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Abstract

Deep neural networks have been shown to be
very powerful tools for object detection in vari-
ous scenes. Their remarkable performance, how-
ever, heavily depends on the availability of a large
number of high quality labeled data, which are
time-consuming and costly to acquire for scenes
with densely packed objects. We present a novel
semi-supervised approach to addressing this prob-
lem, which is designed based on a common teacher-
student model, integrated with a novel intersection-
over-union (IoU) aware consistency loss and a new
proposal consistency loss. The IoU-aware consis-
tency loss evaluates the IoU over the prediction
pairs of the teacher model and the student model,
which enforces the prediction of the student model
to approach closely to that of the teacher model.
The IoU-aware consistency loss also reweights the
importance of different prediction pairs to suppress
the low-confident pairs. The proposal consistency
loss ensures proposal consistency between the two
models, making it possible to involve the region
proposal network in the training process with unla-
beled data. We also construct a new dataset, namely
RebarDSC, containing 2,125 rebar images anno-
tated with 350,348 bounding boxes in total (164.9
annotations per image average), to evaluate the pro-
posed method. Extensive experiments are con-
ducted over both the RebarDSC dataset and the fa-
mous large public dataset SKU-110K. Experimen-
tal results corroborate that the proposed method is
able to improve the object detection performance in
densely packed scenes, consistently outperforming
state-of-the-art approaches. Dataset is available in
https://github.com/Armin1337/RebarDSC.
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Figure 1: Top: labeled objects in densely packed scenes. Top left:
the RebarDSC dataset used in this paper; Top right: the SKU-110K
dataset. Bottom: qualitative comparison of Faster R-CNN and our
semi-supervised learning method.

1 Introduction

Object detection has been widely explored under rapid devel-
opment of deep neural networks for real-world scenes [Ren et
al., 2016; Lin et al., 2017b]. Despite their remarkable perfor-
mance, these deep detectors usually need enormous labeled
data to learn from each specific scene. This requirement be-
comes an issue when heavy annotations are concerned, for
example, in the images capturing densely packed objects. In
fact, densely packed scenes generally contain hundreds or
even more objects within one image, and it is time-consuming
and costly for human annotators to label the data manually;
see Figure 1 for example.

A solution to preclude the reliance on labeled data is to

enable the network to learn from unlabeled data. This can
be achieved by leveraging semi-supervised learning (SSL),
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which deals with situations where the training set consists
of limited labeled data and enormous unlabeled data. Re-
cent semi-supervised studies for object detection mainly har-
ness consistency regularization [Jeong et al., 2019; Zhao
et al., 2020; Hong et al., 2020], which transforms the im-
age data with augmentation to obtain augmented images,
and then feeds the pair of images into the detection model,
and finally optimizes the model to produce the same predic-
tions. Consistency regularization has shown remarkable per-
formance on many objection detection tasks [Gao et al., 2019;
Cai et al., 2019; Zhao et al., 2020], and we adopt it as the
baseline in our study.

However, there are two significant challenges in consistent
learning when it is applied in densely packed object detection.
First, in most existing settings, the prediction consistency is
evaluated over multiple pairs of object prediction, but, as the
objects in densely packed scenes are very close to each other,
it is difficult, or not impossible, to precisely construct pairs to
align predictions of different objects. Second, the design of
the consistency loss is crucial to the detection performance.
Unfortunately, with many works focusing on sparse object
detection, there is no suitable consistency loss for handling
densely packed scenes.

In this paper, we propose a novel semi-supervised learn-
ing approach with a new consistency loss to tackle the chal-
lenging problem of accurately detecting objects from densely
packed scenes. The proposed consistency loss is composed of
two separate, yet complementary, components: an loU-aware
consistency loss and a proposal consistency loss. Specifically,
our approach has two detectors, i.e. the teacher model and
the student model. During training, we feed unlabeled im-
ages into the teacher network and the augmented images into
the student network to obtain the predictions. We then align
the student prediction and the teacher prediction with the IoU
metric, so that each prediction box of the teacher model has
an aligned box from the prediction of the student model. With
the alignment results, we calculate the loU-aware consistency
loss between each pair of predictions. The IoU-aware consis-
tency loss not only maximizes the IoU of paired predictions,
but also reweights the other consistency losses with IoU as
the weights. Furthermore, since the region proposal network
(RPN), an extra network branch widely used in detectors, can
not learn from the unlabeled data based on the prediction con-
sistency loss due to undifferentiable gradients, we design a
proposal consistency loss, which bridges the proposal results
from the teacher model to the student model, enforcing the
proposal results to be consistent. With the combination of the
proposed losses, the detection network can learn from both
the labeled data and unlabeled data simultaneously, further
alleviating the reliance on the labeled data. To comprehen-
sively evaluate the proposed approach, also considering the
lack of datasets on densely packed scenes, we further con-
struct a new dataset, namely RebarDSC, containing 2,125 re-
bar images annotated with 350,348 bounding boxes in total
(164.9 annotations per image average). Our contributions can
be summarized as follows:

* We present a novel semi-supervised learning approach
with dual consistency losses for object detection in
densely packed scenes.
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* We employ two separate, yet complementary, consis-
tency losses to drive the teacher-student model to learn
both labeled and unlabeled data, one aiming at aligning
IoU metric while the other attempting to align proposals.

e We build a new real-world dataset (RebarDSC) that con-
tains more than 2K high-resolution rebar images with
full annotations to enrich the dataset for densely packed
scenes.

2 Related Work
2.1 Objection Detection in Densely Packed Scenes

Recently, densely packed object detection has drawn much
attention. The existing research mainly adopts detection net-
work [Ren ef al., 2016; Lin et al., 2017b] as basic architec-
ture, and tackles the unique challenges from densely packed
scenes. For example, Hsieh er al. [2017] proposed a spa-
tially regularized loss to learn neighbor cues within densely
packed objects to improve the quality of proposals. Gold-
man et al. [2019] presented the large dataset SKU-110K col-
lected in densely packed scenes, and proposed an EM merg-
ing unit to reduce the merging errors in non-maximum sup-
pression (NMS). Similarly, Wang et al. [2020c] improved
NMS performance and designed the HNMS algorithm that
was much faster than NMS. Cai er al. [2020] developed a
guided attention network to reserve the resolution of fea-
ture maps and learn integrated high-level features with su-
pervised attention, so that small objects in dense scenes can
also be detected. Pan et al. [Pan et al., 2020] tackled the chal-
lenge of oriented objects by proposing a dynamic refinement
network that could dynamically adjust the receptive fields.
Chen et al. [2020] also handled the issue of oriented objects
by proposing PIoU loss to evaluate the angle and IoU between
ground truths and predictions. The above works focus on im-
proving the detector performance based on fully supervised
settings. On the contrary, we present here a semi-supervised
method to reduce the need of labeled data in densely packed
scenes.

2.2 Semi-supervised Learning

Recent semi-supervised learning methods mainly exploit
consistency regularization to train with unlabeled data, for
example Temporal Ensembling [Laine and Aila, 2016], Mix-
match [Berthelot et al., 2019], Fixmatch [Sohn et al., 2020al.
Here, we focus our review on the Mean Teacher [Tarvainen
and Valpola, 2017], which we used in the study. Mean
Teacher follows the pioneering work in [Laine and Aila,
2016], proposed to learn the prediction consistency between
two models saved in different epochs. In [Tarvainen and
Valpola, 2017], two models, the student model and the
teacher model, were saved under the Mean Teacher frame-
work. In their implementation, they considered the newly-
updated model as the student, and the average of consecu-
tive student models as the teacher. In this way, the student
model could learn from unlabeled data based on the consis-
tency losses, and the teacher model could be updated through
the exponential moving average (EMA) after each iteration.
In this paper, we construct the loU-aware consistency loss and
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Figure 2: Overview of our semi-supervised learning framework for densely packed object detection with unlabeled data.

the proposal consistency loss based on consistency regular-
ization, to establish the SSL framework for object detection
in densely packed scenes.

Researches have been conducted recently to explore SSL
for object detection [Jeong er al., 2019; Sohn et al., 2020b;
Zhao et al., 2020; Wang et al., 2020a], which demonstrate
good performance when compared with the methods using
labeled data only. However, these methods are not designed
for SSL in densely packed scenes. In this paper, experiments
are conducted to compare our method with these methods.

3 Method

3.1 Overview

Problem Formulation. Given an image captured from
densely packed scenes, our objective is to localize all the ob-
jects with bounding boxes. We train the detector under the
semi-supervised setting, so that the network can learn from
the unlabeled data. Formally, we have N, training samples

with dense object annotation I = {z;, bl}f\;l and NV, train-
ing samples with image only I; = {xl}f\r:tl Here = denotes
the image data and b denotes the annotation set of each image
sample.

Network Architecture. Figure 2 illustrates the architecture
of our learning framework. The architecture is based on the
design of Mean Teacher [Tarvainen and Valpola, 2017]. We
have two detection models, the student model and the teacher
model. They share the same network architecture but with
different parameters. Here we use ResNet [He et al., 2016]
integrated with FPN [Lin et al., 2017a] as the feature extrac-
tor, and Faster R-CNN [Ren et al., 2016] as the detector head.
We also test our method with different detector architectures
to show that our method can perform well with diverse archi-
tectures. Refer to the experiments for details.

Learning Strategy. For the training with unlabeled data,
the student model is learned from the consistency losses,
which we have described the designs in Sec. 3.2 and Sec. 3.3.
The teacher model does not directly learn from any loss, but
updates its parameters with the EMA of the student model.
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Formally, we define 0; as the teacher parameters, 0, as the
student parameters, and then update the teacher parameters
after each iteration with:

61‘, = (1 - )\ema)gs + /\emaet—h (1)
where \..,,, denotes the decay factor.

Data Augmentation. Following the work in [Tarvainen
and Valpola, 2017], augmentation should be performed on
the input data of the student model and teacher model to avoid
overfitting. Specifically, we fed the input images before aug-
mentation to the teacher model, and the images with augmen-
tation to the student model. The augmentation includes hor-
izontal flips which are performed over every augmented im-
age, brightness transformation which adds the brightness with
probability 50%, and contrast transformation which multi-
plies the contrast with the value between [0.9, 1.1] and prob-
ability 50%.

3.2 IoU-aware Consistency Loss

Prediction Alignment. Different from the task of image
recognition of a single prediction per image, the prediction
results of object detection here consist of multiple bound-
ing boxes. Therefore, before calculating the prediction con-
sistency loss, we first need to align the predictions of the
teacher model and the student model into pairs. This step
is more challenging under the densely packed scenes, since
the objects are close to each other and have a similar appear-
ance. Inspired by [Chen et al., 2020; Pan et al., 2020] that
Intersection-over-Union (IoU) is a good metric to evaluate the
bounding box accuracy, we propose to align the predictions
with IoU. Formally, we denote the set of box predictions from
the student model and the teacher model as By = {bs}, and
B; = {b;} respectively. For each b} from the teacher, we find
the b’ with largest IoU from the set B to construct a pair,
that is: ' '

bl, = argmax (IoU( bs, b} )) . )

bs

After alignment, we obtain the teacher predictions By = {b;}
and its alignment predictions from the student B, = {b,},
where |B,| = | B,|. Then we calculate the IoU-aware consis-
tency loss over all the pairs.
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Loss Design

The recent works on generic object detection [Jiang et al.,
2018] and densely packed object detection [Chen et al., 2020]
have shown that maximizing the IoU between prediction
and ground-truth can improve the detector under supervised
learning. Inspired by these works, we introduce the IoU loss
to semi-supervised learning. That is, we learn the unlabeled
data by maximizing the IoU between prediction pairs from
the two models. To this end, we present the loU-aware con-
sistent loss as:

S [1 — ToU (b, b)

ol

B SNC
where \;,,, denotes the weight of loU-aware consistency loss.
Unlike the recent SSL work [Wang et al., 2020b] estimates
the IoU with extra network layers, we estimate the IoU with
the pair of regressed boxes after NMS directly.

To further stabilize the consistency regularization, we fol-
low the recent work in [Zhao et al., 2020] to calculate the
center-aware consistency loss, the probability-aware consis-
tency loss and the size-aware consistency. However, we find
that many false alignments occur for densely packed scenes.
If we directly apply these losses, the false pairs will ruin
the model training. Hence, we further re-weight the gradi-
ent from each prediction pairs by their IoU, so that the pairs
with higher IoU will be given higher weighting. Formally we
denote A., A\, and A\ as the weights of center-aware consis-
tency loss, probability-aware consistency loss and size-aware
consistency respectively, {c’, p’, d'} as the center, score and
area of ¢-th predicted box, we have:

ﬁiou = )\iou

S e il | S ot =il

Lepa = Ae + A
wee 1Bl ’ 1Bl
Z‘,Btl w; ||df — di ||
+Aa = 2, “)
’ 1Bl
where w; = ToU(b:,bl) equals to the IoU of pair {b:, bi}.

With the IoU weights, we can increase the gradients for the
prediction pairs with high IoU, which we consider them as
highly confident pairs; and we reduce the gradients for pairs
with low IoU, which we consider as being false aligned due
to detection errors.

3.3 Proposal Consistency Loss

Two-stage detectors, such as the Faster R-CNN shown in Fig-
ure 2, usually exploit region proposal network (RPN) to pre-
dict the proposals. Unfortunately, the gradients from consis-
tency loss built over the prediction can not be back-forward
to the RPN branch due to undifferentiable gradients, which
would otherwise lead to sub-optimal semi-supervised learn-
ing since RPN can not learn from unlabeled data. Especially
in densely packed scenes with a large number of small objects
that are hardly recognizable, the performance of the detectors
depends highly on the proposal accuracy of RPN. To enable
RPN to learn from unlabeled data, we design a proposal con-
sistency loss that can force all the proposals from the student
model to approach closely to the ones from the teacher model,
that is:
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Figure 3: Examples and the box annotations in the RebarDSC
dataset. The rebars are captured under different angles and illumi-
nation conditions.

J anptn (ldaf — dal, + |l dys — dy;]],
+ || dwi — dwi|, + [|dhg — dhi],)
j _dpin ) )

where \,.; and A\, denote the weight of offset consistency
and probability consistency, IV denotes the number of propos-
als, {dpy,dx, dwy,dy;,dhs}™ denotes the regression score
and offsets of the teacher RPN, {dps, dv, dws, dy, dhs}V
denotes the regression score and offsets of the student RPN.

3.4 Optimization

In the semi-supervised learning, we optimize the student
model with supervised loss from the labeled data and con-
sistency loss from the unlabeled data at the same time. For-
mally, we denote the standard supervised loss from the detec-
tion framework, including classification loss and regression
loss as L 4., the overall losses can be formulated as:

o LS Lu ©

where L, will be minimized with the optimization of the stu-
dent model.

3.5 RebarDSC Dataset

Object detection in densely packed scenes has great potential
to facilitate the job of product counting and improve qual-
ity control in the industry. To promote the exploration of the
applications in densely packed scenes and to enable compre-
hensive performance evaluation, we build a new dataset of
the industrial rebar collection scene, which is denoted as Re-
barDSC. To construct this dataset, (i) we collected 2,125 im-
ages from the top 3 rebar manufacturing companies in Asia,
where the image are captured in the real production environ-
ment with various types of mobile devices, with resolution
vary from 800x 600 to 4600 3400; (ii) to satisfy the require-
ment of bundle counting, we capture all the raw images with
a bundle of rebar as the image center. If two or more bundles
are captured, we only considered the rebar within the bundle
closing to the image center and ignored other bundles. (iii) we
hired professional human workers from rebar manufacturing
companies to annotate each image’s bounding box, and fi-
nally, 350,348 annotations, 164.9 annotations per image are
collected. Some samples in our dataset are shown in Figure 3.

1,0l

1
| Z ﬁwu + ['cpd + Erpn
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Method 10% 20% 50% 100%

AP AP AR3C | AP APTS AR3C | AP APTS AR3C | AP AP75 AR3
Backbone [Ren et al., 2016] | 48.2 514 55.6 |49.7 539 537 | 520 578 59.2 | 538 60.5 60.7
CSD [Jeong et al., 2019] 50.6  55.7 569 |524 582 58.5 |53.7 60.6 60.0 |552 62.8 61.0
STAC [Sohn er al., 2020b] 512 56.3 577 |52.6 58.7 59.0 |54.1 61.0 60.3 | 552 625 61.2
SESS [Zhao et al., 2020] 50.8 55.7 57.1 | 521 57.7 584 | 529 58.7 599 |528 59.1 60.4
Ours 52.8 59.2 591 [ 541 614 60.4 | 548 062.6 61.2 | 563 64.9 62.5
Gain 4.6 7.8 3.5 44 7.5 6.7 2.8 4.8 2.0 2.5 44 1.8

Table 1: Quantitative results of semi-supervised object detection on the SKU-110K dataset.

Method 10% 20% 50% 100%

AP AP AR3 | AP AP75 AR | AP AP7" AR3 | AP AP7® AR3Y
Backbone [Ren er al., 2016] | 57.3  67.7 639 (594 71.2 66.4 | 61.1 74.6 67.6 |62.8 769 68.8
CSD [Jeong et al., 2019] 56.7 66.2 62.5 |60.6 72.8 652 | 629 775 67.6 | 646 79.1 69.0
STAC [Sohn et al., 2020b] 573 674 635 | 596 712 66.0 | 60.7 73.5 67.0 | 62.1 76.8 68.3
SESS [Zhao et al., 2020] 572 67.1 63.1 593 71.3 652 |61.7 753 669 | 629 77.6 68.6
Ours 59.7 70.5 66.6 | 62.7 76.2 68.2 | 640 789 69.6 | 65.7 81.6 71.1
Gain 24 2.8 2.7 33 5.0 1.8 29 4.3 2.0 2.9 4.7 23

Table 2: Quantitative results of semi-supervised object detection on the RebarDSC dataset.

4 Experimental Results

Implementation details. Our framework was implemented
in PyTorch, using one NVIDIA GeForce 3090. We initial-
ize Faster R-CNN with the parameters trained from COCO
dataset [Lin er al., 2014], and pre-train Faster R-CNN us-
ing all the available labeled samples with 12 epochs fol-
lowing the standard supervised learning. We then initial-
ize the student and teacher networks with the pre-trained
weights. With the initialized models, we train the student
network on both the labeled and unlabeled data by minimiz-
ing the supervised loss and consistency losses with extra 12
epochs. The student network is trained by an SGD opti-
mizer with momentum=0.9, weight decay=0.0001 and learn-
ing rate=0.0025. Each training batch contains three samples,
consisting of one labeled sample and two unlabeled samples.
All the input images are resized with their shorter side as
1200. The weights in the consistency loss functions are set
as /\iou = 1,)\0 = 0.5,)\1, = 1,)\(1 = 2, /\7-1 = 2,)\7.2 =
1, which are chosen by cross-validations on the training
set. Following the previous works [Laine and Aila, 2016;
Tarvainen and Valpola, 2017], we also ramp up the coeffi-
cient of consistency loss and gradually increase the EMA de-
cay factor A¢,, from 0 to 0.99 in all the epochs.

Datasets. We evaluate our framework on SKU-
110K [Goldman et al, 2019] and RebarDSC datasets.
SKU-110K is a large public retail environment dataset col-
lected from supermarket stores. It contains 8,233 images in
the training set and 2,941 images in the test set. Each image
in SKU-110K dataset averagely contains 149.4 annotations,
which creates a challenge for detectors. For the RebarDSC
dataset, we randomly select 1,000 images as the training set,
and consider other 1,125 images as the test set.

Metrics. We adopt evaluation metrics similar to those used
by COCO [Lin erf al., 2014], reporting the average precision

AP at IoU=0.5:0.05:0.95, AP at IoU=0.75, and average recall
AR399 4t ToU=0.50:0.05:0.95, where 300 denotes the maxi-
mal number of objects.

4.1 Quantitative Comparison

Compared Methods. Since we are the first one to explore
the semi-supervised learning for densely packed object detec-
tion, we compare the proposed method with the SSL object
detection methods closest to ours: CSD [Jeong et al., 2019],
SESS [Zhao et al., 2020] and STAC [Sohn et al., 2020b].
CSD and STAC are designed for the SSL generic object de-
tection, and the SESS is proposed to learn from 3D data. We
try our best to implement these methods and carefully fine-
tune the training parameters to obtain the best results. For
STAC, we remove the data augmentations of geometric trans-
formation and cutout which may destroy the densely packed
objects; for SESS designed for 3D object detection, we mod-
ify the consistency loss from the 3D type into 2D. For all the
compared methods, we replace their Backbone with Faster R-
CNN+ResNet50+FPN, which is also adopted in our method
for a fair comparison.

Table 1 shows the quantitative results of compared meth-
ods on the SKU-110K dataset. We mark the ratio of available
labeled in the table; for example, 10% denotes that 10% of
training data are used as labeled data, and the other training
data are used as unlabeled data. Note that on the setting with
100% label data variable, we treat all the labeled data as unla-
beled data and apply the proposed consistency losses over all
the data. We also report the model trained with labeled data
only and mark the model as “Backbone”. The results show
that our method outperforms the other compared methods on
all training data settings. Especially on the metric AP-7°, our
method outperforms the backbone with 7.8%, 7.5%, 4.8%
and 4.4%, indicating that our method can improve the local-
ization accuracy of results. We argue that this is because our
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Backbone

Ours

Backbone
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Figure 4: Visual comparison of our method and Backbone. Left: Rebar dataset; right: SKU-110K dataset.

Method 10% 20% 50% 100%
Backbone 482 497 520 53.8
IoU-aware Consist. Only | 52.2 53,5 54.6 55.7
Proposal Consist. Only 519 533 547 555
Our Full 52.8 541 550 563

Table 3: Ablation study on the SKU-110K dataset. We report the
AP in this table.

Detection Model \ Backbone Ours Gain
Faster R-CNN+R50 49.7 54.1 4.4
Faster R-CNN+R101 49.9 54.5 4.6
RetinaNet+R50 47.4 49.5 2.1
RetinaNet+R101 47.9 51.0 3.1

Table 4: Evaluation of our method with different backbones Faster
R-CNN and RetinaNet on the SKU-110K dataset (20%). We report
the AP in this table.

proposed consistency loss can benefit the learning of densely
object with diverse shapes in the market scenes.

Table 2 shows the quantitative results of compared meth-
ods on the RebarDSC dataset. Our method can signifi-
cantly improve the detector over the backbone compared with
other SSL methods. Especially on the metric 100%, our
method can significantly outperform the backbone model,
which shows that our methods can improve the detector per-
formance in densely packed scenes with the help of the pro-
posed consistency losses.

4.2 Visual Comparisons

To demonstrate the effect of our framework more intuitively,
we visualize the detection results from our method and Back-
bone network on the SKU-110K dataset and RebarDSC
dataset in Figure 4. Backbone here is trained with 10% Ia-
beled data available, and our method is trained with 10% la-
beled data and 90% unlabeled data. From the results, we can
see that our method generally detects out more objects while
the Backbone easily misses the objects with weak visual ap-
pearance. This proves that our method can let the detector
learn more discriminative features from the unlabeled data.

4.3 Ablation Study

To analyze the effectiveness of IoU-aware consistency loss
and proposal consistent loss in the proposed semi-supervised
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learning framework, we perform an ablation experiment on
the SKU-110K dataset and report the results in Table 3. In
this table, “IoU-aware Consistency Only” means that we im-
plement our method without proposal consistency loss, and
“Proposal Consistency Only” means that we implement our
method without IoU-aware consistency loss.“Full” indicates
that we implement our method with all the proposed losses.
In this table, our method with either loU-aware consistency
losses or proposal consistency loss outperforms the backbone
results, shows that both of the two proposed losses can ef-
fectively improve the model robustness with the learning of
unlabeled data.

To validate that our method is general enough to be applied
to different detectors, we evaluate our method with different
backbones in Table 4. The results show that our method can
be adapted to two-stage detector [Ren et al., 2016] or one-
stage detector [Lin et al., 2017b].

5 Conclusion

In this paper, we present an approach to learn unlabeled data
in densely packed scenes. Based on the consistency learn-
ing, we design the IoU-aware consistency loss to enforce the
IoU consistency of prediction pairs, which can significantly
improve the localization accuracy. We also observe that a
large number of false aligned pairs existed in densely packed
scenes; therefore, we reweight the prediction pairs with IoU
so that the distraction from low-confident pairs can be elim-
inated. We further design the proposal consistency loss to
encourage the consistency between the proposal. In this way,
the region proposal network can be learned from unlabeled
data. We also construct a new dataset RebarDSC to enrich
the datasets in densely packed scenes. We test our method on
two datasets, and the extensive results show that our method
outperforms the other methods in densely packed scenes.
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