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Abstract

Facial micro-expression recognition has attracted
much attention due to its objectiveness to reveal
the true emotion of a person. However, the limited
micro-expression datasets have posed a great chal-
lenge to train a high performance micro-expression
classifier.  Since micro-expression and macro-
expression share some similarities in both spatial
and temporal facial behavior patterns, we propose
a macro-to-micro transformation framework for
micro-expression recognition. Specifically, we first
pretrain two-stream baseline model from micro-
expression data and macro-expression data respec-
tively, named MiNet and MaNet. Then, we intro-
duce two auxiliary tasks to align the spatial and
temporal features learned from micro-expression
data and macro-expression data. In spatial domain,
we introduce a domain discriminator to align the
features of MiNet and MaNet. In temporal domain,
we introduce relation classifier to predict the cor-
rect relation for temporal features from MaNet and
MiNet. Finally, we propose contrastive loss to en-
courage the MiNet to give closely aligned features
to all entries from the same class in each instance.
Experiments on three benchmark databases demon-
strate the superiority of the proposed method.

1 Introduction

Micro-expression (ME) occurs when a person either deliber-
ately or unconsciously conceals his or her genuine emotions
[Ekman, 2009]. Compared to large intensity and long dura-
tion characteristics of macro-expression, micro-expressions
is brief and subtle. Since it can be applied to many areas such
as national security, clinical diagnosis and judicial system,
automatic micro-expression recognition (MER) has become
an active research area in recent years.

Micro-expression recognition can be classified into two
categories: handcraft feature methods and deep feature meth-
ods. Researchers usually use Histogram of Oriented Gradient
(HOG), Histogram of Optical Flow (HOOF) and Local Bi-
nary Pattern-Three Orthogonal Planes (LBP-TOP) to extract

*Contact Author

1186

handcraft features. Li et al. [2017] used feature differences
for ME spotting and adopted the histogram of image gradient
orientation-TOP (HIGO-TOP) for MER. Liong ef al. [2018]
introduced a Bi-Weighted Oriented Optical Flow (Bi-WOOF)
based feature extractor, while Happy er al. [2017] proposed
a fuzzy HOOF method (FHOFO), which ignored the subtle
motion magnitudes and only took the motion direction into
consideration. Wang et al. [2014] adopted a pruned LBP de-
scriptor using six neighbors around every point (LBP-SIP)
which reduces the inherent redundancy within LBP-TOP.
Huang et al. [2015] adopted an integral projection method
to boost the capability of LBP-TOP (STLBP-IP) by supple-
menting shape information. Le et al. [2016] used LBP-TOP
to learn significant temporal and spectral structures with spar-
sity constraints. Due to the short duration and low intensity of
ME, handcraft features are not robust in the micro-expression
identification and classification.

Recently researchers use deep network for MER as the
micro-expression databases gradually developed. Peng et
al. [2019] explored their underlying joint formulations and
proposed a consolidated Eulerian framework to reveal the
subtle facial movements. It expanded the temporal duration
and amplified the muscle movements in ME simultaneously.
Van Quang ef al. [2019] used the newly proposed frame-
work CapsuleNet [2017] to figure out the part-whole rela-
tionships for MER. Khor ef al. [2019] proposed a lightweight
dual-stream shallow network (DSSN) in the form of a pair
of truncated CNNs with heterogeneous input features. Li-
ong et al. [2019] designed a shallow triple stream three-
dimensional CNN (STSTNet) to extract details of ME, with
optical strain, horizontal and vertical optical flow as input.
Lei et al. [2020] applied learning-based video motion magni-
fication to magnify ME and designed graph-temporal convo-
lutional network (Graph-TCN) to extract the features of the
local muscle movements. To fully exploit the dependence be-
tween action units (AUs) and expression, Sun ef al. [2020]
proposed a knowledge transfer technique that distilled and
transferred multi-knowledge from AU for MER. Xie et al.
[2020] proposed AU-assisted graph attention convolutional
network (AU-GACN) for MER, which effectively integrated
AU recognition. Nevertheless, these deep learning methods
suffer from insufficient micro-expression training samples.

Nowadays there are many macro-expression databases,
which contain a large number of labeled training samples.
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Figure 1: We show some examples of micro-expression and macro-
expression videos, where the first and second rows are happiness
from SAMM and CK+ database respectively. The third and fourth
rows are surprise from CASME II and MMI database. The expres-
sion videos change from onset to apex frame. The red box areas of
apex frame reveal micro and macro expression share some similarity
in facial behavior patterns.

Although macro-expression has longer duration and higher
intensity than micro-expression, these two expressions share
some similarities in spatial and temporal facial behavior pat-
terns. Figure 1 shows a comparison between micro and macro
expressions. As shown in the expression sequences varying
from onset frame to apex frame, we can obviously find that
both micro and macro expression gradually raise the lip cor-
ners for happiness. For surprise, both image sequences raise
eyebrows and open eyes. Thus, how to transform macro-
expression information for micro-expression recognition has
become an important research direction.

Peng et al. [2018] pretrained a deep network from macro-
expression images, and fine-tuned it with micro-expression
images by transfer learning protocols. However, they did not
consider the gap between micro and macro expression im-
ages, which limits the effect of transfer learning. Liu et al.
[2019] used Expression Magnification and Reduction (EMR)
to reduce the gap of apex frame between micro and macro
expression visually, and trained on a fusion of micro and
macro expression database (Neural). Since EMR actually
introduces a lot of noise to micro-expression, it can’t guar-
antee the similarity of micro and macro expression features.
Xia et al. [2020] introduced disentangle network to extract
expression-related embedding from apex frame, and used loss
equality regularization to transform macro-expression infor-
mation (MicroNet). However, their method can’t be trained
end-to-end, which impairs the performance of overall frame-
work. The above macro-expression assisted methods only use
spatial features to capture static structure patterns, which ig-
nore dynamic muscle movement from temporal features.

In order to tackle the aforementioned challenges, in this
paper we propose a macro-to-micro transformation model
which enables to transfer spatial and temporal pattern ex-
isted in macro-expression to micro-expression recognition.
As shown in Figure 2, we first pretrain two-stream baseline
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model for micro-expression data and macro-expression data
respectively, named MiNet and MaNet. In order to take ad-
vantage of macro-expression data, we model the shared fea-
tures in the spatial and temporal domain simultaneously. In
spatial domain, we introduce a domain discriminator to align
the features of MiNet and MaNet, so MiNet can capture static
textures of facial appearances better. In temporal domain, we
introduce a relation classifier to predict the correct relation for
temporal features of different sampling interval from MaNet
and MiNet. Through this task, MiNet can learn the dynamic
pattern of muscles from MaNet. Finally, we explicitly take
the class label into account and introduce contrastive loss to
encourage the MiNet to pull the same class samples together
in the feature space, while simultaneously pushing apart clus-
ters of samples from different classes.

In summary, our contributions are two-folds: 1) We pro-
pose a well-designed macro-to-micro transformation frame-
work by two auxiliary tasks from spatial and temporal domain
respectively. 2) We utilize contrastive loss to learn a more ro-
bust clustering of the feature space for micro-expression and
macro-expression.

2 Method
2.1 Problem Statement

Suppose  we
G,

(2, 4Y )}jj\il. D; contains N training instances of
micro-expression and D4 contains M training instances of
macro-expression. x; and x, respectively represent the micro
and macro expression videos that change from neutral-face
to emotional-face. y;, vy, € {1,2,---, L} are the expression
label, L is the number of expression category. Our goal is
to train a deep network for micro-expression recognition
with the help of macro-expression data in both spatial and
temporal domain. During testing, only micro-expression data
is required.

data D; =
and macro-expression data Dy =

have micro-expression

2.2 Baseline Model

Videos can be decomposed into spatial and temporal compo-
nents. The spatial part, in the form of individual frame ap-
pearance, carries static structure patterns about face depicted
in the video. The temporal part, in the form of motion across
the frames, conveys the movement of the facial muscle.

We use two-stream network as our baseline model, which
contains spatial stream network, temporal stream network
and expression classifier. We pick out the apex frame from
the expression video and input it to the spatial stream net-
work. The spatial stream network operates on individual im-
age frame, effectively extracting apex-level feature f4 from
apex frame . The appearance from apex frame contains
useful clue, since some facial expressions are strongly as-
sociated with particular facial muscle. The temporal stream
network is proposed to capture dynamic patterns from con-
secutive frames. The temporal stream network first extracts
frame-level features f = { Yoz, fT} from expression
video, and 7' is the length of video. Then we aggregate frame-
level features with mean-pooling along the temporal direction
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Figure 2: The framework of our micro-expression recognition model. First we pretrain two-stream with micro and macro expression databases
separately, named MiNet and MaNet. Secondly, MaNet is used to guide the fine-tuning of MiNet from both spatial and temporal domain.

to generate the video-level feature v. We fuse the apex-level
feature f“ and video-level feature v to get fused feature z,
and input it into expression classifier C..

Two two-stream networks are built in our framework. The
first one performs micro-expression recognition from micro-
expression data Dy, and is the desired classifier in this paper,
named MiNet. The second one performs macro-expression
recognition from macro-expression data D 4, named MaNet.
These two networks are pretrained with the supervised multi-
class cross entropy loss as shown in Eq.1:

L
L.=— Z L=y log(Ce(2)) )
=1

1p € {0,1} is an indicator function that returns 1 if B eval-
uates as true. After pretraining, MiNet is further fine-tuned
under the guidance of MaNet.

2.3 Guidance from Spatial Domain

The spatial stream network can process the static facial tex-
tures, which have a strong correlation with expression. Lim-
ited by small datasets of micro-expression, the spatial stream
of MiNet may not capture static textures of facial appearances
well. Thus, we propose an auxiliary task to learn effective
feature from macro-expression in spatial domain.

Inspired by one of the most popular adversarial-based ap-
proaches DANN [Ganin and Lempitsky, 20151, we adopt
adversarial method to align the spatial features of MiNet
and MaNet. Specifically, for the spatial features from the
MiNet and MaNet, we introduce spatial domain discrimi-
nator D; to align macro-expression features f7* and micro-
expression features fZ-A. Through adversarial training with
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a gradient reversal layer (GRL) which reverses the gradient
signs during back-propagation, MiNet is optimized to grad-
ually align the feature distributions in the spatial domain of
micro-expression to that of macro-expression. Given a binary
domain label d, indicating if a feature f4 € f4 or f4 € f#,
the outputs of D, are used to calculate the spatial domain
loss, which can be defined as:

L, = —dlog(Ds(f*)) — (1 — d)log(1 — Dy(fY) ()

2.4 Guidance from Temporal Domain

Although spatial stream network can effectively derive spatial
patterns from still images, it cannot capture the temporal pat-
tern in consecutive frames. The temporal pattern corresponds
to the movement of facial muscles. Although we implicitly
encode temporal features by the mean-pooling, the relation
between frames is still missing. In order to address temporal
variations for videos, we propose an auxiliary task for video-
level features. This is a temporal relation classification task,
which predicts the correct relation for temporal features of
different sampling interval from both MaNet and MiNet.
Specifically, we first get frame-level features f; =
{ft, f2,---, fI'} from MiNet. Then, we uniformly sample
a frame feature from each s frames with the same temporal
interval to generate temporal features v;(s). The temporal
features v;(s) with different sampling intervals have consis-
tent context but different playback rates. We use different
playback rates to learn slow and fast motion patterns simulta-
neously. Fast playrate can quickly understand video content,
and slow playrate can capture fine details. Similarly, we ex-
tract macro-expression temporal features v, (s) from MaNet.
We introduce relation classifier C's to predict the sampling in-
terval for v;(s) and v,(s). We set the sampling interval as
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s = 2"k =0,1,2,--- ,s. — 1). The ground-truth label is
denoted as ys € {1,2,--- ,S.}, S¢ is the number of different
sampling intervals of the input features. We use cross entropy
loss to supervise relation classification task as shown in Eq.3:

Lsam Z 1[y9_l log

where v(s) € {vi(s),va(s)}. The MiNet and MaNet are
driven to perceive subtle difference among adjacent frames
which is important to learn temporal pattern.

In order to align the temporal features, we also intro-
duce temporal domain discriminator D; to predict whether
the temporal feature v(s) is from micro-expression data or
macro-expression data. Given a binary domain label d, indi-
cating if a feature v(s) € v;(s) or v(s) € v,(s), the outputs
of D, are used to calculate the temporal domain adversarial
loss, as shown in Eq.4:

Ly = —dlog(Dy(v(s))) — (1 = d)log(1 = Dy(v(s))) (4)

Through adversarial training with GRL, £, also contributes to
optimize MiNet to align the feature distribution in the tempo-
ral domain of micro-expression to that of macro-expression.

Replacing original video-level feature v by aggregating
multiple temporal features v(s)(s = 1,2,4,---,2%~1), the
MiNet can encode temporal relation information.

s(v(9))) 3)

2.5 Contrastive Loss from Spatial-temporal
Domain

Up to now, we only consider minimize the domain discrep-
ancy between micro and macro expression, but neglect the
class label, which may lead to misalignment and poor gen-
eralization performance. We propose to explicitly take the
class label into account and measure the intra-class and inter-
class discrepancy. The intra-class discrepancy is minimized
to compact the features of micro and macro expression within
a class, whereas the inter-class discrepancy is maximized to
push the features of each class further away from the deci-
sion boundary. The contrastive objective functions [Khosla
et al., 2020] have achieved excellent performance in recent
years by sampling positive pairs and negative pairs. Inspired
by contrastive learning framework, for each anchor micro-
expression sample, we generate many positive pairs and neg-
ative pairs from micro and macro expression minibatch.
Specifically, for a minibatch of n randomly sampled micro-
expression samples {xE ,ylj )}" the corresponding ran-

domly sampled minibatch used for training consists of n

macro-expression samples {xa ,y(J A j=1- We input them

into MiNet and MaNet respectively to get their fused features
{29y, {297, Within a minibatch, let j € {1, ,n}
be the index of an anchor sample, and generates positive pairs
with the same expression labels from micro and macro ex-
pression data, generates negative pairs with remaining sam-
ples. The contrastive loss takes the following form:

con = - Z ‘Ccon (5)
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Dataset Expression Negative | Positive | Surprise | Total
SMIC 70 51 43 164
CASME II 88 32 25 145
SAMM 92 26 15 133
3DB-combined 250 109 83 442

Table 1: 3-class sample distribution of all databases for CDE task.

e(sim(z(j)&(k))/ﬂ
Llon = Z Lzt by =y o8 —— 77—+

elsim(z 29 /1)
Zl[ (k) _, ) 108 i

(6)

n j u n : J u
DI — Ze(sim(zgﬂ,zg NIy Z lsim (=) /1) 7
u=1

Let sim(w, v) denote the cosine similarity between two vec-
tors w and v, and 7 denote a temperature parameter.

During training, for any anchor sample 7, all positive pairs
in a minibatch contribute to the numerator of Eq.6. This
loss encourages the MiNet to give closely aligned features
to all entries from the same class in each instance, resulting
in a more robust clustering of the feature space for micro-
expression and macro-expression.

2.6 Overall Loss Function and Optimization

Finally, by combining the losses L., L, Lsam, L+ and L.op,
we define the general loss as follows:

L= ﬁc + )\lﬁs + )\2£sam + /\3£t + /\4£con (8)

where A1, A2, A3 and )4 are the hyperparameters controlling
loss coefficients. We use the general loss to update the pa-
rameter of MiNet with Adam optimizer. After training, we
use MiNet for micro-expression recognition.

3 Experiment

3.1 Experimental Condition

There are three databases commonly used for MER, i.e.,
CASME 1I [Yan et al., 2014], SMIC [Li et al., 2013] and
SAMM [Davison et al., 2016]. The CASME 1I [Yan et al.,
2014] has 256 micro-expression videos from 26 subjects,
with the average age of 22.03 years old at 200 fps. The videos
in this database show a participant evoked by one of five cat-
egories of micro-expressions: happiness, disgust, repression,
surprise and others. The SMIC [Li er al., 2013] database
contains 164 micro-expression samples from 16 participants.
Each micro-expression is recorded at the speed of 100fps and
labeled with three general expression labels: positive, nega-
tive and surprise. The SAMM [Davison et al., 2016] database
contains 159 micro-expression clips from 32 participants at
200 fps. These participants are from 13 races and the average
age is 33.24 years old. Seven micro-expression types are in-
cluded in the SAMM dataset. They are happiness, surprise,
disgust, repression, angry, fear and contempt.
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Method CASME II(CK+) | SMIC(CK+) | SAMM(CK+) | CASME II(MMI) | SMIC(MMI) | SAMM(MMI)
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
L. 0.715 0.636 0.695 | 0.672 | 0.701 | 0.693 | 0.715 0.636 0.695 | 0.672 | 0.701 | 0.693
Lo+ Ls 0.751 0.681 0.744 | 0.729 | 0.729 | 0.724 | 0.755 0.691 0.726 | 0.701 | 0.725 | 0.722
Le+ Loam + Ly 0.763 0.706 0.750 | 0.736 | 0.735 | 0.730 | 0.763 0.705 0.726 | 0.701 | 0.731 | 0.727
Lo+ L+ Lsam + Lt 0.771 0.722 0.762 | 0.750 | 0.751 | 0.748 | 0.779 0.733 0.762 | 0.750 | 0.741 | 0.740
Le+ Leon 0.747 0.683 0.738 | 0.738 | 0.731 | 0.726 | 0.755 0.694 0.726 | 0.703 | 0.725 | 0.722
Lo+ Lo+ Logm + L+ Leon | 0791 0.748 0.786 | 0.778 | 0.767 | 0.764 | 0.799 0.759 0.774 | 0.761 | 0.758 | 0.754

Table 2: Accuracy and F1 Score results on the CASME II, SMIC and SAMM databases separately. CK+ denotes using the CK+ database as
macro-expression database. MMI denotes using the MMI database as macro-expression database.

CK+ MM
Method UFT | UAR | UFT | UAR
Z. 0.801 | 0.798 | 0.801 | 0.798
Lo+ Ly 0.843 | 0.840 | 0.835 | 0.835
Lo+ Loam + Ly 0.855 | 0.853 | 0.851 | 0.848
Lot Lo+ Loam + Ly 0.871 | 0.866 | 0.851 | 0.848
Lo+ Leon 0.839 | 0.835 | 0.820 | 0.822
Lot Lo+ Loam + Lo+ Loon | 0.883 | 0.876 | 0.863 | 0.860

Table 3: UF1 and UAR results of CDE task with different macro-
expression databases.

We conduct two experiments on these databases. First,
we test our method on the CASME II, SMIC and SAMM
databases separately. Accuracy and F1 score are used for
evaluation. Second, we test our method on Composite
Database Evaluation (CDE) task [See et al., 2019], i.e., sam-
ples from all databases are combined into a single compos-
ite database based on the reduced expression classes. The
distribution of samples and subjects are given in Table 1.
Unweighted F1 score (UF1) and Unweighted Average Re-
call (UAR) are used for evaluation. Leave-one-subject-out
(LOSO) cross-validation is used in all experiments.

Two popular lab-collected databases, i.e., CK+[Lucey et
al., 2010] and MMI[Pantic et al., 2005] are adopted as macro-
expression. The CK+ database contains 327 image sequences
of seven expressions: anger, contempt, disgust, fear, happi-
ness, sadness, and surprise. The MMI database includes 205
image sequences with frontal faces of six expression labels:
anger, disgust, fear, happiness, sadness and surprise.

In our experiments, expression videos are preprocessed to
a fixed length, and every frame is rescaled to a fixed size. We
use ResNet18 as the architecture of spatial stream network
and temporal stream network. The spatial discriminator and
temporal discriminator are three convolutional layers ending
with a linear layer outputs a scalar value. The structure of re-
lation classifier is three convolutional layers ending with a lin-
ear layer and outputs the prediction of all possible sampling
intervals. We use Eq.8 to update the parameter of MiNet with
the Adam optimizer, and set Ay = Ay = 0.1, Ay = A3 = 0.2.

3.2 Experimental Results and Analysis

Recognition on the CASME II, SAMM and SMIC
Databases Separately

We conduct ablation experiments to verify the influence of
different loss functions, i.e., spatial domain loss L, temporal
domain loss L., + £+ and contrastive loss L., on the final
recognition performance. As shown in Table 2, We can draw

the following observations:

First, adopting one of the introduced losses leads to an im-
provement comparing with the baseline model only using L..
Specifically, the accuracy/F1 of L. + L, Lo + Lsam + Lt
and L. + Lcon are 3.6%/4.5%, 4.8%/7.0% and 3.2%/4.7%
higher than the baseline on the CASME II database, with
CK+ database as macro-expression. The experimental results
on the SAMM and SMIC databases show similar trend. Lim-
ited by the amount of micro-expression data, deep methods
don’t have good generalization. However, our method takes
advantage of the macro-expression data effectively and trans-
fers them to micro-expression recognition by adopting two
auxiliary tasks in spatial domain and temporal domain and
contrastive loss in spatial-temporal domain.

Second, the spatial and temporal domain losses achieve
better performance than contrastive loss in most cases. For
example, L.+ Ls+ Lsam + Lt gains 2.4%/3.9%, 2.4%/1.2%
and 2.0%/2.2% in accuracy/F1 than L. + L., on the
CASME II, SMIC and SAMM database respectively, with
CK+ database as macro-expression. Although contrastive
loss takes the class label into account and measures the intra-
class and inter-class discrepancy, it is difficult to choose a
suitable distance metric.

Finally, our method combines the strengths of the four in-
troduced loss functions and achieves the best performance.
Specifically, the accuracy/F1 of our method is 7.6%/11.2%,
9.1%/10.6% and 6.6%/7.1% higher than the baseline on the
CASME II, SAMM and SMIC database, with CK+ database
as macro-expression. This indicates that the different guid-
ance will not cause the inter-domain discrepancy. Two aux-
iliary tasks only align overall feature distribution and don’t
consider the distribution of each category, but contrastive loss
takes the class information into account.

Recognition of CDE Task

CDE task is proposed to evaluate micro-expression recog-
nition on composite database including CASME II, SMIC
and SAMM. Tasks on cross databases have both pros and
cons. The valuable training data will be more sufficient
for training and this is essential for micro-expression recog-
nition since the available data are too scarce. But since
composite database comprises samples collected from dif-
ferent environment and subjects, training across different
databases will suffer from domain shift problem. Since our
method takes advantage of the macro-expression databases
for micro-expression recognition, and adopts two auxiliary
tasks to learn domain-invariant features, our method can
avoid domain shift problem and take full use of composite
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CASME I1 SMIC SAMM

Method Acc F1 Acc F1 Acc F1
LBP-TOP [Le Ngo et al., 2016] 0.490 | 0.510 | 0.580 | 0.600 | 0.590 | 0.364
LBP-SIP [Wang er al., 2014] 0.465 | 0.448 | 0.445 | 0.449 | 0.415 | 0.406
STLBP-IP [Huang et al., 2015] 0.595 | 0.570 | 0.579 | 0.580 | 0.568 | 0.527
STCLQP [Huang et al., 2016] 0.640 | 0.638 | 0.583 | 0.583 | 0.638 | 0.611

HIGO [Li et al., 2017] 0.672 - 0.682 - - -

FHOFO [Happy and Routray, 2017] | 0.566 | 0.524 | 0.518 | 0.524 - -
Bi-WOOF [Liong et al., 2018] 0.588 | 0.610 | 0.622 | 0.620 | 0.583 | 0.397
OFF-Apex [Gan et al., 2019] - - 0.676 | 0.670 | 0.681 | 0.542

Boost [Peng et al., 2019] 0.709 - 0.689 - - -
DSSN [Khor et al., 2019] 0.708 | 0.730 | 0.634 | 0.646 | 0.574 | 0.464
AU-GACN [Xie et al., 2020] 0.712 | 0.355 - - 0.702 | 0.433

Dynamic [Sun et al., 2020] 0.726 | 0.670 | 0.761 | 0.710 - -
MicroNet [Xia et al., 2020] 0.756 | 0.701 | 0.768 | 0.744 | 0.741 | 0.736
Graph-TCN [Lei et al., 2020] 0.740 | 0.725 - - 0.750 | 0.699
ours 0.799 | 0.759 | 0.786 | 0.778 | 0.767 | 0.764

Table 4: Comparison with state-of-the-art methods on the CASME II, SMIC and SAMM databases separately.

Method Full SMIC CASME I SAMM
UF1 | UAR | UF1 | UAR | UF1 | UAR | UFl | UAR
LBP-TOP [Zhao and Pietikainen, 2007] | 0.588 | 0.578 | 0.200 | 0.528 | 0.702 | 0.742 | 0.395 | 0.410
Bi-WOOF [Liong er al., 2018] 0.629 | 0.622 | 0.572 | 0.582 | 0.780 | 0.802 | 0.521 | 0.513
OFF-Apex [Gan et al., 2019] 0.719 | 0.709 | 0.681 | 0.669 | 0.876 | 0.868 | 0.540 | 0.539
Capsule [Van Quang et al., 2019] 0.652 | 0.650 | 0.582 | 0.587 | 0.706 | 0.701 | 0.620 | 0.598
Shallow [Liong et al., 2019] 0.735 | 0.760 | 0.680 | 0.701 | 0.838 | 0.868 | 0.658 | 0.681
Dual [Zhou et al., 2019] 0.732 | 0.727 | 0.664 | 0.672 | 0.862 | 0.856 | 0.586 | 0.566
Neural [Liu ez al., 2019] 0.788 | 0.782 | 0.746 | 0.753 | 0.829 | 0.820 | 0.775 | 0.715
MicroNet [Xia et al., 2020] 0.864 | 0.857 | 0.864 | 0.861 | 0.870 | 0.872 | 0.825 | 0.819
ours 0.883 | 0.876 | 0.873 | 0.867 | 0.881 | 0.881 | 0.896 | 0.884

Table 5: Comparison with state-of-the-art methods of CDE task.

database. As shown in Table 3, the UF1/UAR of our method
is 8.2%/7.8% and 6.2%/6.2% higher than the baseline on the
CDE task, with CK+ and MMI as macro-expression dataset.

3.3 Comparison with Related Works

We compare our framework with related works. These meth-
ods are: 1) LBP-TOP [2016], LBP-SIP [2014], STLBP-
IP [2015], STCLQP [2016], HIGO [2017], FHOFO [2017]
and Bi-WOOF [2018], which are handcraft feature meth-
ods, 2) OFF-Apex [2019], Boost [2019], DSSN [2019], AU-
GACN [2020], Dynamic [2020], Graph-TCN [2020], Shal-
low [2019], Dual [2019] and Capsule [2019], which are deep
feature methods, 3) Neural [2019] and MicroNet [2020],
which are macro-expression assisted methods.

From Table 4, we can see that our framework exceeds most
handcraft feature methods in almost every evaluation indi-
cators. Our framework achieves nearly 21.1%, 16.4% and
18.4% increases in accuracy, 14.9%, 15.8% and 36.7% in-
creases in F1 score compared to the best results of handcraft
feature methods, i.e., Bi-WOOF on the CASME II, SMIC
and SAMM database. Due to short duration and low in-
tensity of micro-expression, these handcraft feature methods
can’t capture the details of facial appearance. Our method
also outperforms the best results of deep feature methods, i.e.,
Graph-TCN by 5.9%/3.4% and 2.7%/6.5% on the CASME
IT and SAMM database of accuracy/F1. Graph-TCN applied
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video motion magnification to magnify the intensity of micro-
expression, but this operation would introduce noise to micro-
expression data. In this paper we introduce auxiliary tasks to
make micro and macro expression samples produce similar
feature distributions in spatial and temporal domain.

As shown in Table 5, our method gains higher results on
CDE task. Because the CDE task has greatly increased micro-
expression training data, deep feature methods (i.e., Shal-
low, Dual and Capsule) can’t handle the difference between
databases very well. As a result, these methods perform well
on the CASME 1I database, but get poor results on the SMIC
and SAMM databases. However, our proposed framework
adopts two auxiliary tasks to learn domain-invariant features
from macro-expression data, which avoid domain shift prob-
lem and take full use of composite database.

Compared with the macro-expression assisted methods,
i.e., Neural and MicroNet, our proposed method exceeds their
results in both composite and single databases. Neural used
EMR to reduce the gap between micro and macro expression
visually. This preprocessing can’t guarantee the similarity
of micro and macro expression features, then directly train-
ing on a fusion of micro and macro expression database can’t
generate appropriate expression features. MicroNet can’t be
trained end-to-end, which impairs the performance of overall
framework. Neural and MicroNet only capture static struc-
ture patterns from spatial domain, and ignore temporal pat-
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terns. However, our method adopts a temporal relation clas-
sification task to learn dynamic movement patterns.

4 Conclusion

In this paper we propose a macro-to-micro transformation
model which transfers spatial and temporal pattern existed in
macro-expression to micro-expression recognition. In order
to take advantage of macro-expression data, we introduce ad-
versarial learning to align the spatial features of MiNet and
MaNet. In temporal domain, our proposed auxiliary task
predicts temporal relation. Through this task, MiNet can
learn the dynamic movement relationship of the muscles from
MaNet. Finally, the proposed contrastive loss encourages the
MiNet to give closely aligned features to all entries from the
same class in each instance. Experiments on three bench-
mark databases demonstrate that our framework outperforms
the state-of-the-art micro-expression recognition methods.
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