-of-the-art on the KITTI
tracking benchmark [Geiger et al., 2012] and ranks 1st
among all submitted methods as of Jan. 20th, 2021.

2 Related Work
Tracking-by-detection on point clouds. Most existing
MOT methods on point clouds follow a tracking-by-detection
paradigm. They first detect objects from single frame, then
associate the objects across frames by applying a filtering al-
gorithm [Simon et al., 2019; Weng et al., 2020a]. Some work
constructs deep networks to associate detected objects [Baser
et al., 2019; Wang et al., 2020]. Recent studies also investi-
gate MOT using both point clouds and image data [Weng et
al., 2020b]. In these methods, the detection is separated from
tracking. Hence, their tracking performance is restricted by
inevitable detection failures.
Tracklet-based MOT. To tackle detection failures, some
previous image-based MOT methods [Bae and Yoon, 2014;
Choi, 2015; Zhang et al., 2020] first generate tracklets by in-
dependently detecting and matching similar objects in con-
secutive image frames, then associate the tracklets to gen-
erate long trajectories. These methods are less sensitive to
detection failure. Recently, [Sun et al., 2020] proposed a
DMM-Net that generates tracklets from images in an end-to-
end manner. [Luo et al., 2018] proposed an end-to-end FaF
network that merges current detections and past predictions to
decode tracklets on point clouds; however, its accuracy relies
on the prediction quality. Our method directly exploits fea-
ture consistency of objects in consecutive frames to improve
the detection accuracy, leading to more accurate tracklets.
Proposal-based methods. The proposal-based methods,
which usually contain proposal generation and proposal re-
finement stages, perform through a coarse-to-fine framework.

The region proposal-based methods, specifically, generate re-
gions of interest in the spatial domain, and have been success-
fully applied for 2D object detection [Girshick et al., 2014],
single 2D object tracking [Li et al., 2019] and 3D object de-
tection [Shi et al., 2019; Shi et al., 2020]. These methods
were designed for single frame data and do not use tempo-
ral features. Recently, tube proposal-based methods, which
models features by taking into account temporal information,
have been used in action detection [Hou et al., 2017] and
recognition [Wu et al., 2020]. These models were developed
on regular image data rather than irregular point clouds. To
our best knowledge, our method is the first tracklet proposal
framework on point cloud sequences for MOT.

3 Our Method
We illustrate our tracklet proposal network in Figure 2. The
framework consists of three modules: tracklet proposal gen-
eration, tracklet proposal refinement, and tracklet association.

3.1 Tracklet Proposal Generation
To localize spatial-temporal region of interest in point clouds,
which we denote as tracklet candidates or tracklet proposals,
we propose a tracklet proposal generation module. At each
timestamp t, the proposed module takes multiple point cloud
frames {Pi}ti=t−n (n past frames and one current frame) as
inputs, and encodes the input point clouds into multiple bird
view feature maps. Then, it performs 3D object proposal gen-
eration and motion regression on these feature maps to gen-
erate a set of high recall tracklet proposals.

Backbone Network
To efficiently convert point cloud sequences into 3D feature
volumes, we employ the 3D sparse convolution [Shi et al.,
2020] to obtain the spatial features. Specifically, we first reg-
ister the input frames to the coordinate system of the last
frame using the GPS/IMU data. The registered point cloud
frames are denoted by {Pi}0i=−n. Then, we voxelize multi-
ple point cloud frames with a spatial resolution of L×W×H
(length, width and height), and obtain voxels {P ′i}0i=−n. For
each voxel, we calculate the raw features using mean of a 4-
tuple (3D coordinates + intensities) raw features of all inside
points. Then, we apply a series of shared 3D sparse convo-
lution S(·) on the voxelized point cloud frames to obtain the
spatial features {F 3D

i }0i=−n by

F 3D
i = S(P ′i ), i = −n, . . . , 0. (1)

Here S(·) consists of a series of 3×3×3 3D sparse convolu-
tion kernels, which downsample the spatial features to 1×,
2×, 4×, and eventually a 8× downsampled tensor.

Inspired by the convolutional gated recurrent unit (Con-
vGRU) [Tokmakov et al., 2017], which has been proven to be
effective in modeling temporal features in 2D images, we in-
corporated it into our tracklet proposal generation module to
compute temporal features of point clouds. We first compress
the spatial features {F 3D

i }0i=−n along the H dimension into
multiple bird’s eye view (BEV) feature maps {FBEVi }0i=−n.
Then we apply the ConvGRU G(·) on BEV feature maps to
compute the temporal features {FTi }0i=−n, by

FTi = G(FBEVi , FTi−1), i = −n, . . . , 0, (2)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1166



Figure 2: The framework of PC-TCNN. (1) At each timestamp t, PC-TCNN takes a point cloud sequence as inputs, and performs object
proposal generation and motion regression on the spatial-temporal features of point clouds to generate high recall tracklet candidates. (2) PC-
TCNN extracts and aggregates detailed spatial-temporal features of each proposal to refine the tracklet proposals. (3) PC-TCNN associates
the refined tracklets with previous trajectories (initialized by empty set at first timestamp) to generate final tracking results.

where FT−n−1 are initialized to zeros.
The temporal features are further encoded into high-level

BEV features {FHi }0i=−n (which represent more comprehen-
sive spatial-temporal features of point clouds) by a series of
shared 2D convolution C(·),

FHi = C(FTi ), i = −n, . . . , 0. (3)

Tracklet Proposal Head
A tracklet in point clouds is defined by multiple 3D bound-
ing boxes (BBs), which encode objects’ 3D sizes, motions
and correspondences during a short period. We denote the
3D BB of j-th tracklet proposal in i-th frame as Bji =

[xji , y
j
i , z

j
i , w

j
i , h

j
i , l

j
i , α

j
i ], which includes object coordinates,

width, height, length and orientation angle. Then the j-th
tracklet proposal is given by T j = {Bji }0i=−n.

The tracklet proposal head takes the BEV feature map se-
quence {FHi }0i=−n as inputs. At each location (pixel) on each
feature map, we employ an object proposal head to compute
the object confidence and residuals, and construct a motion
head to compute a cross-frame-offset of object motion. We
employ non-maximum suppression (NMS) on the last frame
of BB proposal head, to obtain the seeds of tracklet proposal.
Starting from the tracklet proposal seeds, we generate the m
tracklet proposals, denoted by Tt = {T j |j = 0, . . . ,m},
based on the cross-frame-offsets.

3.2 Tracklet Proposal Refinement
To improve the quality of tracklet detections, which is essen-
tial in attaining more accurate tracklets, we propose a track-
let proposal refinement module. In most proposal-based ap-
proaches [Shi et al., 2020; Hou et al., 2017], a main chal-
lenge in the refinement stage is how to effectively extract-
ing features from area of interest. Previous feature extraction

methods (e.g., region of interest pooling and tube of interest
pooling) are mostly designed for single frame [Girshick et
al., 2014; Shi et al., 2020] or video data [Hou et al., 2017]
and cannot be directly applied on point cloud sequences. To
tackle this, we design a tracklet feature aggregation method
to capture features from spatial-temporal region of interest on
point cloud sequence, leading to more accurate object recog-
nition and localization in tracklets.

Tracklet Features Aggregation
We first extract the points of each tracklet proposal by em-
ploying context-aware point cloud pooling [Shi et al., 2019].
For i-th 3D BB Bji in the j-th tracklet proposal, we ran-
domly extract b object points from input point cloud frame
Pi. These points are denoted by Pji = {pj,ki |k = 0, . . . , b},
where p ∈ R3 indicates point coordinates.

The extracted tracklet points contain accurate local object
features inside BB, but lack surrounding and global features
that are outside. Therefore, we project each point pj,ki to
the coordinate system of backbone features FTi , and utilize
bilinear interpolation to obtain new backbone features f j,ki .
To exploit more accurate local geometry, we transform the
extracted points to the canonical coordinate system of the
corresponding BB, denoted by p̂j,ki . Thus, for i-th 3D BB
in the j-th tracklet proposal, we obtain a set of extracted
features F ji = {[p̂j,ki , f j,ki ]|k = 0, . . . , b}. These features
are aggregated by set abstraction [Qi et al., 2017] layers
A(·) with single-scale grouping to generate a feature vector
F̂ ji = A(F ji ).

In a tracklet, an object across consecutive frames usually
shares some consistent spatial-temporal features. Especially
for the rigid objects, their sizes are the same across frames.
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To enhance their relation, we further aggregate the features
F̃ ji inside the proposal by employing a gated recurrent unit
(GRU) layerR(·) as

F̃ ji = R(F̂ ji , F̃
j
i−1), (4)

where F̃ j−n−1 are initialized by zeros.
Finally, we obtain a sequence of aggregated features for

each j-th tracklet proposal, denoted by {F̃ ji }0i=−n, which are
used to perform tracklet refinement.

Refinement Head
We refine a tracklet proposal T j by refining its multiple 3D
BBs {Bji }0i=−n. During training, we assign the ground-truth
tracklet to the proposal T j if the 3D overlap between the BBs
in ground-truth tracklet and in proposal is larger than a thresh-
old. For each Bji , we conduct box refinement by directly
regressing the size, location, and orientation residuals rela-
tive to it using the aggregated features F̃ ji . For each tracklet
proposal, we also compute a confidence using the features
F̃ j0 ∈ {F̃

j
i }0i=−n. The training target of the confidence is for-

mulated as min(1,max(0, 2mIoU − 0.5)), where the mIoU
is calculated by the mean 3D intersection between {Bji }0i=−n
and their ground-truth. The confidence loss is formulated to
minimize the cross-entropy loss between confidence outputs
and training targets.

In the inference stage, we perform NMS on the 3D BBs
in the last frame to obtain a set of refined tracklets T̂t, which
encodes more accurate object sizes, motions, and correspon-
dences during a short period of time.

3.3 Tracklet Association
Inspired by 2D image-based tracklet association which gen-
erates long trajectory by associating the tracklets with previ-
ous trajectory set using their 2D IOUs [Sun et al., 2020], we
transform this strategy into 3D trackelt association. We first
initialize an empty trajectory set at the beginning of tracking.
Then, at each timestamp t, we associate our refined tracklets
T̂t with previous trajectories using a simple greedy matching
algorithm based on their 3D IoUs. For successfully associ-
ated tracklets, we use them to update the corresponding tra-
jectories. Unsuccessfully associated tracklets will initialize
new trajectories for MOT at the next timestamp. This pro-
posed method is able to track objects under both online and
global settings. The tracklets encoded by multiple detections
can recover missed objects across multiple frames.

3.4 Losses
The proposed PC-TCNN is trained in an end-to-end manner
with a tracklet proposal loss Ltpn and a proposal refinement
loss Ltrn. Similar to [Shi et al., 2020], we sum the two
losses with equal weights to generate a final training loss as
L = Ltpn + Ltrn. Ltpn consists of multiple object losses
Lobji and motion losses Lmoti weighted by β,

Ltpn =
0∑

i=−n
Lobji + β

0∑
i=−n+1

Lmoti . (5)

We employ the object loss Lobji in i-th frame following single
frame object detector [Shi et al., 2020],

Lobji =
∑
Lsl1(∆r̂p,∆rp) + ηLclsi , (6)

where r ∈ {xi, yi, zi, wi, hi, li, αi}; the smooth L1 loss Lsl1
is used for single frame anchor box regression with the net-
work output residual ∆r̂p and regression target ∆rp; focal
loss Lcls is employed for anchor classification. We also adopt
the smooth L1 loss on the predicted motion residuals ∆r̂m

and motion targets ∆rm to regress the object motion as

Lmoti =
∑

r∈{dxi,dyi}

Lsl1(∆r̂m,∆rm). (7)

The Ltrn loss consists of multiple object refinement residual
losses and a confidence loss as

Ltrn =
0∑

i=−n

∑
Lsl1(∆r̂s,∆rs) + LmIoU , (8)

where r ∈ {xi, yi, zi, wi, hi, li, αi}; the confidence loss
LmIoU is calculated by a cross-entropy loss with confidence
outputs and confidence targets as detailed in Section 3.2; The
residual loss is formulated by smooth L1 loss with the net-
work output residuals ∆r̂s and the target residuals ∆r̂s.

4 Experiments
4.1 Datasets and Evaluation Metrics
We evaluate our method on the KITTI tracking
dataset [Geiger et al., 2012], which consists of 21 training
sequences and 29 test sequences. Input data of experiments
include point clouds and IMU/GPS data. The images are
only used to visualize tracking results. Same as most prior
works, we report results on the car subset for comparison.

Since the evaluation of the KITTI benchmark is conducted
on 2D image plane, we projected our 3D tracking results on
image plane for evaluation. We adopted the widely used
CLEAR MOT metrics [Bernardin and Stiefelhagen, 2008]
(including MOTA, MOTP, IDS, and FRAG) and Mostly
Tracked (MT) / Mostly Lost (ML) [Li et al., 2009] metrics
for MOT evaluation. We also report the results evaluated by
the 3D MOT metrics proposed by [Weng et al., 2020a].

4.2 Implementation Details
In our experiments, the 3D sparse convolution has four layers
with feature dimensions (16, 32, 64, 64). Feature dimension
of the ConvGRU and 2D convolution is 128 and 256, respec-
tively. We set the tracking range within [0, 70.4]m for the X
axis, [-40, 40]m for the Y axis, and [-3, 1]m for the Z axis.
The input point clouds are voxelized alongX,Y, Z with a size
(0.05m, 0.05m, 0.1m), respectively. We employed the set ab-
straction layers with grouping scales 128, 32 and 1. During
training, we performed NMS with a 3D IoU threshold of 0.8
to randomly keep 64 tracklet proposals with 1:1 negative and
positive proposals. A tracklet proposal that has mean 3D IoU
with ground-truth tracklet beyond 0.5 is treated as a positive
proposal. Otherwise, it is treated as a negative proposal. Dur-
ing inference, we performed NMS with a threshold of 0.7 to
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Frames AP@t MOT Metrics Speed
2D 3D MOTA MOTP Recall Precision MT ML IDS FRAG (ms)

1 91.25% 91.16% 85.45% 86.23% 88.58% 97.17% 79.04% 1.81% 48 242 75
2 92.78% 93.12% 87.92% 86.14% 91.84% 97.10% 85.71% 2.29% 18 147 158
3 93.59% 94.18% 89.15% 86.19% 92.36% 97.95% 86.67% 1.80% 7 63 240
4 94.03% 94.48% 89.44% 86.10% 92.88% 98.02% 88.10% 1.80% 2 33 312
5 93.51% 94.49% 88.62% 86.16% 92.93% 96.67% 87.14% 2.29% 3 31 388

Table 1: Results on the validation set by using the different number of point cloud frames. AP@t refers to the average precision (IoU=0.5)
of tracklet detections in the last frame. The 2D and 3D denote the image plane and LiDAR coordinate system, respectively. Values in bold
highlight the best results.

Figure 3: Qualitative results of our method on the sequence 11 (a) and 12 (b) of the KITTI test set. Different objects are in different colors.

Backbone Network TR TA AP@t MOTA

2D Conv+3D Conv × X 90.21% 83.99%
3D SpConv+ConvGRU × X 91.01% 85.82%
3D SpConv+ConvGRU X × 92.30% 87.30%
3D SpConv+ConvGRU X X 94.48% 89.44%

Table 2: Ablation study results on the validation set using differ-
ent components and 4 input frames. TR is the tracklet proposal re-
finement scheme; TA is the tracklet augmentation; AP@t refers to
average precision of tracklet detection in the last frame.

keep top-100 proposals. Also, we used an NMS threshold of
0.1 to remove the redundant tracklets.

To avoid overfitting, we adopted a series of data augmenta-
tion on the registered point cloud frames. It includes random
flipping along the X axis, global scaling with a random fac-
tor in [0.95,1.05], global rotation around the Z axis with a
random angle in [−π2 ,

π
2 ]. We aslo performed data augmen-

tation on tracklets by randomly sampling ground-truth track-
lets from other training samples to current training samples
to simulate objects’ locations and motions in various environ-
ments. We adopted the ADAM optimizer with batch size 4,
learning rate 0.01 and 80 epochs on two RTX 2080 Ti GPUs
to train our PC-TCNN. We employed the onecycle learning
rate strategy to deal with the learning rate decay.

4.3 Ablation Study
We conducted a number of experiments to examine each com-
ponent/design of the proposed PC-TCNN. For the ablation

study, we split the KITTI training set into two sub-datasets
for training and validation. The sub training set consists of 11
sequences, and the validation set consists of 10 sequences.

Number of input frames. We conducted an ablation study
on the number of input frames. The results are shown in Ta-
ble 1. On the validation set, our method achieved the best
MOT performance when taking four frames as inputs. Al-
though the false negatives can be further reduced by taking
more frames, the false positives dramatically increase with
more background noise being introduced. The overall in-
ference time also becomes longer when the number of input
frame increases as more computation is required. Some strat-
egy can speed up the network, such as enlarging the voxel
size, but may lower tracking performance.

Backbone network. To investigate the settings of the back-
bone network, we compared our settings of 3D sparse con-
volution (SpConv)+ConvGRU with a baseline setting of 2D
Conv+3D Conv used in FaF [Luo et al., 2018]. The results are
shown in Table 2. When both pipelines take in four frames,
our method outperforms the baseline by 1.83% on MOTA,
suggesting that the 3D SpConv+ConvGRU backbone is an
essential setting in our method.

Tracklet augmentation. To analyze the effectiveness of the
tracklet augmentation, we removed the tracklet augmentation
and kept other components unchanged. The results are shown
in Table 2. We can see that without tracklet augmentation, the
MOT performance drops significantly (2.14%), indicating the
benefit of tracklet augmentation.
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Method Input MOTA MOTP Recall Precision MT ML IDS FRAG

mono3DT[Hu et al., 2019] 2D 84.52% 85.64% 88.81% 97.95% 73.38% 2.77% 377 847
TuSimple[Choi, 2015] 2D 86.62% 83.97% 90.50% 97.99% 72.46% 6.77% 293 501
CenterTrack[Zhou et al., 2020] 2D 89.44% 85.05% 93.20% 97.73% 82.31% 2.31% 116 334
ODESA[Mykheievskyi et al., 2020] 2D 90.03% 84.32% 92.62% 98.77% 82.62% 2.31% 90 501

GNN3DMOT[Weng et al., 2020b] 2D+3D 82.24% 84.05% - - 64.92% 6.00% 142 416
aUToTrack[Burnett et al., 2019] 2D+3D 82.25% 80.52% 89.36% 97.03% 56.77% 7.38% 1025 1402
mmMOT[Zhang et al., 2019] 2D+3D 84.77% 85.21% 88.81% 97.93% 73.23% 2.77% 284 753
JRMOT[Shenoi et al., 2020] 2D+3D 85.70% 85.48% 89.51% 97.81% 71.85% 4.00% 98 372

PointTrackNet[Wang et al., 2020] 3D 68.24% 76.57% 83.56% 88.10% 60.62% 12.31% 111 725
ComplexerYOLO[Simon et al., 2019] 3D 75.70% 78.46% 85.32% 95.18% 58.00% 5.08% 1186 2092
AB3DMOT[Weng et al., 2020a] 3D 83.84% 85.24% 88.32% 96.98% 66.92% 11.38% 9 224
PC-TCNN (Ours) 3D 91.75% 86.17% 96.08% 96.45% 87.54% 2.92% 26 118

Table 3: Car tracking results on the test set of the KITTI tracking benchmark. The 2D and 3D denote 2D images and 3D point clouds,
respectively.

Tracklet proposal refinement scheme. We further inves-
tigated the effectiveness of the tracklet proposal refinement
scheme. As shown in Table 2, with tracklet refinement, the
average precision of tracklet detection in the last frame gains
a 3.47%, demonstrating that our tracklet proposal refinement
improves the tracklet accuracy. As shown in the same table,
the tracklet proposal refinement scheme gains a 3.62% on
MOTA. This demonstrates the proposed tracklet refinement
can further improves MOT on point cloud sequences.

4.4 Results on KITTI Tracking Benchmark
The car tracking results on the leaderboard of the KITTI
tracking benchmark are summarized in Table 3 (only recently
published methods are reported). The PC-TCNN takes four
point cloud frames as inputs, and is trained on 20 sequences
of the KITTI training set and validated on the remained one
sequence. Our method, achieves an MOTA of 91.75%, cur-
rently ranks 1st among all submitted methods as of Jan. 20th,
2021. Our method also achieves a high recall of 96.08%,
outperforms the strongest prior model by 2.88%. The out-
standing performance is due to that the tracklet proposal de-
sign greatly enhances the tracklet accuracy by better model-
ing spatial-temporal features of point cloud sequences. These
tracklets, encoded by accurate detections and motions, signif-
icantly reduce the false negatives, ID switches, and fragments
in the point cloud-based MOT.

We also show our qualitative results on two sequences of
the KITTI test set in Figure 3. For better visualization, we
rendered the 3D BBs using CAD car models. We also showed
a long-time tracking example in Figure 4, in which the object
with ID 2 is tracked over 340 meters, although it is heavily
occluded by the object ID 101 in many frames.

4.5 Evaluating in 3D Space
For a broader comparison with 3D MOT methods,
we also conducted experiments using the data split as
GNN3DMOT [Weng et al., 2020b]. The results on the
validation set are shown in Table 4, where the sAMOTA,
AMOTA, IDS and FRAG are 3D MOT metrics proposed by
AB3DMOT [Weng et al., 2020a]. Our method outperforms

Figure 4: A long-time tracking example: Object ID 2 (cyan box)
is tracked by our method over 340 meters, although it is heavily
occluded by the object ID 101 in many frames (b, c).

Method sAMOTA AMOTA IDS FRAG

FANTrack 82.97% 40.03% 35 202
AB3DMOT 91.78% 44.26% 0 15
GNN3DMOT 93.68% 45.27% 0 10
Ours 95.44% 47.64% 1 9

Table 4: Evaluation results on the validation set. The evaluation is
conducted in 3D space using 3D MOT metrics.

the GNN3DMOT 1.76% in the most important sAMOTA
metric, and also surpasses the FANTrack [Baser et al., 2019],
AB3DMOT [Weng et al., 2020a] and GNN3DMOT [Weng
et al., 2020b] in the AMOTA and FRAG metrics, further
demonstrating the effectiveness of our method.

5 Conclusion
We present a novel tracklet proposal PC-TCNN network for
MOT on point clouds. By innovatively employing a proposal-
based framework, our PC-TCNN performs tracklet propos-
als generation, refinement, and association, leading to signif-
icantly improved MOT performance. Meanwhile, we intro-
duced a novel tracklet proposal refinement scheme that ex-
tracts and aggregates spatial-temporal features of each pro-
posal to refine the tracklet detections, and this greatly en-
hances the accuracy of tracklets. With these novel designs,
our network achieved better MOT performance over the state-
of-the-art methods.
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